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ABSTRACT

Kernel adaptive filtering is a growing field of signal process-
ing that is concerned with nonlinear adaptive filtering. When
implemented naı̈vely, the time and memory complexities of
these algorithms grow at least linearly with the amount of
data processed. A large number of practical solutions have
been proposed throughout the last decade, based on sparsifi-
cation or pruning mechanisms. Nevertheless, there is a lack
of understanding of their relative merits, which often depend
on the data they operate on. We propose to study the quality
of the solution as a function of either the time or the memory
complexity. We empirically test six different kernel adaptive
filtering algorithms on three different benchmark data sets.
We make our code available through an open source toolbox
that includes additional algorithms and allows to measure the
complexities explicitly in number of floating point operations
and bytes needed, respectively.

Index Terms— Kernel adaptive filtering, nonlinear filter-
ing, comparison, benchmarks.

1. INTRODUCTION

Kernel adaptive filtering (KAF) methods are rapidly gaining
popularity to solve a wide variety of prediction, identification
and regression problems, since they provide state-of-the-art
performance in many real-world applications. Relying on the
“kernel-trick” as a basic building block, many kernel-based
versions of the popular least-mean squares (LMS) and recur-
sive least-squares (RLS) algorithms have been proposed over
the last years in both the signal processing and machine learn-
ing fields, see for instance [1, 2, 3, 4, 5, 6, 7]

A bottleneck typically encountered in online kernel-based
learning, is that KAF methods suffer from growing complex-
ity, since the number of kernels required to represent their
solution can grow linearly or faster with the number of pro-
cessed data. To overcome this drawback and to limit the com-
plexity of the kernel-based filters, several different sparsifica-
tion or fixed-budget approaches can be applied, thus multi-
plying the number of possible KAF methods.
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Unlike their linear counterparts, for kernel adaptive filters
the trade-offs among speed of convergence, tracking ability
and misadjustment noise are difficult to characterize theoret-
ically, with only a few exceptions [8]. Therefore, to under-
stand the relative merits of the different KAF techniques, one
typically has to resort to simulation studies. Nevertheless, the
studies conducted so far in the literature are typically focused
on a particular algorithm and they use specific metrics and
datasets in order to highlight the benefits of this algorithmin
comparison to its close competitors. As a result, it is difficult
to have a fair view of the real merits of the most popular KAF
techniques.

In an attempt to fill this gap, we conduct a comparative
study on the performance of six representative KAF tech-
niques applied to three different regression problems, specifi-
cally predicting the chaotic Lorenz time series, predicting res-
piratory motion traces, and identifying a time-varying wire-
less channel. The algorithms we consider are four variants
of the KRLS algorithm [2, 9, 10, 6] and two KLMS-like al-
gorithms [1, 5], which together form a representative sam-
pling of the current state-of-the-art KAF techniques. The
selected benchmark problems are also representative of dif-
ferent scenarios encountered in practice, e.g., stationary and
non-stationary (dynamical) systems.

As we have mentioned previously, the complexity of KAF
algorithms strongly depends on the size of the dictionary used
to approximate the desired output. Most kernel adaptive fil-
tering algorithms have a single parameter that controls the
growth of the dictionary. For algorithms based on a sparsi-
fication criterion, this is typically a threshold that determines
if a new datum is accepted into the dictionary. For algorithms
on a budget this is typically a fixed dictionary size. We will
assess the quality of the predictions as a function of the com-
pute time or memory as this parameter is varied.

The rest of this paper is structured as follows. In Section
2, we review the kernel adaptive filtering problem and then we
briefly outline the algorithms compared in this study. In Sec-
tion 3, we describe a set of performance measures that allow
us to explore the existing performance/complexity trade-offs.
In Section 4 we introduce three benchmark data sets on which
we perform either prediction or system identification, and we
discuss the relative merits of the different KAF techniques.
Section 5 summarizes the main conclusions of this work.



2. KERNEL-BASED ADAPTIVE FILTERING

2.1. Problem statement

Kernel adaptive filtering is the subfield of online kernel-based
learning that deals with the problem of nonlinear regres-
sion. Specifically, given an input-output stream of data pairs
(xi, yi), the task consists in estimating the nonlinear function
fi(·) that relates input and output,

yi = fi(xi), (1)

and to update this estimate efficiently every time a new data
pair is received. The unknown functionfi(·) may be chang-
ing over time, as opposed to standard regression settings that
assume static underlying modelsf(·). This problem is en-
countered for instance in adaptive signal processing theory,
which classically employs linear techniques, i.e. assuming a
solution of the form,fi(xi) = w

⊤

i xi, on which there exists a
vast body of literature [11].

Kernel methods are based on a nonlinear transformation
of the dataxi into a high-dimensionalfeature space. In this
feature space, inner products can be calculated by using a
positive definite kernel function satisfying Mercer’s condi-
tion [12]: κ(xi,xj) = 〈Φ(xi),Φ(xj)〉. This simple and ele-
gant idea, also known as the “kernel trick”, allows to perform
inner-product based algorithms implicitly in feature space by
replacing all inner products by kernels. Many kernel func-
tions exist, though the most commonly used is the Gaussian
kernel

κ(xi,xj) = exp(−‖xi − xj‖
2/2σ2). (2)

Thanks to the Representer Theorem [13], the nonlinear-
ities of a wide range of problems can be represented suffi-
ciently well as a kernel expansion in terms of the training data

f(x) =

N∑

i=1

αiκ(xi,x). (3)

Kernel recursive least-squares (KRLS) algorithms calcu-
late the coefficientsαi by solving a least-squares problem
which involves the inversion of akernel matrixwhose dimen-
sions depend on the number of stored data,M . Therefore,
they have quadratic computational and memory complexity in
terms ofM , i.e.O(M2). Kernel least-mean squares (KLMS)
algorithms, on the other hand, use stochastic gradient descent
to obtainαi, and they have linear complexity,O(M). As
mentioned above, in online scenarios the amount of processed
data,M , grows in time, and practical algorithms therefore
need to restrict the amount of data that will be stored. While
the complexities of KLMS and KRLS algorithms differ an
order of magnitude, an interesting question is whether KLMS
with high M can reach comparable performance as KRLS
with low M . This will become clear in the experiments.

In the sequel we outline the six state-of-the-art KAF algo-
rithms that are included in this study. We distinguish between

algorithms that allow for tracking and algorithms that rather
assume a stationary data model.

2.2. NORMA

Naive Online regularized Risk Minimization Algorithm
(NORMA) is a kernel-based version of leaky least-mean
squares (LMS) [1]. It is closely related to the KLMS algo-
rithm proposed in [3] but it includes regularization. As a
result, its coefficients shrink over time, allowing it to discard
the oldest bases in a sliding-window fashion.

2.3. QKLMS

Quantized KLMS (QKLMS) [5] constructs a dictionary ac-
cording to a “quantization” process in which data points are
mapped onto the closest dictionary point. A similar criterion
was followed in [4]. By allowing to update previously calcu-
lated coefficients, QKLMS obtains tracking capability.

2.4. ALD-KRLS

Approximate Linear Dependency KRLS (ALD-KRLS) [2] is
the first KRLS-type algorithm proposed in the literature. It
slows down dictionary growth by using a sparsity criterion
based on linear dependency. Its only parameter, apart from
the kernel, is a sensitivity thresholdν which determines if
a basis will be accepted into the dictionary. An important
characteristic of ALD-KRLS in the context of this study is
that it assumes the model underlying the data to be stationary.

2.5. SW-KRLS

Sliding-Window KRLS (SW-KRLS) achieves tracking by
performing regression only on theM last observed data,
[9]. It is a conceptually very simple algorithm that obtains
reasonable performance in a wide range of scenarios.

2.6. FB-KRLS

Fixed-Budget KRLS (FB-KRLS) is a modification of SW-
KRLS: Instead of discarding the oldest data point in each it-
eration, it discards the data point that causes the least error
upon being discarded [10]. This approach yields performance
improvements in stationary scenarios, though its pruning cri-
terion is not optimized for non-stationary environments.

2.7. KRLS-T

The KRLS Tracker (KRLS-T) algorithm [6] was devised by
deriving standard KRLS theory from a Bayesian point of
view. Along with each prediction it also provides confidence
intervals, which are exploited to operate a forgetting mech-
anism that can handle non-stationary scenarios. In order to
control its adaptation rate it uses a forgetting factorλ, while
its dictionary sizeM is a budget-dependent parameter.



3. METRICS FOR PERFORMANCE COMPARISONS

For each algorithm, we study the trade-off between the MSE
and the complexity, in terms computation and memory. By
fixing a performance goal, such as available memory or max-
imum allowable error, the trade-off figures allow the practi-
tioner to determine which algorithm shows the most favor-
able remaining properties. There exist several other perfor-
mance measures, such as convergence speed and robustness
w.r.t. quantification, though we leave these for future studies.

