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ABSTRACT Unlike their linear counterparts, for kernel adaptive fite

P L ) the trade-offs among speed of convergence, tracking wabilit
Kernel adaptive filtering is a growing field of signal process and misadjustment noise are difficult to characterize #teor

ing that is concerned with nonlinear adaptive filtering. \Whe ically, with only a few exceptiong [8]. Therefore, to under-

|mplemente_d naively, the time and memory complexities Ofa 4 the relative merits of the different KAF techniques o
these algorithms grow at least linearly with the amount oty icaly has to resort to simulation studies. Neverthglése
data processed. A large number of practical solutions hav§t,udies conducted so far in the literature are typicallysd
been proposed throughout the last decade, based on sparsifiy 5 harticular algorithm and they use specific metrics and
cation or pruning mechanisms. Nevertheless, there is a latfyasets in order to highlight the benefits of this algorithm

of understanding of their relative merits, which often depe o harison to its close competitors. As a result, it is diffic

on the data they operate on. We propose to study the qualipy paye a fair view of the real merits of the most popular KAF
of the solution as a function of either the time or the memor}fechniques

cpmplexity. We empirically tes_t six different kerne| adapt In an attempt to fill this gap, we conduct a comparative
filtering algorithms on three different benchmark data .setsStudy on the performance of six representative KAF tech-

We make our code available through an open source toolbom . . . o
. " . ues applied to three different regression problems;ipe
that includes additional algorithms and allows to meadoee t a bp 9 P I8P

i L . : ) cally predicting the chaotic Lorenz time series, predgties-
complexities explicitly in nu_mber of floating point opeais piratory motion traces, and identifying a time-varying evir
and bytes needed, respectively. less channel. The algorithms we consider are four variants

Index Terms— Kernel adaptive filtering, nonlinear filter- of the KRLS algorithm|[[2[ 9, 10,16] and two KLMS-like al-
ing, comparison, benchmarks. gorithms [1,[5], which together form a representative sam-
pling of the current state-of-the-art KAF techniques. The
selected benchmark problems are also representative-of dif
ferent scenarios encountered in practice, e.g., staticaz
non-stationary (dynamical) systems.

As we have mentioned previously, the complexity of KAF
algorithms strongly depends on the size of the dictionaeglus

erformance in manv real-world appiications. Relving oa th to approximate the desired output. Most kernel adaptive fil-
b y PP - Relying tering algorithms have a single parameter that controls the

kerr_1e|-tr|ck as a basic building block, many kernel-bdse rowth of the dictionary. For algorithms based on a sparsi-
versions of the popular least-mean squares (LMS) and recu?—

) X ication criterion, this is typically a threshold that deténes
sive least-squares (RLS) algorithms have been proposed ov : . - .
. . ) . ifa new datum is accepted into the dictionary. For algorghm
the last years in both the signal processing and machine-lear

ing fields, see for instancel [, 2,3 [2[505, 7] on a budget this is typically a fixed dictionary size. We will

) _ . ssess the quality of the predictions as a function of the.com
A bottleneck typically encountered in online kernel-basetﬁ d y b

o _ ute time or memory as this parameter is varied.
learning, is that KAF methods suffer from growing complex- y P

: : : . The rest of this paper is structured as follows. In Section
ity, since the number of kernels required to represent the : A

. X : , we review the kernel adaptive filtering problem and then we
solution can grow linearly or faster with the number of pro-

cessed data. To overcome this drawback and to limit the corrff.rleﬂy outline the algorithms compared in this study. In-Sec

plexity of the kernel-based filters, several different sffama- lon[d, we describe a set of performance measures that allow

tion or fixed-budaet aporoaches can be aoplied. thus mult®S to explore the existing performance/complexity tratfe-o
. get appro pplied, T Sectior 4 we introduce three benchmark data sets on which
plying the number of possible KAF methods.

we perform either prediction or system identification, ared w
This work has been partially supported by TEC2010-19548-C® discgss the relativ_e merits of.the diﬁergnt KAF t_echniques
(COSIMA) and Consolider-Ingenio 2010 CSD2008-00010 (COMBENS).  Sectiorld summarizes the main conclusions of this work.

1. INTRODUCTION

Kernel adaptive filtering (KAF) methods are rapidly gaining
popularity to solve a wide variety of prediction, identifiican
and regression problems, since they provide state-o&the-




2. KERNEL-BASED ADAPTIVE FILTERING algorithms that allow for tracking and algorithms that eath

assume a stationary data model.
2.1. Problem statement

Kernel adaptive filtering is the subfield of online kerneked 2.2. NORMA

learning that deals with the problem of nonlinear regresyaive Online regularized Risk Minimization Algorithm
sion. Specifically, given an input-output stream of dataai (NORMA) is a kernel-based version of leaky least-mean
(xi,v:), the task 9onsists in estimating the nonlinear functionsquares (LMS)[1]. It is closely related to the KLMS algo-
fi(-) that relates input and output, rithm proposed in[[3] but it includes regularization. As a
= fi(x) (1) result, its coefficients shrink over time, allowing it to clisd
Yi = JilXa), the oldest bases in a sliding-window fashion.

and to update this estimate efficiently every time a new data
pair is received. The unknown functigf(-) may be chang- 2.3. QKLMS

ing over time_, as oppo_sed to standard re_gression se_ttiags thQuantized KLMS (QKLMS)[[5] constructs a dictionary ac-
assume static underlying modefg.). This problem is en- cording to a “quantization” process in which data points are

countered for instance in adaptive signal processing yheor L . . L
: ; waap gnat pro 9 yh. mapped onto the closest dictionary point. A similar crdari
which classically employs linear techniques, i.e. assgnain : X .
was followed in[[4]. By allowing to update previously calcu-

solution of the form f;(x;) = w, x;, on which there exists a - . . .
vast body of literaturé [11]. lated coefficients, QKLMS obtains tracking capability.

Kernel methods are based on a nonlinear transformation
of the datax; into a high-dimensiondkature spaceln this 2.4. ALD-KRLS

feature space, inner products can be calculated by USi”gA?pproximate Linear Dependency KRLS (ALD-KRLS) [2] is
positive definite kernel function satisfyi_ng _Mercer’s cond the first KRLS-type algorithm proposed in the literature. It
tion [12]: r(xi, x;) = (®(x;), ©(x;)). This simple and ele-  gjoys down dictionary growth by using a sparsity criterion
gantidea, also known as the “kernel trick”, allows to pemior  pased on linear dependency. Its only parameter, apart from
inner-product based algorithms implicitly in feature spa§  he kernel, is a sensitivity thresholdwhich determines if
replacing all inner products by kernels. Many kemnel func- pasis will be accepted into the dictionary. An important
tions exist, though the most commonly used is the Gaussiggharacteristic of ALD-KRLS in the context of this study is
kernel that it assumes the model underlying the data to be stationar
K(xi,x;) = exp(—|x; — x;]*/20?). (2)
Thanks to the Representer Theorem| [13], the nonlinea2.5. SW-KRLS

ities of a wide range of problems can be represented suffi-,. . . . .
ciently well as a kernel expansion in terms of the trainintada élldmg—\_deow KR.LS (SW-KRLS) achieves tracking by
performing regression only on th&/ last observed data,
N [9]. It is a conceptually very simple algorithm that obtains
flx) = Z i k(X4,X). (3) reasonable performance in a wide range of scenarios.
=1

Kernel recursive least-squares (KRLS) algorithms calcu2-6- FB-KRLS

late the coefficientsy; by solving a least-squares problem pixed-Budget KRLS (FB-KRLS) is a modification of SW-

which involves the inversion of kernel matrixwhose dimen- - KR| s: Instead of discarding the oldest data point in each it-
sions depend on the number of stored dath, Therefore, eration, it discards the data point that causes the least err
they have quadratic computational and memory complexity iﬁhpon being discarded 1L0]. This approach yields performanc

terms of M, i.e. O(M~). Kernel least-mean squares (KLMS) jmprovements in stationary scenarios, though its pruniig c

to obtaina;, and they have linear complexit@®)(M). As

mentioned above, in online scenarios the amount of prodessg -, || 5.1

data, M, grows in time, and practical algorithms therefore™ " °

need to restrict the amount of data that will be stored. WhileThe KRLS Tracker (KRLS-T) algorithm_[6] was devised by

the complexities of KLMS and KRLS algorithms differ an deriving standard KRLS theory from a Bayesian point of

order of magnitude, an interesting question is whether KLMSsiew. Along with each prediction it also provides confidence

with high M can reach comparable performance as KRLSntervals, which are exploited to operate a forgetting mech

with low M. This will become clear in the experiments. anism that can handle non-stationary scenarios. In order to
In the sequel we outline the six state-of-the-art KAF algo-control its adaptation rate it uses a forgetting factpwhile

rithms that are included in this study. We distinguish betwe its dictionary sizeM is a budget-dependent parameter.



3. METRICS FOR PERFORMANCE COMPARISONS

For each algorithm, we study the trade-off between the MSE
and the complexity, in terms computation and memory. By
fixing a performance goal, such as available memory or max-
imum allowable error, the trade-off figures allow the practi
tioner to determine which algorithm shows the most favor- 1400 1600 1800 2000 2200 2400 2600 2800
able remaining properties. There exist several other perfo samples

mance measures, such as convergence speed and robustness
w.r.t. quantification, though we leave these for future Etsid

Fig. 1. A snapshot of the Lorenz time series.

3.1. Computational complexity in [14]. Note that the optimal selection of the parameters is

q ity th ional lexity of | an important open problem in the KAF literature, and it falls
In order to quantify the computational complexity of an algo ) cide the scope of this paper.

rithm, the CPU time is often chosen as the cost. Though CPU . . .
Lo ; . The implementations of all the compared algorithms are
time is easy to measure, it depends on several environmental . . S
i i . available through the Kernel Adaptive Filtering Toolbox,
parameters, such as the machine on which the algorithm |S .
. L S Nttp://sourceforge. net/projects/kaf box/.
run and the processes this machine is running in parallel. Fu
thermore, comparing the CPU times of different algorithes i
only fair if these algorithms are implemented with a similar

level of code optimization.

An alternative is to explicitly measure the mathematicalThe Lorenz attractor is a nonlinear dynamical system corre-
operations required by each of the algorithms. KAF algosponding to the long-term behavior of a chaotic flow. Due to
rithms perform only algebraically simple calculations;lsas it nonlinear and chaotic behavior, it is one of the standard
multiplications of matrices and vectors, and therefore#hd  penchmark data sets in the kernel adaptive filtering liteeat
viable option. In the experiments we combine these numbe|[15]. We samplel0.000 points of thez-component of the se-
into a single measure, the amount of floating point operationsies under its standard parameter setting, using the fidggtror
(FLOPS) required, and we plot the average amount of FLOP§pproximation with step size.01. A snapshot of this time

4.1. Prediction of the Lorenz attractor time series

needed per iteration. series is shown in Fidil 1.
The experiment consists in performing one-step ahead
3.2. Memory prediction, i.e. given all samples up till time i = ¢, the task

) o ) is to predict the sample;,;. To select the filter order we
In the KAF literature it is common practice to measure thecap, gither rely on Takens embedding theorgm [16], which is
memory as the amount of bases stored in the dictionary. Ney qrincipled approach to selecting the filter order of a deter

ertheless, this measure loses sense when comparing KLMginistic series, or use the empirical method described4h [1
and KRLS-based algorithms, as their dictionary sizes hav@e choose filter ordes, i.e. prediction is performed using
different impacts on the true memory usage. We measure ﬂ?ﬁputSXi = [wi_5, Zia,...,2:]T. The parameters used for

memory usage of each algorithm explicitly as the number of 5., algorithm are shown in Talle 2.

byteg required for a_lll_stored variables, in_cluding dictidms, The obtained results are displayed in FIig. 2. NORMA
matr.|ces and coefficients. In the expgrlme_nts we rgport thﬁ/as not included as it did not obtain MSE results in the range
maximum numbgr of .by.tes used per iteration, as this COMMESt interest. A first conclusion is that KRLS-type algorithms
sponds to a physical limit. typically obtain lower steady state MSEs than KLMS, which

is in accordance with the literature. By adding the FLOPS

4. EXPERIMENTS or memory into the picture, we get an idea of the resources

required. If, for instance, we are working in a scenario with
We conduct experiments on three different data sets. The peestriction on computational complexity, we should setket
rameter that controls the dictionary size for each algorith algorithm that performs best under this restriction by iagk
determines in turn the computational and memory complexiwhich performance curve is most to the left for the amount of
ties. For each experiment, we vary this parameter over a wideLOPS available. In the same manner, by fixing a maximum
range and measure the MSE. The so obtained “performanocsm MSE we obtain the FLOPS and memory required by each
curves” are used for comparison. The remaining parameteedgorithm. In this case, if the computational resources are
are chosen by an exhaustive search in order to optimize tHenited, it is more interesting to use SW-KRLS. On the other
position of the performance curve. For the initial set of pa-hand, if the goal is to minimize the MSE at any cost, FB-
rameters in each search we relied on the technique describ&@RLS does so at minimum cost.
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Fig. 2. Average number of FLOPS (left) and maximum memory usagétyias a function of MSE, for the Lorenz time series
prediction. Each marker represents a single run of one oélparithms with a single set of parameters. The start of each
parameter sweep is indicated by a black dot.

Table 1. Parameters used in the Lorenz time series prediction. A§an kernel withr = 32 was used.

Method Fixed parameters Varying parameter

QKLMS n=0.5 ev =1,2,5,10,15,18

KRLS-T A=1,02=10"% M =10,15,20,24,30,50, 100, 200
ALD-KRLS — v = 0.0001, 0.0002,0.001,.01.05.1
SW-KRLS c=10"6 M =1,2,3,4,5,10,20, 50,100, 200

FB-KRLS ¢=1076,4=0 M = 10,15, 20, 25, 30, 50, 100, 200

4.2. Prediction of respiratory motion traces

In robotic radiosurgery, a photon beam source is used to ab-
late tumors. It is operated by a robot arm that aims to move
the beam source to compensate for the motion of internal or-
gans. Traditionally, this is achieved by recording the woti al |
of markers applied to the body surface and by using this mo- w5 200 405 a0 a5 aso  ass  as0 295
tion to draw conclusions about the tumor position. Although time (s)
this method significantly increases the targeting accuthey _ ] _
system delay arising from data processing and positioningo  Fig- 3. A snapshot of the respiratory motion trace.
the beam results in a systematic error. This error can be de-
creased by predicting the motion of the body surfacé [17].
In this experiment we apply KAF algorithms to predict a

I
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by KRLS-T, in return for the most computational and mem-
. . ory resources. For MSE performances-of0 dB or more,
respiratory motion trace. The data was recorded at Georg?\l'ORMA is faster, while the required memory is similar for

town University Hospital using CyperKn@ equipment, KRLS-T and NORMA at high MSE values. The figure of
and it represents the recorded position of one of the markers

attached to the body surféted shapshot of this motion trace tmherlt for '?Ltp_KR.IES. |stL<_aIat|ver_weal:, mos_t “kfly bkgcause

is shown in Fig.[B. The delay to compensate toidls ms, € hon-stationarity in this experiment requires fracking
which, at a sampling frequency @6 Hz, corresponds t8

samples. The task thus consists in three-step ahead poedict 4.3. Identification of a time-varying channel

We use a time-embedding 8fsamples, and the remaining

parameters are listed in Talfile 2. The results, for four of th&Ve acquired data from a wireless communication test bed that
algorithms, are found in Fig] 3. Since the breathing patterfs used to evaluate the performance of digital communica-
may Change over time’ tracking a|gorithms should perforrﬂion systems in realistic indoor environments. The plattfor

better in this experiment. The highest accuracy is obtainetf composed of several transmit and receive nodes, each one
including a radio-frequency front-end and baseband harlwa

IData available aht t p: // si gnal s. r ob. uni - | uebeck. de/ for signal generation and acquisition. The front-end atso i
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Fig. 4. Average FLOPS (left) and maximum memory usage (right) fasetion of MSE, for the respiratory motion prediction.

Table 2. Parameters used in the respiratory motion prediction. AsSian kernel witle = 7 was used.

Method Fixed parameters Varying parameter
QKLMS n = 0.99 ev =0.2,0.5,1,2,2.5,2.75,4,6,7
NORMA n=0.99,\=10"6 T =3,4,5,10,15, 20, 30, 40, 60
KRLS-T A=0.999,062 =10"% M =3,4,5,7,10,20,50,70,100
ALD-KRLS — v = 0.0001,0.001,0.003,0.01,0.02,0.05,0.1,0.2,0.3,0.5

corporates a programmable variable attenuator to cotiteol t tive performances of these algorithms: Since they allowus t
transmit power and therefore the signal saturation. A moréighlight advantages and disadvantages of each algorithm i
detailed description of the test bed can be found_in [18]. Usdifferent scenarios, they constitute an interesting tootklie

ing the hardware platform, we transmitted clipped orth@jon practitioner.

frequency-division multiplexing (OFDM) signals centerad As expected, we observed that there is not a single best-
5.4 GHz over real frequency-selective and time-varying chanperforming algorithm for all scenarios. Rather, the optima
nels, with normalized Doppler frequency arourti®>. The  choice of algorithm depends on the target MSE range, the
transmit amplifier was operated close to saturation. We colavailable computational resources and the particularskita

lected8000 inputsz; and outputsy; in order to identify the In future work we plan to include additional measures,

nonlinear channel and to track its changes over time. such as as the convergence speed, which may be of interest in
The time-embedding is chosen 4si.e. we use the in- scenarios with less restrictions on complexity.

puts up tillx; = [z;_3,...,2;]T to predict the outpug;, and

the remaining parameter are listed in Tdhle 3. The results of

four tracking algorithms on the online identification preini 6. REFERENCES

can be found in Fig[]5. A first observation is that the best o - .
MSE is substantially higher than in the previous experiment [1] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online
due to the high amount of noise and variability in the mea-  €arning with kernels,"|EEE Trans. on Sig. Procvol.
surements. Without any limitation on the available resesyc 52, no. 8, pp. 2165-2176, Aug. 2004.

KRLS-T obtains better MSE values. If the amount of com- . )
putation or memory is limited, for instance when implement- [2] Y- Engel, S. Mannor, and R. Meir, “The kernel recursive
ing the KAF method on wireless sensor network consisting of ~ €@st squares algorithmEEE Trans. on Sig. Progvol.
low-cost nodes, QKLMS obtains similarly good performance. 22 N0- 8, pp. 2275-2285, Aug. 2004.

[3] W. Liu, P. P. Pokharel, and J. C. Principe, “The ker-
5. CONCLUSIONS nel least-mean-square algorithmEEE Trans. on Sig.
Proc, vol. 56, no. 2, pp. 543-554, 2008.
We have studied the trade-offs between the MSE performance
and the complexity for several state-of-the-art kerneptida [4] C.Richard, J. C. M. Bermudez, and P. Honeine, “Online
filtering algorithms, on three benchmark data sets. The pro-  prediction of time series data with kernell2EE Trans.
posed figures of merit are meaningful indicators of the rela- on Sig. Prog.vol. 57, no. 3, pp. 1058-1067, Mar. 2009.



FLOPS

Fig.

(5]

(6]

(7]

(8]

9]

[10]

1E7

1E6

—6— QKLMS —6— QKLMS

! ! ! || =%— NORMA —%— NORMA
1E6f------}-7--------1 R e h--| =—+—KRLS-T H ‘ ‘ ! | =—KRLS-T
‘ ‘ ‘ —HE— SW-KRLS QIS o\ TTET T | —E— SW-KRLS
‘ : 2 | | | | ‘
1E5 |- - k- ; pit
N e
2 1E4
1 R | 1 1 g
I N e E
x
1]
= 1E3
1E3
1E2 ; ; ; ; ; 1E2 ; ; ; ; ;
-12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0
MSE (dB) MSE (dB)

5. Average FLOPS (left) and maximum memory usage (right) fasetion of MSE, for the channel identification problem.

Table 3. Parameters used in the MIMO test bed identification. A Gaundsernel witho = 3.1 was used.

Method Fixed parameters Varying parameter

QKLMS n=0.6 ey =0.1,1,2,3,4,5,6,7,8

NORMA n=04,\=10"1 T =5, 10,20, 50, 100, 200, 310, 400, 500, 700, 1000
KRLS-T A=0.995,02 =0.015 M =2,5,10,15,20, 30,50, 100,200

SW-KRLS ¢=0.015 M = 5,10, 15,20, 30, 50, 70, 100, 150, 200, 300

B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantizedl1] A. Sayed, Fundamentals of adaptive filteringwiley-

kernel least mean square algorithm|EEE Trans. on IEEE Press, 2003.
Neural Networks and Learning Systemasl. 23, no. 1, . o )
pp. 22-32, Jan. 2012. [12] V. N. Vapnik, The Nature of Statistical Learning Theory

Springer-Verlag New York, Inc., New York, NY, USA,

S. Van Vaerenbergh, M. Lazaro-Gredilla, and I. Santa- 1995.

maria, “Kernel recursive least-squares trackerfortime[13] B. Scholkopf and A. J. Smolal.earning with Kernels

varying regression,”IEEE Trans. on Neural Networks The MIT Press, Cambridge, MA, USA, 2002.

and Learning Systemsol. 23, no. 8, pp. 1313-1326,

Aug. 2012. [14] S. Van Vaerenbergh, |I. Santamaria, and M. Léazaro-
Gredilla, “Estimation of the forgetting factor in kernel

M. Yukawa, “Multikernel adaptive filtering,” IEEE recursive least squares,” 2012 IEEE Int. Workshop on

Trans. on Sig. Prog.vol. 60, no. 9, pp. 4672-4682, Mach. Learn. for Sig. Proc. (MLSP$ept. 2012.

2012,

[15] W. Liu, J. C. Principe, and S. Haykirkernel Adaptive
W. D. Parreira, J. C. M. Bermudez, C. Richard, and J.-Y.  Filtering: A Comprehensive IntroductioViley, 2010.
Tourneret, “Stochastic behavior analysis of the Gaussia
kernel least-mean-square algorithmlEEE Trans. on
Sig. Proc, vol. 60, no. 5, pp. 2208-2222, 2012.

ﬂ6] F. Takens, “Detecting strange attractors in turbuéghc
Dynamical Systems and Turbulenwel. 898, pp. 366—
381, 1981.

S. Van Vaerenbergh, J. Via, and |. Santamaria, “A[17] F. Ernst, Compensating for quasi-periodic motion in

sliding-window kernel RLS algorithm and its appli- robotic radiosurgery Springer, 2012.
cation to nonlinear channel identification,” @006

IEEE Int. Conf. on Acoustics, Speech and Signal Proc[18] J. Gutiérrez0O. Gonzalez, Pérez, D. Ramirez, L. Vielva,

(ICASSP)Toulouse, France, May 2006. J. Ibafez, and |. Santamaria, “Frequency-domain
methodology for measuring MIMO channels using a

S. Van Vaerenbergh, |. Santamaria, W. Liu, and J. C. generic test bed,1IEEE Trans. on Instrumentation and

Principe, “Fixed-budget kernel recursive least-squares Measurementvol. 60, no. 3, pp. 827-838, Mar. 2011.

in 2010 IEEE Int. Conf. on Acoustics, Speech and Signal

Proc. (ICASSR)Dallas, USA, Apr. 2010.



	 Introduction
	 Kernel-based adaptive filtering
	 Problem statement
	 NORMA
	 QKLMS
	 ALD-KRLS
	 SW-KRLS
	 FB-KRLS
	 KRLS-T

	 Metrics for performance comparisons
	 Computational complexity
	 Memory

	 Experiments
	 Prediction of the Lorenz attractor time series
	 Prediction of respiratory motion traces
	 Identification of a time-varying channel

	 Conclusions
	 References

