Adaptive Kernel Canonical Correlation Analysis Algorithms for Maximum and Minimum Variance
Title | Adaptive Kernel Canonical Correlation Analysis Algorithms for Maximum and Minimum Variance |
Publication Type | Conference Paper |
Year of Publication | 2013 |
Authors | Van Vaerenbergh, S., J. Vía, J. Manco-Vásquez, and I. Santamaría |
Conference Name | IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013) |
Month Published | May |
Conference Location | Vancouver, Canada |
Abstract | We describe two formulations of the kernel canonical correlation analysis (KCCA) problem for multiple data sets. The kernel-based algorithms, which allow one to measure nonlinear relationships between the data sets, are obtained as nonlinear extensions of the classical maximum variance (MAXVAR) and minimum variance (MINVAR) canonical correlation analysis (CCA) formulations. We then show how adaptive versions of these algorithms can be obtained by reformulating KCCA as a set of coupled kernel recursive least-squares algorithms. We illustrate the performance of the proposed algorithms on a nonlinear identification application and a cognitive radio detection problem. |
PDF version: