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ABSTRACT

In this work we propose a new adaptive algorithm for coop-
erative spectrum sensing in dynamic environments where the
channels are time varying. We assume a cooperative sensing
procedure based on the soft fusion of the signal energy levels
measured at the sensors. The detection problem is posed as a
composite hypothesis testing problem. Then, we consider the
Generalized Likelihood Ratio Test approach where the max-
imum likelihood estimate of the unknown parameters (which
are the signal-to-noise ratio under the different hypotheses) are
obtained from the most recent energy levels at the sensors by
means of the Expectation-Maximization algorithm. We derive
simple closed-form expressions for both, the E and the M steps.
The algorithm can operate even when only a subset of sensors
report their energy estimates, which makes it suited to be used
with any sensor selection strategy (active sensing). Simulation
results show the feasibility and efficiency of the method in real-
istic slow-fading environments.

Index Terms— Cooperative spectrum sensing, energy de-
tection, likelihood ratio test, EM algorithm, maximum likeli-
hood estimation, fading channels

1. INTRODUCTION

Spectrum sensing is a key operation in cognitive radio. Through
spectrum sensing the cognitive radios (CRs) try to detect fre-
quency bands that are not being used by the primary network.
The performance of spectrum sensing is limited by shadowing
and multi-path fading effects in the sensing channels between
the primary users (PUs) and the CRs. By using cooperative
spectrum sensing (CSS) the impact of those effects can be mit-
igated efficiently by the inherent multiuser/spatial diversity of
the CR network [1], [2].

This work focuses on centralized CSS based on the soft fu-
sion of the signal energy levels measured by the CRs [3], [4],
[5], [6]. Each CR estimates the energy level at its location in
the frequency band of interest and reports it to a fusion center
(FC) through a control channel. Then, the FC makes a decision
on the presence or absence of primary signals in the channel. In
practice any of the CRs can act as a FC.

The likelihood ratio test (LRT) is the optimal test when the
FC knows the signal-to-noise ratio (SNR) at the CRs. In [3] and
[4] the authors show that, when there is a single PU, the LRT
leads to a linear fusion rule where the test statistic is a linear
combination of the energy levels with appropriate weights.

Unfortunately, knowing the SNR at multiple CRs is in gen-
eral difficult and entails a large overhead in mobile scenarios
therefore, we have to deal with unknown parameters and the
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detection problem becomes a composite hypothesis test [7].
Generalized-LRT based algorithms have been proposed in [8]
and [9] to solve this problem, whereas, [10] and [11] derive
detection algorithms based on the Rao test and the locally most
powerful test. All these works assume a single PU.

In this work, we propose a different approach to the CSS
problem. First, we pose it as a composite hypothesis testing
problem and consider the GLRT. Then, we derive a new adap-
tive algorithm that allows the FC to dynamically estimate the
unknown test parameters from the most recent energy estimates
reported by the neighbouring CRs. The algorithm computes the
maximum likelihood (ML) estimate of the LRT parameters by
means of the Expectation-Maximization (EM) algorithm [12],
[13]. We derive closed-form expressions for both the E and the
M steps that take into account the constraints and relationships
among the problem variables.

A similar approach to the CSS problem has been proposed
in [5] and [6], where the authors use different Machine Learning
techniques. However, these techniques are batch and, therefore,
difficult to apply in mobile scenarios. In addition, they do not
exploit the constraints and the relationship among the unknown
parameters of the LRT.

It is well known that the adequate selection of a subset of
active CRs is a key issue in CSS because it permits to alleviate
the overhead without degrading the detection performance (see
[1] and the references therein). This means that, at each time,
the FC only fuses the energy levels from a subset of active sen-
sors. Unlike the methods proposed in the previous references,
our method is able to deal with incomplete energy vectors (i.e.
missing data), which makes it suited to be used with any CRs
selection method.

2. SYSTEM MODEL

2.1. Primary network state

We consider a general model for the primary network activity
where more than one PU can transmit simultaneously [6]. Let
si ∈ {0, 1} indicate the state of PUi, where si = 1 when it is
transmitting (active) and si = 0 when it is inactive. The PU net-
work state is given by the binary vector s = [s1 s2 · · · sNU ]T ,
where NU is the number of PUs. Therefore, the channel is idle
when s = 0, whereas it is occupied when s 6= 0.

2.2. Energy detection

Let W denote the channel bandwidth. The CRs perform en-
ergy detection [14] for a time duration of τ , and hence they take
M = Wτ signal samples during τ . The normalized received
energy estimate at CRj is

ej =
2

ηj

M∑
m=1

|xj [m]|2,

where xj [m] denotes them-th signal sample and ηj is the noise
variance at the CRj .



