Sparse subspace averaging for order estimation

TitleSparse subspace averaging for order estimation
Publication TypeConference Paper
Year of Publication2021
AuthorsGarg, V., D. Ramírez, and I. Santamaría
Conference NameIEEE Statistical Signal Processing Workshop
Month PublishedJuly
AbstractThis paper addresses the problem of source enumeration for arbitrary geometry arrays in the presence of spatially correlated noise. The method combines a sparse reconstruction (SR) step with a subspace averaging (SA) approach, and hence it is named sparse subspace averaging (SSA). In the first step, each received snapshot is approximated by a sparse linear combination of the rest of snapshots. The SR problem is regularized by the logarithm-based surrogate of the l0-norm and solved using a majorization-minimization approach. Based on the SR solution, a sampling mechanism is proposed in the second step to generate a collection of subspaces, all of which approximately span the same signal subspace. Finally, the dimension of the average of this collection of subspaces provides a robust estimate for the number of sources. Our simulation results show that SSA provides robust order estimates under a variety of noise models.