Steven Van Vaerenbergh
Primary tabs
Real name:
Research interests:
Last updated: October 2018.
- Machine learning and kernel methods
- Pattern recognition in time series
- Adaptive filtering and target tracking
- System identification and blind source separation
Downloads
- Split Kernel Adaptive Filter: Matlab source code.
- On the relationship between Online Gaussian Process Regression and KLMS Algorithms: Matlab source code.
- Kernel Adaptive Filtering Toolbox for Matlab.
- Kernel-Based Identification of Hammerstein systems: Matlab source code.
- A Comparative Study of Kernel Adaptive Filtering Algorithms: Matlab source code.
- Kernel Methods Toolbox: Matlab toolbox.
- Alternating Kernel Canonical Correlation Analysis algorithm: Matlab source code.
- Estimation of the Forgetting Factor in Kernel Recursive Least Squares Matlab source code.
- Connected Image Transformations algorithm: Matlab source code.
- Kernel Recursive Least-Squares Tracker algorithm: Matlab source code.
- Overlapping Mixtures of Gaussian Processes for the data association problem: Matlab source code.
Biography:
Postdoctoral researcher
Doctor in Telecommunications (FPU, University of Cantabria, Spain, 2010)
Electrical Engineer (Telecommunications) (University of Ghent, Belgium, 2003)
Teaching:
- Aplicaciones de Procesado de Señal (Grado en Ingeniería de Tecnologías de Telecomunicación)
- Data Mining (Máster Universitario en Ciencia de Datos / Master in Data Science)
- Machine Learning II (Máster Universitario en Ciencia de Datos / Master in Data Science)
Selected publications:
Journal Article
2013
"Blind Identification of SIMO Wiener Systems based on Kernel Canonical Correlation Analysis", IEEE Transactions on Signal Processing, vol. 61, issue 9, pp. 2219-2230, May, 2013.
PDF Version (363.45 KB) ,
"Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances", IEEE Signal Processing Magazine, vol. 30, issue 4, pp. 40-50, July, 2013.
PDF Version (1.68 MB) ,
2012
"Overlapping Mixtures of Gaussian Processes for the Data Association Problem", Pattern Recognition, vol. 45, no. 4, pp. 1386–1395, April, 2012.
PDF Version (1.03 MB) ,
"Kernel Recursive Least-Squares Tracker for Time-Varying Regression", IEEE Transactions on Neural Networks and Learning Systems, vol. 23, issue 8, pp. 1313--1326, August, 2012.
PDF Version (861.59 KB) ,
Conference Paper
2018
"Pattern Localization in Time Series through Signal-To-Model Alignment in Latent Space", 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, IEEE, April, 2018.
PDF Version (262.96 KB) ,
2015
"A Probabilistic Least-Mean-Squares Filter", 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Queensland, Australia, April, 2015.
PDF Version (375.31 KB) ,
2013
"A Comparative Study of Kernel Adaptive Filtering Algorithms", 2013 IEEE Digital Signal Processing (DSP) Workshop and IEEE Signal Processing Education (SPE): IEEE, August, 2013.
PDF Version (121.63 KB) ,
2012
"Estimation of the Forgetting Factor in Kernel Recursive Least Squares", 2012 IEEE International Workshop On Machine Learning For Signal Processing (MLSP), September, 2012.
PDF Version (241.23 KB) ,
Book Chapter
2014
"Online Regression with Kernels", Regularization, Optimization, Kernels, and Support Vector Machines, no. Machine Learning & Pattern Recognition Series, New York, Chapman and Hall/CRC, pp. 477-501, 2014.
PDF Version (298.16 KB) ,