2.3. Distribution of the energy estimates

The distribution of the energy estimates depends on the PU net-
work state. Let ej |s be the received energy estimate at CRj
conditioned to the primary network state s. According to the
central limit theorem, if M is large enough (e.g. M ≥ 20
in practice), ej |s is approximately normal distributed [6] with
mean and variance given by

µs,j = 2M(1 +

NU∑
i=1

sigi,j), σ2
s,j = 4(µs,j −M), (1)

where gi,j denotes the SNR at CRj when PUi is the only active
user. Note that the variance is completely determined by the
mean. In addition, when s = 0 , µ0 = 2M and σ0 = 4M .
Therefore, the distribution of ej |0 only depends on M , which
is assumed to be known by the FC.

Every time that the CRs report their energy estimates to the
FC, a new energy vector e = [e1 e2 · · · eNS ]T is generated,
where NS is the number of CRs. From (1), and assuming that
the energy estimates from different CRs are conditionally inde-
pendent, the distribution of the energy vectors will be

f(e|µs) =

Ns∏
j=1

[
1√

8π(µs,j −M)
exp

(
− (ej − µs,j)

2

8(µs,j −M)

)]vj
,

(2)
where v = [v1 v2 · · · vNS ]T is a binary vector that indicates
which CRs have reported their energy estimate to the FC.

3. GLRT DETECTOR

The CSS detection problem can be posed as a binary hypothesis
test, where the null hypothesis (H0) is s = 0 and the alternative
hypothesis (H1) is s 6= 0. Then, for a given observed energy
vector e, the LRT is

f(e|H1)

f(e|H0)

H1

≷
H0

λ, (3)

where λ is a suitable detection threshold [7], and the likelihoods
of e under both hypotheses are given by

f(e|H0) = f(e|µ0),

f(e|H1) =
∑
s6=0

πs

1− π0
f(e|µs), (4)

where µs = [µs,1 µs,2 · · · µs,NS ]T . As it was mentioned, the
distribution f(e|µ0) only depends on M . On the other hand,
the distribution of e|H1 is a mixture of 2Nu − 1 Gaussian den-
sities given by (2). The terms {πs} are the prior probabilities of
the PU network states. They are assumed to be known. If they
were unknown, a reasonable choice would be identical proba-
bility for all states of H1.

The application of the LRT requires the FC to estimate the
unknown parameters µ = {µs}s6=0. According to the GLRT
approach they are replaced by their ML estimates. In this point,
the FC takes advantage of the fact that the energy vectors arrive
sequentially so, in order to estimate the unknown parameters,
the FC considers the most recent energy vectors reported by the
CRs. Note that those energy estimates may have been acquired
under different PU network states.

4. ADAPTIVE ML ESTIMATION

In mobile environments the sensing channels are time varying
and therefore the means µ (and consequently also the distribu-
tions of the energy vectors f(e|µs)) change over time. The FC

applies a sliding window containing the N most recent energy
vectors. Each time a new energy vector arrives to the FC, it is
stored, and the oldest one is removed from the window. Then,
using the new window of energy vectors, the FC updates the es-
timates of the means. This way, the FC may compute the LRT
(3), at any time, with the current estimates of µ. This proce-
dure is depicted in Figure 1 where e(n) denotes the n-th energy
vector in the sliding window.

Fig. 1. Sliding window over the energy vectors.

The window size N is a key parameter. The larger N , the
more accurate the estimates. On the other hand, the channels
(and therefore the means µ) must remain practically constant
during the total acquisition time of the energy vectors. Consecu-
tive energy vectors can be acquired under different PU network
states. The energy vectors in the window can be incomplete.
This occurs when only a subset of CRs report their energy esti-
mates to the FC. This makes the estimation algorithm to be able
to deal with incomplete (missing) data.

4.1. ML estimation

The EM algorithm is well suited to estimate the parameters of a
mixture of Gaussian densities [13]. However, our problem has
some peculiarities that precludes the application of the standard
version of the EM algorithm:

1. The mean of the component s = 0, is known in advance:
µ0 = 2M1.

2. The means are constrained as follows µs,j ≥ 2M .

3. The covariance matrices of the Gaussian components are
diagonal and the variances of the Gaussian components
are fully determined by their means (1).

4. The mixing coefficients {πs} are known.

5. The FC fuses the energy estimates from a subset of the
CRs, in other words the data vectors can be incomplete.

These peculiarities require an EM algorithm specifically de-
signed for this problem, which is derived in the following.

