Adaptive EM-based Algorithm for Cooperative Spectrum Sensing in Mobile Environments
Title | Adaptive EM-based Algorithm for Cooperative Spectrum Sensing in Mobile Environments |
Publication Type | Conference Paper |
Year of Publication | 2018 |
Authors | Pérez, J., I. Santamaría, and J. Vía |
Conference Name | IEEE Statistical Signal Processing Workshop (SSP) |
Month Published | June |
Conference Location | Freiburg, Germany |
Abstract | In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. Then, we consider the Generalized Likelihood Ratio Test approach where the maximum likelihood estimate of the unknown parameters (which are the signal-to-noise ratio under the different hypotheses) are obtained from the most recent energy levels at the sensors by means of the Expectation-Maximization algorithm. We derive simple closed-form expressions for both, the E and the M steps. The algorithm can operate even when only a subset of sensors report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments. |
PDF version: