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A Spectral Clustering Approach to Underdetermined
Postnonlinear Blind Source Separation of Sparse Sources

Steven Van Vaerenbergh and Ignacio Santamaria

Abstract—This letter proposes a clustering-based approach for solving
the underdetermined (i.e., fewer mixtures than sources) postnonlinear
blind source separation (PNL BSS) problem when the sources are sparse.
Although various algorithms exist for the underdetermined BSS problem
for sparse sources, as well as for the PNL BSS problem with as many mix-
tures as sources, the nonlinear problem in an underdetermined scenario
has not been satisfactorily solved yet. The method proposed in this letter
aims at inverting the different nonlinearities, thus reducing the problem
to linear underdetermined BSS. To this end, first a spectral clustering
technique is applied that clusters the mixture samples into different sets
corresponding to the different sources. Then, the inverse nonlinearities are
estimated using a set of multilayer perceptrons (MLPs) that are trained
by minimizing a specifically designed cost function. Finally, transforming
each mixture by its corresponding inverse nonlinearity results in a linear
underdetermined BSS problem, which can be solved using any of the
existing methods.

Index Terms—Blind source separation, multilayer perceptrons, post-
nonlinear (PNL) mixtures, sparse sources, spectral clustering, underdeter-
mined source separation.

1. INTRODUCTION

Blind source separation (BSS) is an important problem in the signal
processing area, with a number of applications in communications,
speech processing and biomedical signal processing. The goal of BSS
is to recover the n source signals from their m observed linear or non-
linear mixtures [1], [2].

The first BSS algorithms focused only on linear mixtures. Different
approaches were taken depending on the number of mixtures, m, versus
the number of sources, n. For the case where as many mixtures as un-
known sources are available (m = n), a number of techniques have
been developed. Most of them stem from the theory of independent
component analysis (ICA) [3], [4], a statistical technique whose goal
is to represent a set of random variables as linear functions of statisti-
cally independent components. If there are more mixtures than sources
(m > n), the redundancy in information can be used to achieve addi-
tional noise reduction [5].

On the other hand, if there are fewer mixtures than sources (m < n),
we have an underdetermined BSS problem, which can only be solved
if we rely on a priori information about the sources. Specifically, a
number of algorithms that assume sparse sources have been proposed
for underdetermined BSS [6]-[8].

A considerable amount of research has also been done on the
so-called postnonlinear BSS problem (PNL BSS), in which the
sources are first mixed linearly and then transformed nonlinearly. For
an equal number of mixtures and sources (m = n), some algorithms
have been proposed [9]-[12]. However, these algorithms cannot deal
with the more restricted problem of underdetermined PNL BSS. An
underdetermined PNL BSS algorithm was recently proposed in [13]; it
nevertheless requires the number of active sources at each instant to be
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lower than the number of mixtures 7n and assumes noiseless mixtures.
The approach presented in this letter relaxes these restrictions on the
sources and it is able to work with noisy mixtures.

The rest of the letter is organized as follows: A description of the
mixing process is given in Section II. The proposed algorithm consists
of two major stages. The first one is a spectral clustering method, which
is described in Section III. The second part, which deals with the esti-
mation of the inverse nonlinearity through a set of multilayer percep-
trons, is explained in Section IV, and in Section V simulation results
are presented. Finally, Section VI summarizes the main conclusions of
this letter.

II. PROBLEM STATEMENT
A. Model for Sparse Sources

In order to model sources with different degrees of sparsity we con-
sider the probability density function (pdf)

ps;(si) = pid(si) + (L —pi)fs;(5), i=1....,n (1)

where p; is the probability that a source is inactive, (- ) denotes Dirac’s
delta and fs, (s;) is the pdf of the ith source when it is active [8].

B. Linear Mixture Model

In a general linear mixture model, the measurement random vector
y € R™*! can be described as

y=As+n 2)

where s € R™*! is an independent random vector representing the
sources, A € R™*" is the unknown mixing matrix, n € R™*' is
an independent random vector with Gaussian white noise representing
Sensor noise.

For m > n, several algorithms exist that estimate the unmixing ma-
trix W = A~ sufficiently well [4]. For i < n the mixing matrix is
not square and the problem cannot be solved without additional infor-
mation about the sources. In the absence of noise, if only source i is
active, the output signal y will be aligned with the vector representing
the 7th column of A, the 7th “basis vector” [7]. Therefore, if the sources
are sparse according to the model described in (1), most of the output
samples y will be aligned with one of the basis vectors [see Fig. 2(a)].

Using this geometrical insight a large number of estimators for the
mixing matrix have been proposed, amongst them a technique using
overcomplete representations [6], a line spectrum estimation method
[14] and a number of geometric algorithms [15], [16]. Once the mixing
matrix has been estimated, the original sources can be recovered with
the shortest-path algorithm introduced in [7].

C. PNL Mixture Model

In a realistic scenario the m sensors that measure the mixtures show
some kind of nonlinearity, which suggests the extension of (2) to a PNL
mixture model

x=f(As)+n 3

where £(-) = [f1(-), f2(-)s+ ... fm(-)]¥ is a componentwise nonlinear
function and x € R™*" is the measurement random vector. For the
underdetermined case (m < n) the linear BSS methods are not able to
estimate the sources properly. A scatter plot example of PNL mixtures
is shown in Fig. 2(b).

The proposed algorithm aims at estimating the inverse nonlineari-
ties g = f ', under the condition that they are invertible and linear
for small input values. This leads directly to an estimate of the linear
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mixtures y = g(x), which can be used to recover the original sources
s relying on known methods for underdetermined linear BSS.

III. DIVIDING THE SAMPLES INTO 1 CLUSTERS

A. Spectral Clustering

Spectral clustering [17] is a technique that clusters points based on
a spectral analysis of the matrix of point-to-point similarities. This
“affinity” matrix is formed as F;; = exp(—d*(x;,x;)/o?) where
d(x;,x;) is some distance measure between points x; and x; and o
is a scaling constant. Spectral clustering obtains good clustering per-
formance in cases where classic methods such as k-means fail, for in-
stance when one data set is surrounded by another one. Nevertheless,
its efficiency depends on the choice of ¢. In addition, since it requires
obtaining the eigenvectors of an NV x N matrix, care should be taken to
reduce the computational cost when the number of samples V is large.

In [18], Zelnik-Manor and Perona proposed to calculate the affinity
matrix as Fj; = exp(—d®(xi.x;)/(c;0;)) where the “local scale”
o; = d(xi, %) is the distance between x; and its Lth neighbor, with
L constant and depending on the data dimension. This has certain ad-
vantages over the original spectral clustering. First, the results do not
depend on the choice of o. Second, in the context of the underdeter-
mined PNL BSS problem points with a higher local scale will likely
correspond to multiple active sources, since the local scale is inversely
proportional to the local density of points [see Fig. 2(a) and (b)].

B. Preprocessing

Some preprocessing steps are taken to facilitate the spectral clus-
tering. Basically, the mixture samples are roughly reduced to those for
which only one source was active at each instant. Apart from guaran-
teeing the overall efficiency of the algorithm, this reduction also lowers
the computational cost.

Central samples are removed because they correspond to inactive
sources and are almost unaffected by the nonlinearity. If p; = p, Vi,
the probability of having no active sources at all according to the sparse
source model (1) is p”, so the vy = p" N samples closest to the origin
can be removed. In addition, “nonsparse” samples, which are the result
of multiple sources active at the same time, are also removed. They can
be estimated as the vo = [1 — n(1 — p)p"~ ' — p"]N samples with
highest local scale.

If the sources have different p;-values, 71 and v» can easily be calcu-
lated according to the previous description. In practice, rough (over-)
estimates can be used for v and v. Especially when the p; are un-
known, v and v» should be chosen so that after preprocessing the re-
maining samples can be clustered into nonoverlapping clusters.

C. Identification and Clustering Limitations

The performance of the clustering algorithm will depend on the dis-
tance between points of different clusters. If clusters still overlap or
come too close after preprocessing, spectral clustering will not be pos-
sible. This cluster “separability” depends mainly on the nonlinearity f
and the mixing matrix.

Furthermore, it is assumed that the different sources have double
sided distributions. By applying spectral clustering, it is then possible
to distinguish 2n clusters, one for each sidelobe of the n distribu-
tions. And since the nonlinearities are assumed to be linear for small
input values, determining which pair of clusters correspond to the same
source can be done by looking at which clusters have the same slopes
close to the origin. Finally, »n clusters are obtained, corresponding to
the n sources.
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Fig. 1. The block diagram used for the MLP parameter training for m = 2.
The blocks labeled g (.) and g-(.) represent the two MLPs. The slope estimator
is used to estimate the slope K7} , of the curve formed by (dj(t), d(t)). To
train the upper MLP, we use as desired signal K| ,d}(t). In this way, the error
signal ¢} (t) = dj(t)— K ,d’(t) measures the deviation from linearity of this
curve. The same procedure is carried out for the lower MLP.

