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ABSTRACT

Spectrum sensing is a key operation in Cognitive Radio (CR) systemsewheondary users (SUs) are able to exploit
spectrum opportunities by first detecting the presence of primary (B&ls). In a CR network composed of several
SUs, the detection accuracy can be much improved by cooperatigglgpesensing (CSS) strategies, which exploit the
spatial diversity among SUs. However, cooperative detection strategéch are typically based on energy sensing, do
not perform satisfactorily under impairments such as non-Gaussiaa oo interferences. In this paper, we propose a
scheme based on kernel canonical correlation analysis (KCCA)hvidiable to operate in non-ideal scenarios and in a
totally blind fashion. This technique is performed at the fusion center By@xploiting the non-linear correlation among
the received signals of each SU. In this manner, statistical tests aretegirallowing the SUs to make decisions either
autonomously at each SU or cooperatively at the FC. The perforrafribe KCCA-based detector is evaluated by means
of simulations and over-the-air experiments using a CR testbed compbsederal Universal Radio Peripheral (USRP)
nodes. Both the simulations and the measurements show that the KCEé-thatector is able to obtain a significant
gain over a conventional energy detector, whose sensing perfoemisuseverely degraded by the presence of external
interferers.
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1. INTRODUCTION might affect negatively the performance of spectrum
sensing techniques: this is the challenging sensing scenario
The enormous increase of wireless applications has ledve consider in this paper. Interference, which is sometimes
to an inefficient use of spectral resources, by leavingmodeled as non-Gaussian noise, may arise from external
empty or overcrowded some parts of the wireless spectrunuser operation, either intentionally or unintentionaHy. [
[1, 2). This problem is foreseen to be mitigated by As shown in p,6], the performance of the energy detector,
Cognitive Radio (CR) technology, under which incumbent which is the most common spectrum sensing mechanism,
or primary users (PUs) and non-legacy or secondary useris strongly degraded under interference. Basically, without
(SUs) coexist. CR relies on a fast and accurate spectrunadditional information, the energy detector is unable to
sensing process that detects exploitable time-frequencylistinguish the primary signals from the interference
holes, which are subsequently utilized for transmissions by[6]. In [7], several eigenvalue-based cooperative sensing
the SUs. Common impairments found in local spectrumtechniques are evaluated under impulsive noise and
sensing, such as fading, shadowing, hidden terminalsinterference, showing also a significant degradation of
and receiver uncertainty, can be overcome by applyingtheir performance and lack of robustness. It is also worth
cooperative spectrum sensing (CSS) strategies, whicimentioning that, compared to local spectrum sensing,
exploit the diversity among CR useid [ the implementation of CSS strategies might be affected
However, other impairments such as non-Gaussiarby other impairments such as timing inaccuracies or
noise or the presence of narrowband external interferences
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synchronization errors among the SUs for simultaneousThis is carried out by extracting non-linear transformations
local sensing when the channel is id&9]. which are employed as statistical tests. The received
A typical scenario of current interest where the presencemeasurements, reported by each SU, can be composed of
of interference can impair spectrum sensing can be foundlifferent features, such as the kurtosis and the energy of
in Heterogeneous Networks (HetNets), where a macrocellthe data acquired at each sensing period. We stress again
edge user may experience interference from small celthat these features do not need to be labeled with the
transmissions using the same radio frequency band. Thisorresponding states of the primary signal, and as such
scenario is considered inl(], where an interference- no additional prior information is required. In fact, the
mitigation scheme close to macrocell/femtocell real-life proposed technique could be easily adapted to a time-
scenario is experimentally evaluated. Another recent workvarying radio environment by re-training the detector from