Let E = {e(n)}Nn=1 the set of energy vectors (possibly
incomplete) in the sliding window at a given time. Then, the
ML estimate of the means µ,

µ̂ML(E) = argmax
µ∈Ψ

logL(µ), (5)

where Ψ denotes the space of the means with the constraints
µs,j ≥ 2M , and the log-likelihood function is given by

logL(µ) =

N∑
n=1

log
∑
s

πsf(e(n)|µs) (6)

4.2. EM algorithm

Let Z = {zs(n)} a set of hidden variables that indicate the PU
network state when the energy vectors were acquired, that is,
zs(n) = 1 if e(n) was acquired when the network was in state



s, and zs(n) = 0 otherwise. If the hidden variables were known
the (complete) log-likelihood function would be

logLC(µ) =

N∑
n=1

∑
s

zs(n) log (πsf(e(n)|µs)) . (7)

Each iteration of the EM algorithm involves two steps:

• E-step: Q(µ,µ(k)) = EZ

[
logLC(µ)|E,µ(k)

]
,

• M-step: µ(k+1) = argmax
µ∈Ψ

Q(µ,µ(k)),

where k denotes the iterations and µ(k) denotes the estimate
after the k-th iteration.

4.2.1. E-step:

Considering (7),

Q(µ,µ(k)) =

N∑
n=1

∑
s

γ(k)
s (n) log (πs f(e(n)|µs)) , (8)

where

γ(k)
s (n) =

πsf(e(n)|µ(k)
s )∑

r πrf(e(n)|µ(k)
r )

. (9)

4.2.2. M-step:

Considering (8) and (2), the M-step can be broken down into a
set of uncoupled optimization problems of the form

µ
(k+1)
s,j = argmin

µs,j

N∑
n=1

γ(k)
s (n)vj(n)(

log(µs,j −M) +
(ej(n)− µs,j)

2

4(µs,j −M)

)
,

s.t. µs,j ≥ 2M

Setting the derivative of the objective function with respect to
µs,j to zero, and considering the constraint, leads to

µ
(k+1)
s,j = M − 2 (10)

+

√√√√4 +

∑N
n=1 γ

(k)
s (n) vj(n) (ej(n)−M)2∑N
n=1 γ

(k)
s (n) vj(n)

.

Algorithm 1 : ML estimate of µ

1: input: E, µ(0), {πs}, M
2: Initialize iterations: k = 0
3: repeat
4: E-step: Compute the terms, γ(k)

s (n), with (9)
5: M-step: Update the mean estimates, µ(k+1)

s,j , with (10)
6: Compute the log-likelihood function of µ(k+1) with (6)
7: k = k + 1
8: until the log-likelihood function converges
9: return: µ̂ = µ(k)

The resulting algorithm is summarized in Algorithm 1.
Iterations stop when there is no further change in the log-
likelihood function. Since each iteration increases its value,
the convergence of the algorithm is ensured [13]. However, the
algorithm may converge to a local maximum.

The algorithm is run to update the estimate of µ whenever
a new energy vector enters the sliding window. Each run is
initialized with the last estimate of µ obtained with the previous
window of energy vectors. Therefore, the initial values of µ will
be close to the new means. As a result, the algorithm requires
very few iterations to converge.

5. SIMULATION RESULTS

In this section we obtain the ROC (Receiver Operating Char-
acteristic) curve to illustrate the performance of the proposed
algorithm in different scenarios. Each ROC curve averages
the LRT results over 4 · 105 energy vectors. Before applying
the LRT, we compute the ML estimate of the parameters µ by
means of Algorithm 1, considering a sliding window with the
N most recent energy vectors.

Unless otherwise indicated, we have considered the follow-
ing assumptions and parameter values in the simulations,

• The channel bandwidth is W = 5 MHz.

• The noise spectral density is η = −174 dBm at all CRs.

• The channels between different pairs PU-CR are inde-
pendent and identically Rayleigh distributed. For each
sensing channel we generate time-correlated realiza-
tions using the Jakes’ model [15], for a given maximum
Doppler shift fD = 25 Hz. Therefore, the coherence
time of the sensing channels TC ≈ 0.4

fD
= 16 ms [16].

• The number of signal samples for energy estimation
(2.2) is M = 100, therefore, the sensing time is
τ = M

W
= 20µs

• The PU network state can change between two consecu-
tive energy vectors. The activity of the PUs is modeled
as independent and identically distributed homogeneous
Markov chains with two states: inactive (si(n) = 0)
and active (si(n) = 1). In the simulations we assume
that the transition probabilities are p0,0 = P (si(n) =
0|si(n − 1) = 0) = 0.75 and p1,1 = P (si(n) =
1|si(n− 1) = 1) = 0.5. Accordingly, for a PU network
with NU = 3 users, the probability that the channel is
idle is π0 = 0.3.