IV. ESTIMATING THE INVERSE NONLINEAR FUNCTIONS

To estimate the inverse nonlinearities in [13], Theis and Amari con-
sider that there should be a linear relationship between the same compo-
nent of different clusters. Here, we exploit that there should be a linear
relationship between the different components of the same cluster. Both
approaches can lead to a reliable estimation of the inverse nonlineari-
ties, but the latter allows to operate directly on the available data. By
doing so it avoids the interpolation needed in [13] that can be problem-
atic in cases of strong nonlinearities or in the presence of noise.

A. MLP Model

To represent each inverse nonlinear function g;(.) (j = 1,...,m)
we use a single input, single output multilayer perceptron with one
hidden layer of » neurons. Once the samples are clustered into 7 sets
by the spectral clustering algorithm, the elements of each set are used
as input patterns for the m MLPs. In particular, for the ¢th cluster we
have patterns ¢’ (t) = (¢l (), ¢h(1),..., ¢4 (1)), where # is a discrete
time unit. The jth component of each pattern is fed into the jth MLP,
whose output is given by

(1) = g, (5) = wiro (Winc, () +bn) +b2 @)

where w; 1, w; 2 € R™*! are weight vectors, b, 1 € R"™*! and b;» €
R are biases and ¢(.) is a neuron activation function. For all the neurons
in the hidden layers we chose to use the hyperbolic tangent activation
function.

B. Cost Function and Parameter Training

In order to train the MLP weights and biases a cost function is de-
signed that allows training blindly on the available nonlinear cluster
data. The cost should be minimal when these data are mapped onto
linear clusters by the entire set of MLPs, therefore ideally there should
be a linear relationship between all components j and & within the same
cluster ¢

di(t)

-1 Y
e = a0 Vit (5)

where K; -k 18 the slope made up by the components j and % of cluster
i. Hence, a cost function to train the weights of MLP j can be derived
as

L=y a0 - Kadi] (©)

i=1 k=1 ¢

Notice that the elements Ixj 1, must also be estimated and updated in
each iteration, for instance by using the histogram-based estimator de-
scribed in [8]. Fig. 1 shows the training diagram corresponding to the
case m = 2.
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Fig. 2. Example of underdetermined BSS mixtures: scatter plots of three linear mixtures in (a) and three PNL mixtures with additive noise in (b), with p = 0.9
and 20 dB SNR. The preprocessing of Section III removes some samples of (b) to obtain (c), which is then used for spectral clustering. (d) Output of the MLPs

after training with the clustered data.
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Fig. 3. MSE values for varying sparsity and SNR levels, for the
2-measurement (m = 2, left) and 3-measurement case (rn = 3, right).

The MLPs are initialized to get a linear input-output transformation:
d'(t) = g(c'(t)) = ¢'(¢). This initialization is relatively “near” the
optimal solution and prevents the weights from converging to a trivial
(all zeroes) solution. The parameters of the m MLPs are adapted in
each iteration using a batch gradient descent approach to minimize (6).
And, as suggested in [13], we also assume that they pass through the
origin, i.e., g;(0) = 0; therefore, the bias of the output layer b; » is fixed
as hjo = —wﬁ@(bm ). After this training the mixing matrix can be
estimated in a straightforward way relying on the estimated Ix"‘;:v,‘,.

V. SIMULATION RESULTS

Monte Carlo simulations were performed for signals with different
sparsity and SNR levels. The source signals were generated according

to (3) with a normal distribution fs, (s;) with zero mean and vari-
ance 10. For each sparsity and SNR level, 20 different mixing ma-
trices were generated randomly by choosing the amplitudes of the basis
vectors uniformly from [0.1,1] and the angles uniformly from [—, 7]
with a minimum angle of 7/10 between every pair of basis vectors
to avoid cluster overlapping. The number of samples in each case was
2500/(1 — v1 — v2) in order to restrict the clustering to 2500 samples.
After mixing by A, the mixtures were transformed by the nonlinear
functions f;(x) = tanh(x). Finally Gaussian white noise was added
to reach the specified SNR level.

A 2-measurement scenario with three mixtures (m = 3, n = 2)
as well as a 3-measurement scenario with 5 mixtures (m = 5, n =
3) were simulated. Fine-tuning spectral clustering was applied and m
MLPs with » = 15 hidden neurons were trained to estimate the two
inverse nonlinearities, with a learning rate of ¢ = 0.01 and a maximum
of 1000 epochs. An illustration of the different steps of the algorithm
is shown in Fig. 2.

After training, the basis vectors were estimated from K; . and the
source signals were estimated applying the shortest-path algorithm
from [7]. The results are shown in Fig. 3. Since no measures were
taken to reduce the sensor noise, the obtained mean square errors
(MSEs) are highly dependent on the SNR level. Although in most
cases the inverse nonlinearity estimation can “linearize” the clusters
sufficiently well [see, for instance, Fig. 2(d)] only a modest MSE
value was obtained even for the noiseless case (SNR = oo dB). This
is due to the strong nonlinearity used and to the fact that the MLPs
only represent the inverse nonlinear functions well for input points
that are in the training range. Points that are outside of it, such as the
“nonsparse” samples, are estimated with greater error and therefore
represent the main contribution in the MSE.

VI. CONCLUSION

We presented an algorithm to invert the nonlinearities in the problem
of PNL underdetermined BSS of sparse sources. The algorithm consists
of two steps: first, a spectral clustering algorithm is applied to identify
the active sources and second, a set of MLPs are trained to identify
the inverse nonlinearity. After these two steps, the outputs of the MLPs
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provide a “linearized” underdetermined BSS problem, which can easily
be solved.

The presented method requires sparse sources and invertible nonlin-
earities that are linear for small input values. Simulation results were
included for 2-measurement and 3-measurement cases, and as long as
the contributions of the different sources do not overlap in the mixtures,
there is no restriction on the number of sources or mixtures.
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Stability Analysis for Stochastic Cohen—Grossberg Neural
Networks With Mixed Time Delays

Zidong Wang, Yurong Liu, Maozhen Li, and Xiaohui Liu

Abstract—1In this letter, the global asymptotic stability analysis problem
is considered for a class of stochastic Cohen—Grossberg neural networks
with mixed time delays, which consist of both the discrete and distributed
time delays. Based on an Lyapunov-Krasovskii functional and the sto-
chastic stability analysis theory, a linear matrix inequality (LMI) approach
is developed to derive several sufficient conditions guaranteeing the global
asymptotic convergence of the equilibrium point in the mean square. It is
shown that the addressed stochastic Cohen-Grossberg neural networks
with mixed delays are globally asymptotically stable in the mean square if
two LMIs are feasible, where the feasibility of LMIs can be readily checked
by the Matlab LMI toolbox. It is also pointed out that the main results
comprise some existing results as special cases. A numerical example
is given to demonstrate the usefulness of the proposed global stability
criteria.

Index Terms—Cohen—Grossberg neural networks, discrete delays, dis-
tributed delays, global asymptotic stability, linear matrix inequality (LMI),
Lyapunov-Krasovskii functional, stochastic systems.

I. INTRODUCTION

The past few decades have witnessed tremendous developments in
the research field of neural networks. Various neural networks, such
as Hopfield neural networks, cellular neural networks, bidirectional
associative neural networks and Cohen—Grossberg neural networks,
have been widely investigated and successfully applied in many areas.
Among them, the renowned Cohen—Grossberg neural network [7] has
recently gained particular research attention, since it is quite general
to include several well-known neural networks as its special cases, and
it has promising application potentials for tasks of classification, asso-
ciative memory, parallel computation and nonlinear optimization prob-
lems; see [16] and [26] for a survey.

On the other hand, time delays are unavoidably encountered in
the implementation of neural networks, and may cause undesirable
dynamic network behaviors such as oscillation and instability. For
example, delay occurs due to the finite speeds of the switching and
transmission of signals in a network. This leads to the delayed neural
networks that were first explicitly introduced in [17]. Since then, the
delayed neural networks have been widely studied. Recently, there has
been an increasing research interest on the stability analysis problems
for delayed Cohen—Grossberg neural networks, and many results
have been reported in the literature. Various sufficient conditions,
either delay-dependent or delay-independent, have been proposed
to guarantee the asymptotic, exponential, or absolute stability for
Cohen—Grossberg neural networks; see [2], [5], [6], [13], [14], and
[18] for some recent results concerning discrete time-delays.
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