Steven Van Vaerenbergh
Primary tabs
Real name: 
Research interests: 
Last updated: October 2018.
- Machine learning and kernel methods
 - Pattern recognition in time series
 - Adaptive filtering and target tracking
 - System identification and blind source separation
 
Downloads
- Split Kernel Adaptive Filter: Matlab source code.
 - On the relationship between Online Gaussian Process Regression and KLMS Algorithms: Matlab source code.
 - Kernel Adaptive Filtering Toolbox for Matlab.
 - Kernel-Based Identification of Hammerstein systems: Matlab source code.
 - A Comparative Study of Kernel Adaptive Filtering Algorithms: Matlab source code.
 - Kernel Methods Toolbox: Matlab toolbox.
 - Alternating Kernel Canonical Correlation Analysis algorithm: Matlab source code.
 - Estimation of the Forgetting Factor in Kernel Recursive Least Squares Matlab source code.
 - Connected Image Transformations algorithm: Matlab source code.
 - Kernel Recursive Least-Squares Tracker algorithm: Matlab source code.
 - Overlapping Mixtures of Gaussian Processes for the data association problem: Matlab source code.
 
Biography: 
Postdoctoral researcher
 Doctor in Telecommunications (FPU, University of Cantabria, Spain, 2010)
 Electrical Engineer (Telecommunications) (University of Ghent, Belgium, 2003)
Teaching: 
- Aplicaciones de Procesado de Señal (Grado en Ingeniería de Tecnologías de Telecomunicación)
 - Data Mining (Máster Universitario en Ciencia de Datos / Master in Data Science)
 - Machine Learning II (Máster Universitario en Ciencia de Datos / Master in Data Science)
 
Selected publications: 
Journal Article
2013
        , "Blind Identification of SIMO Wiener Systems based on Kernel Canonical Correlation Analysis", IEEE Transactions on Signal Processing, vol. 61, issue 9, pp. 2219-2230, May, 2013.
 PDF Version (363.45 KB)  
          , "Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances", IEEE Signal Processing Magazine, vol. 30, issue 4, pp. 40-50, July, 2013.
 PDF Version (1.68 MB)  
  2012
        , "Overlapping Mixtures of Gaussian Processes for the Data Association Problem", Pattern Recognition, vol. 45, no. 4, pp. 1386–1395, April, 2012.
 PDF Version (1.03 MB)  
          , "Kernel Recursive Least-Squares Tracker for Time-Varying Regression", IEEE Transactions on Neural Networks and Learning Systems, vol. 23, issue 8, pp. 1313--1326, August, 2012.
 PDF Version (861.59 KB)  
  Conference Paper
2018
        , "Pattern Localization in Time Series through Signal-To-Model Alignment in Latent Space", 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, IEEE, April, 2018.
 PDF Version (262.96 KB)  
  2015
        , "A Probabilistic Least-Mean-Squares Filter", 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Queensland, Australia, April, 2015.
 PDF Version (375.31 KB)  
  2013
        , "A Comparative Study of Kernel Adaptive Filtering Algorithms", 2013 IEEE Digital Signal Processing (DSP) Workshop and IEEE Signal Processing Education (SPE): IEEE, August, 2013.
 PDF Version (121.63 KB)  
  2012
        , "Estimation of the Forgetting Factor in Kernel Recursive Least Squares", 2012 IEEE International Workshop On Machine Learning For Signal Processing (MLSP), September, 2012.
 PDF Version (241.23 KB)  
  Book Chapter
2014
        , "Online Regression with Kernels", Regularization, Optimization, Kernels, and Support Vector Machines, no. Machine Learning & Pattern Recognition Series, New York, Chapman and Hall/CRC, pp. 477-501, 2014.
 PDF Version (298.16 KB)  
  