3.1. Computational complexity

In order to quantify the computational complexity of an algo-
rithm, the CPU time is often chosen as the cost. Though CPU
time is easy to measure, it depends on several environmental
parameters, such as the machine on which the algorithm is
run and the processes this machine is running in parallel. Fur-
thermore, comparing the CPU times of different algorithms is
only fair if these algorithms are implemented with a similar
level of code optimization.

An alternative is to explicitly measure the mathematical
operations required by each of the algorithms. KAF algo-
rithms perform only algebraically simple calculations, such as
multiplications of matrices and vectors, and therefore this is a
viable option. In the experiments we combine these numbers
into a single measure, the amount of floating point operations
(FLOPS) required, and we plot the average amount of FLOPS
needed per iteration.

3.2. Memory

In the KAF literature it is common practice to measure the
memory as the amount of bases stored in the dictionary. Nev-
ertheless, this measure loses sense when comparing KLMS
and KRLS-based algorithms, as their dictionary sizes have
different impacts on the true memory usage. We measure the
memory usage of each algorithm explicitly as the number of
bytes required for all stored variables, including dictionaries,
matrices and coefficients. In the experiments we report the
maximum number of bytes used per iteration, as this corre-
sponds to a physical limit.

4. EXPERIMENTS

We conduct experiments on three different data sets. The pa-
rameter that controls the dictionary size for each algorithm
determines in turn the computational and memory complexi-
ties. For each experiment, we vary this parameter over a wide
range and measure the MSE. The so obtained “performance
curves” are used for comparison. The remaining parameters
are chosen by an exhaustive search in order to optimize the
position of the performance curve. For the initial set of pa-
rameters in each search we relied on the technique described
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Fig. 1. A snapshot of the Lorenz time series.

in [14]. Note that the optimal selection of the parameters is
an important open problem in the KAF literature, and it falls
outside the scope of this paper.

The implementations of all the compared algorithms are
available through the Kernel Adaptive Filtering Toolbox,
http://sourceforge.net/projects/kafbox/.

4.1. Prediction of the Lorenz attractor time series

The Lorenz attractor is a nonlinear dynamical system corre-
sponding to the long-term behavior of a chaotic flow. Due to
its nonlinear and chaotic behavior, it is one of the standard
benchmark data sets in the kernel adaptive filtering literature
[15]. We sample10.000 points of thex-component of the se-
ries under its standard parameter setting, using the first order
approximation with step size0.01. A snapshot of this time
series is shown in Fig. 1.

The experiment consists in performing one-step ahead
prediction, i.e. given all samplesxi up till time i = t, the task
is to predict the samplext+1. To select the filter order we
can either rely on Takens embedding theorem [16], which is
a principled approach to selecting the filter order of a deter-
ministic series, or use the empirical method described in [14].
We choose filter order6, i.e. prediction is performed using
inputsxi = [xi−5, xi−4, . . . , xi]

⊤. The parameters used for
each algorithm are shown in Table 2.

The obtained results are displayed in Fig. 2. NORMA
was not included as it did not obtain MSE results in the range
of interest. A first conclusion is that KRLS-type algorithms
typically obtain lower steady state MSEs than KLMS, which
is in accordance with the literature. By adding the FLOPS
or memory into the picture, we get an idea of the resources
required. If, for instance, we are working in a scenario witha
restriction on computational complexity, we should selectthe
algorithm that performs best under this restriction by looking
which performance curve is most to the left for the amount of
FLOPS available. In the same manner, by fixing a maximum
on MSE we obtain the FLOPS and memory required by each
algorithm. In this case, if the computational resources are
limited, it is more interesting to use SW-KRLS. On the other
hand, if the goal is to minimize the MSE at any cost, FB-
KRLS does so at minimum cost.

http://sourceforge.net/projects/kafbox/
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Fig. 2. Average number of FLOPS (left) and maximum memory usage (right), as a function of MSE, for the Lorenz time series
prediction. Each marker represents a single run of one of thealgorithms with a single set of parameters. The start of each
parameter sweep is indicated by a black dot.

Table 1. Parameters used in the Lorenz time series prediction. A Gaussian kernel withσ = 32 was used.

Method Fixed parameters Varying parameter

QKLMS η = 0.5 ǫU = 1, 2, 5, 10, 15, 18
KRLS-T λ = 1, σ2

n = 10−6 M = 10, 15, 20, 24, 30, 50, 100, 200
ALD-KRLS — ν = 0.0001, 0.0002, 0.001, .01.05.1
SW-KRLS c = 10−6 M = 1, 2, 3, 4, 5, 10, 20, 50, 100, 200
FB-KRLS c = 10−6, µ = 0 M = 10, 15, 20, 25, 30, 50, 100, 200

4.2. Prediction of respiratory motion traces

In robotic radiosurgery, a photon beam source is used to ab-
late tumors. It is operated by a robot arm that aims to move
the beam source to compensate for the motion of internal or-
gans. Traditionally, this is achieved by recording the motion
of markers applied to the body surface and by using this mo-
tion to draw conclusions about the tumor position. Although
this method significantly increases the targeting accuracy, the
system delay arising from data processing and positioning of
the beam results in a systematic error. This error can be de-
creased by predicting the motion of the body surface [17].

In this experiment we apply KAF algorithms to predict a
respiratory motion trace. The data was recorded at George-
town University Hospital using CyberKnifeR© equipment,
and it represents the recorded position of one of the markers
attached to the body surface1. A snapshot of this motion trace
is shown in Fig. 3. The delay to compensate totals115 ms,
which, at a sampling frequency of26 Hz, corresponds to3
samples. The task thus consists in three-step ahead prediction.
We use a time-embedding of8 samples, and the remaining
parameters are listed in Table 2. The results, for four of the
algorithms, are found in Fig. 3. Since the breathing pattern
may change over time, tracking algorithms should perform
better in this experiment. The highest accuracy is obtained

1Data available athttp://signals.rob.uni-luebeck.de/
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Fig. 3. A snapshot of the respiratory motion trace.

by KRLS-T, in return for the most computational and mem-
ory resources. For MSE performances of−10 dB or more,
NORMA is faster, while the required memory is similar for
KRLS-T and NORMA at high MSE values. The figure of
merit for ALD-KRLS is relatively weak, most likely because
the non-stationarity in this experiment requires tracking.

4.3. Identification of a time-varying channel

We acquired data from a wireless communication test bed that
is used to evaluate the performance of digital communica-
tion systems in realistic indoor environments. The platform
is composed of several transmit and receive nodes, each one
including a radio-frequency front-end and baseband hardware
for signal generation and acquisition. The front-end also in-

http://signals.rob.uni-luebeck.de/
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Fig. 4. Average FLOPS (left) and maximum memory usage (right), as afunction of MSE, for the respiratory motion prediction.

Table 2. Parameters used in the respiratory motion prediction. A Gaussian kernel withσ = 7 was used.

Method Fixed parameters Varying parameter

QKLMS η = 0.99 ǫU = 0.2, 0.5, 1, 2, 2.5, 2.75, 4, 6, 7
NORMA η = 0.99, λ = 10−6 τ = 3, 4, 5, 10, 15, 20, 30, 40, 60
KRLS-T λ = 0.999, σ2

n = 10−6 M = 3, 4, 5, 7, 10, 20, 50, 70, 100
ALD-KRLS — ν = 0.0001, 0.001, 0.003, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5

corporates a programmable variable attenuator to control the
transmit power and therefore the signal saturation. A more
detailed description of the test bed can be found in [18]. Us-
ing the hardware platform, we transmitted clipped orthogonal
frequency-division multiplexing (OFDM) signals centeredat
5.4 GHz over real frequency-selective and time-varying chan-
nels, with normalized Doppler frequency around10−3. The
transmit amplifier was operated close to saturation. We col-
lected8000 inputsxi and outputsyi in order to identify the
nonlinear channel and to track its changes over time.

The time-embedding is chosen as4, i.e. we use the in-
puts up tillxi = [xi−3, . . . , xi]

⊤ to predict the outputyi, and
the remaining parameter are listed in Table 3. The results of
four tracking algorithms on the online identification problem
can be found in Fig. 5. A first observation is that the best
MSE is substantially higher than in the previous experiments,
due to the high amount of noise and variability in the mea-
surements. Without any limitation on the available resources,
KRLS-T obtains better MSE values. If the amount of com-
putation or memory is limited, for instance when implement-
ing the KAF method on wireless sensor network consisting of
low-cost nodes, QKLMS obtains similarly good performance.

5. CONCLUSIONS

We have studied the trade-offs between the MSE performance
and the complexity for several state-of-the-art kernel adaptive
filtering algorithms, on three benchmark data sets. The pro-
posed figures of merit are meaningful indicators of the rela-

tive performances of these algorithms: Since they allow us to
highlight advantages and disadvantages of each algorithm in
different scenarios, they constitute an interesting tool for the
practitioner.

As expected, we observed that there is not a single best-
performing algorithm for all scenarios. Rather, the optimal
choice of algorithm depends on the target MSE range, the
available computational resources and the particular dataset.

In future work we plan to include additional measures,
such as as the convergence speed, which may be of interest in
scenarios with less restrictions on complexity.
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