• All PUs transmit identical power. Then, the average
SNR is the same for all CRs (averaging over the sensing
channel realizations and the PU’s activity). The assump-
tion is mainly made to facilitate the interpretability of
the results. Unless otherwise indicated, we assume that
the average SNR is gi,j = −5 dB, ∀i, j.

• The CRs (or a subset of them) sense the channel peri-
odically with constant sensing period TF = 1 ms. This
value requires the window size to be N ≤ TC

TF
= 16.

• The control channels between the CRs and the FC are
error-free.

An ideal detector that assumes perfect knowledge of the un-
known parameters is referred to as a clairvoyant detector [7]. Its
ROC will be shown in some figures as an upper bound. The per-
formance gap between the clairvoyant detector and our detector
is the performance loss due to the parameter estimation errors.

The total number of energy estimates in the sliding window
isNo =

∑N
n=1

∑NS
j=1 vj(n), which can take values in the inter-

val N ≤ No ≤ NSN . In the simulations, when No < NSN ,
the CRs that report their energy estimates are selected randomly.
Obviously, if an optimal CRs selection strategy were used, the
detection performance would be better.

Figure 2 shows the ROC curves for different SNR values
when NU = 3 and NS = 3. In this scenario all energy esti-
mates are available at the FC, and henceNo = NSN . The ROC
curves of the clairvoyant detector are also shown. It can be ob-
served that the performance loss due to the estimation errors is
relatively low.

Figure 3 shows the ROC curves for a network withNU = 3
and different number of CRs. Again, we assume that all energy
estimates are available at the FC (No = NSN ). Obviously, the



Fig. 2. ROC curves for NU = 3, NS = 3 and different values
of average SNR.

higher the number of sensors the better the performance. As it
is also expected, the gain by increasing NS is higher when the
number of CRs is low.

Fig. 3. ROC curves for NU = 3 and different number of CRs.

Figure 4 compares the ROC curves for different number of
energy estimates in the sliding windows (No). In this example
the number of PUs and CRs are NU = 3 and NS = 4, re-
spectively. In the case No = 4N all CRs report their energy
estimates to the FC, and hence the energy vectors do not have
missing entries, whereas when No = N only a single CR re-
ports its energy level each time. As it is expected, the higher the
N0, the better the performance.

Fig. 4. ROC curves for NU = 2, NS = 4 and different number
of energy estimates at the FC.

Figure 5 shows the ROC curves for different values of the
sensing period TF . The window size N is chosen to guarantee
that the energy vectors in the sliding windows have been ob-
tained for a constant channel: N ≤ TC/TF . The lower the N
the less accurate are the estimates of the LRT parameters. The
number of PUs and CRs are NU = 3 and NS = 4, respec-

tively, but only the energy estimates from two CRs are available
for clustering each time (No = 2N ).

Fig. 5. ROC curves for NU = 3, NS = 4, No = 2N and
different sliding window sizes.

Finally, Figure 6 shows the ROC curves for PU networks
with different activity characteristics. The activity of the net-
work is characterized by parameter π0, that is, is the probability
that none of the PUs is transmitting. The lower the π0, the better
the performance. This is because the EM algorithm has to esti-
mate the parameters of the distributions associated with all net-
work states with active PUs, s 6= 0, whereas the parameters of
the distribution for s = 0 are known in advance. Therefore, the
more energy vectors are generated under active network states
(s 6= 0), the better the algorithm estimates the parameters of
their distributions. The different values of π0 were obtained
by choosing the appropriate values of the transition probability
p0,0 while keeping p1,1 = 0.5 fixed.

Fig. 6. ROC curves for NU = 3, NS = 4, No = 2N and
different probability that the channel is idle.

6. CONCLUSIONS

In this work we have presented a novel method for coopera-
tive spectrum sensing in mobile environments where the sensors
or cognitive radios perform energy detection. We have posed
the detection problem as a Generalized Likelihood Ratio Test
problem where the maximum likelihood estimates of the un-
known parameters are computed by means of an Expectation-
Maximization algorithm. The input to the estimation algorithm
are the most recent local energy levels at the sensors. Due to
its adaptive nature, the algorithm is suited for time varying sce-
narios. In addition, the algorithm is able to deal with missing
values, which makes it suited to be applied with any sensor se-
lection strategy to reduce the overhead in the control network.
The simulation results show that the proposed method is feasi-
ble and efficient in slow fading environments.
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