that takes into account interference in the CR contexttime to time or continuously while the detection operates
is [11], where, with the assistance of geolocation infor- normally.
mation, a sensing scheme is proposed that decomposes We consider a general setting, where a PU has a large
the received power into the primary signal power, sec-radio coverage, while interferers have a small coverage
ondary signal power (treated here as interference), and tharea and hence each affects a single SU. Some initial
device noise power. In this way, after decomposing theresults were presented i(]. In this paper we extend this
total power, the interference power can be canceled priowork and present a more detailed study of the proposed
to PU detection. The impact of interference in underlay CR detector, as well as a complete experimental evaluation
cooperative cognitive networks has also been extensivelyhat corroborates the results obtained by simulations. The
studied [L2], [13]. Distinct from these works, we focus in experiments were conducted in a cognitive radio testbed
this paper on interweave cooperative cognitive networkscomposed of several USRP devicesl][ emulating a
without any geolocation assistance or any other statisticascenario where a PU and several SUs, possibly affected
prior information, and propose to apply a kernel-basedby interferences, coexist.
method for detection. The rest of the paper is organized as follows. In Section
Recently, the introduction of machine learning tech- 2, we give an overview of the CSS problem. A detailed
nigues in CR applications1fl] has shown to improve description of the proposed KCCA-based detector and
the detection performance of soft-decision approaches. lits operation is presented in Sectid In Section 4,
CR applications, prediction schemes based on machineve analyze the simulation results for different scenarios.
learning techniques have been also proposed for opporThe description of the CR testbed and the measurement
tunistic channel selectioi p]. In[16,17], the energy levels  procedure along with the experimental results are exposed
measured at each SU are reported to the FC. This set dh Sectionb. Finally, the paper concludes with a discussion
energy levels, arranged as feature vectors, are fed into af the obtained results in Sectién
classifier that categorizes them into classes that represent
whether the channel is available or not. The classifier first
requires atraining phase during which it learns from a
set of training feature vectors. Then, it can be employed
for online detection, in what is typically known as ttest
phase
In this paper, we propose a KCCA-based techniquez' COOPERATIVE SPECTRUM
for robust cooperative spectrum sensing in a scenario SENSING
exposed to external interferers. We consider a distributed
configuration in which the SUs do not communicate with L€t us consider a cooperative spectrum sensing scenario
each other and only report their local measurements to avhereM SUs and a PU coexist in the same aréfa YVe
FC. The technique is applied at the FC, and exploits theassume the PU has a large coverage area and then it can
non-linear learning capabilities of kernel-based methodsbe sensed by several SUs. During an initial learning phase,
[18], which have been used previously in the context of the sensor measurements are sent to the FC, which extracts
Cognitive radio networks, for instance ||‘1q] Previous the local decision functions in a Completely UnSUperVised
kernel-based CR detectors follow a supervised approach ifmanner. After this unsupervised learning stage, the SUs are
which it is assumed that a set of patterns, labeled with theable to operate autonomously, or they can still cooperate
correct decisions, is available for training the classifier. Ourby sending their local decisions to the FC, which can
approach, however, does not require neither any labelegubsequently combine them to make a global decision.
data set nor any other prior information about the PU  In order to take into account the potential presence of
signalling format, and thus operates in a completely blindlocal interferers while using a very general signal model,
fashion. we simply assume the independence of the measurements
More specifically, the proposed scheme only exploitsunder the null hypothesis (idle channel). In words, this
the (possibly) non-linear correlation among the receivedmeans that the interferences seen by different SUs are

measurements at the FC during an initial cooperative stagdndependent of each other. More formally, the binary
hypothesis testing problem considered in this paper can be
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alternative hypothesis. Therefore, we will look for the
non-linear transformations of the measurements providing
maximal correlation, which are expected to be monotone
transformations of the optimal test statistics. That is, the
proposed scheme aims to exploit the non-linear correlation
among SUs at the FC to decide if the measurements come
from the distributionp; (r;|#1) or fromp;(r;|Ho).

The operation of the proposed sensing paradigm is
illustrated in Fig2. In an initial cooperative learning stage,
the sensor measurements are transmitted to the FC, which
extracts the near-optimal local decision functions. These
functions are broadcasted to the SUs, which can then
operate in one of two modes (cf. Fig):

1. Autonomous testing: Each SU takes independent
decisions based on its local test statistic.

2. Cooperative testing: Each SU transmits its local
test statistic to the FC, where a global decision is
finally made by combining the local test statistics.

Figure 1. A spectrum sensing problem in a HetNet. Three SUs

in a small cell cooperate to detect the presence of a PU, while

two of them receive interference from other small cells. The
interferences are independent of each other.

It is interesting to highlight that the transmission of
information from the SUs to the FC needed in the
formulated as follows: cooperative testing mode is very limited. Specifically,
I each SU only needs to transmit its test statistic (a scalar
value) instead of the whole set of measurements or
p(r[H1) # Hm(nl?—h) feature vectors. Also, notice that as a byproduct of the
Z; plr)ocgss for egtra}ctir_lgd_the Ioc?lhdecisiqn func;ion, we
_ e obtain a quantitative indicator of the sensing performance
p(r[Ho) = sz(rleO) of each SU. These indicators can be directly used for
B selecting a reduced number of sensors in the cooperative
wherer; denotes the received signal at théh SU,r is  gperation mode, thus further reducing the communication
a vector signal composed of all observatioks, denotes  requirements of the whole procedure.
the alternative hypothesis (PU active) aid is the null
hypothesis. Notice that the primary, interference and noise .
signal may follow any distribution, since we do not make 3-1- Local feature extraction
any assumptions about them. Thus, the model is ratheFeature vectors are extracted from the measurements at
general and, in particular, is independent of the underlyindeach SU and used as input for the KCCA-based detector.
technology utilized during the transmissions by the PUwe denote a feature vector &s,, wherei refers to thei-
and the interferers. A particular scenario where theseh SU, and» denotes the-th sensing period during which
assumptions hold is depicted in Fi@, where a small N, samples of the received signalare sensed. We denote

cell (shadowed) within a heterogeneous network (HetNet)he feature vector extracted by théh SU during then-th
receives interference from neighboring cells during thesensing period as,

time that the channel is considered vacant.

Xin = (len f7,2n fL]X_l fi]'X)T
3. KERNEL CANONICAL

CORRELATION ANALYSIS FOR CSS where f7 is the j-th feature. For instance, if only the
measured energy is considerad, = £/, will be a scalar

The primary purpose of the proposed CSS framework isvalue. A wide variety of features can be included into
to correctly determine, locally at the SUs, the channelthe feature vector such as energy, kurtosis, or cyclic
availability based on a set of features extracted fromstatistics, among others. Finding the optimal features is
the local measurements. The main idea of the propose@ challenging problem because of the different trade-offs
detector is very simple. Although we cannot obtain the that exist among the performance, number of features,
optimal (Neyman-Pearson) detector at each SU, sinceaumber of available data, and temporal coherence of the
the distributions under the two hypothesis are unknown,channel. In this paper, we will mainly consider the energy
we know that the test statistics of the optimal detectorsand the kurtosis of the signal as the main features for
at each SU will be highly correlated, since the SUsthe detector. A detailed analysis of the optimal feature
are either all under the null hypothesis or all under theextraction procedure will be considered in a future work.
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Figure 2. Operation of the proposed KCCA scheme: In an initial cooperative stage (left side of the picture), the measurements are

reported to the FC to extract the local statistical tests T3, then it starts operating either following a distributed (Autonomous Testing)

or centralized configuration (Cooperative Testing). In the distributed configuration each SU makes a decision after a sensing period,
whereas in the centralized configuration all local test statistics are reported to the FC, where a global decision is finally made.

3.2. Initial Cooperative Stage composed of energy levels (where the upper index in
In the initial cooperative stage, the feature vectors o has been omitted for clarity purposes), this kemel
' can be expanded in individual terms as
extracted at each SU are reported to the FC, where P
the_statlstlcal dependenmes among the d_lfferent SUs are (xTx.)? = (fi1 fj1 + fizfj2)?
retrieved. In particular, we seek to combine the feature 2 9 P
indivi i = firfin +2fafifiafie + fia fiz
vectors for each SU individually in such a manner that the fafi J J i2/j
resulting combinations are maximally correlated among = (fA,V2fi fios f)(F1r, V2£i1fi2, F1o)"
the different SUs. _ N
The technique of canonical correlation analysis (CCA) = ¢(x:)" ¢(x;).
allows to retrlev_e the Il_near prolecthns of the feature |, this case, the feature mapping takes the faifx;) =
vectors that provide maximum cgrre]atlon among thg S,Us.(fiz17 V2fii fio, £2)7, which corresponds to a three-
In order to allow the optimal prolectlo_ns to be non-linear, gimensional feature space. The polynomial kernel is
we resort to the kemel-based versmn_of C_:CA, kn_own typically used in its more general formulation,
as KCCA |20, 22]. This procedure consists in mapping
the data into a high-dimensional space first, after which R(Xij, Xin) = (Xz;'xik +d)?,
standard CCA is performed in the new space.
where p and d are the order of the polynomial kernel
3.2.1. Kernel-Based Learning and a constant, respectively. In this paper, we consider the
In kernel-based learning (KBL), the data is transformed standard Gaussian kernel with kernel width given by
into a high-dimensiondkature spac¢23), 5 5
K (Xij, Xik) = exp(—|[xi; — x|/ 2w7),
@ Xin — q)(xin)~ (l) . . e s . .
which induces an infinitely-dimensional feature spats.|
While explicit calculations in the new space may be hardWe maintain the subindex to indicate that the kernel
due to its high dimensionality, for certain feature spaces itParameter may be chosen differently for each SU.
is possible to calculate inner products as a positive definite  TheGram matrix(or kernel matrij K;, for the data set
kernel functionk (-, -) in the input space. This is the case obtalneq at the-th SU, contains pairwise kernels of the
when Mercer’s condition is satisfied, data as its elements,

K(xig, Xik) = (P(xi;), P(xik))- ©) Ki(j, k) = R(xig, xin) = B(xi5) T @ ().

In order to illustrate the concept of the feature space3.2.2. Kernel Canonical Correlation Analysis for
induced by a kernel, we consider a simple polynomial CSss
kernel of the forms(x;,x;) = (x'x,)%. Given a two- Consider a scenario in which/ SUs are present, and
dimensional feature vectax; = (fi1, fi2) that is only  each SU produce¥ feature vectors{x;1, X2, ...xin }. In
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order to define the correlation between multiple data setsThe solutiona contains the different canonical weights

a summation of the individual correlations of each pair of as stacked vectorsqe = [a] , g , ...

data sets can be used

, ay]’, and it
is retrieved as the eigenvector corresponding to the

The pairwise canonical correlations between the datdargest eigenvalue of the GEV problens) ([20] [27].
sets, p;;, are obtained in the context of KCCA as The eigenvalues relates to the generalized canonical

pPij = ZZTZ]' = OLE—KZ‘KJ'OLJ' [26], Wherezi = K;o; isa
canonical variate obtained as the projection ofithie set
of data by means of the canonical vecte;. A measure
of the correlation associated to th¢h data setp;, can be
subsequently obtained as,

M

1
Pz‘:M_IZPm (3
J

—
Jj#i

correlation agd = 1+ =be

The squared norm of each of the canonical variates,
z;, indicates the contribution of each of the data sets
to the final canonical correlation. Therefore, in the CSS
scenario it provides an indication of the reliability of each
sensor when implementing, for instance, the centralized
cooperative testing at the FC.

3.2.3. Data Centering
Canonical Correlation Analysis (CCA) requires the

and a generalized canonical correlation can be obtained agput data to have zero mean. Since KCCA applies CCA

1 M
= =S, 4
p M;p @)

The maximization ofp with respect to the canonical

in the feature space, the data must be centered in this space

[22],
> B(xin) =0, i=1,.., M. (9)
n=1

vectorsa; admits a trivial solution, which can be easily Since the transformation are not necessarily explicitly
avoided by means of the following constraint on the energyknown, it may be impossible to obtain centered versions of

of the canonical variates

1 M 1 M
Tz P= 5 Y el KiKia = 1.
=1

=1

Analogously, overfitting problems can be avoided by whereN, = (I_

adding a regularization factor;, to the norm of the
projectors in the previous constrait].

M
M Za;rKlKlal +c aiTKiai =1 (5)

=1

The canonical weighte; are obtained by maximizing

p subject to the restriction given in equatids).(This can

be solved by the method of Lagrange multipliers, yielding

the following generalized eigenvalue problem (GEV)
%Ra = (Da, (6)

whereR, for M sets of data, is defined as

K1K1 KlK]W
R=| © -~ |, O
KA{Kl KJWKJM
andD is given by
Kl(K1 —|— CI) R 0
0 o Ku (K +cI)

*Several generalizations of CCA to more than two sets of variables cahd f
in [24,25].
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the data in feature space. However, it is possible to find the
Gram matrix of the centered data points as

K; = N,K;N_ (10)
+11"), 1is anN x 1 all-one vector
andI the N x N unit matrix. In order to center a vector of
kernel elementdg;, defined as

ki(k) = [k(xij, Xik)|k=1,....N -

a similar procedure is followe@f], leading to

ki = (ki - ITKi/N) N,. (11)

3.3. Local and Global Tests

As a result of the KCCA learning stage, we obtain the
following non-linear local detectors

N
Ti(x;) = Zaijf%(xi,xvzj) (12)

wherea;; refers to thej-th element of the canonical vector
«;, and &(-,-) refers to the kernel function calculated
on the centered data. In essence, the statistical #ests
constitute a weighted sum of similarities, as measured
by the kernel functions. Notice that, since the feature
vectors entering the expansion are already available at each
sensing device, in order to compute?) locally the FC
only has to transmit to each SU its own canonical vector.
This is the only transmission required if an autonomous
testing procedure is followed.

On the other hand, the local decisions at the SUs can
be easily combined at the FC if a cooperative testing



procedure is preferred. In this case, the global test statisticases, the decision function for only one of the SUs is
is simply obtained as plotted, since similar curves are obtained among all SUs.
In addition, a comparison of the ROC curves between an
M energy detector and the proposed KCCA-based detector

Ti(x) = ZTi(Xi)’ (13) is shown for the considered cases. We consider both

=1 configurations, a distributed (autonomous testing at each

which represents the best one-dimensional approximatiorpV) and centralized configuration (cooperative testing at

of the (norm constrained) canonical variates. As we will the FC). A stationary channel is considered, and both

see later, this additional cooperative stage results in arhe® PU and the interferers employ orthogonal frequency

improved detection performance. division multiplexing (OFDM) waveforms during their
transmissions.

4. SIMULATION RESULTS Example 1. In Fig. 3(a) a scenario is considered with
two SUs (M = 2), a PU, and only Gaussian noise under
In this section, we study the detection performance ofthe null hypothesis. For this case, the feature vector is
the proposed KCCA-based detector. We consider differenfnly composed of the measured energy, and therefore
scenarios in which noise, or noise plus interference ardts PDF follows chi-squared distributions, which can be
present, and for which different features are extracted@PProximated by Gaussian distributions. A near-linear
during the sensing period. The performance is quantifieddecision function is obtained by KCCA, which assigns
in terms of probability of detectionf{>) and probability negative values to the primary signal and positive ones

of false alarm Pr 1), by showing the Receiving Operating 0 the noise. In Fig3(b), we show the corresponding
Characteristic (ROC) curves. ROC curves for a distributed and centralized configuration,

The following examples are evaluated for a number of Where similar results are obtained by applying either
training dataN' = 300, andN, = 50 samples per sensing KCCA or an (optimal) energy detector.
period. The selection of the vallé = 300 corresponds to
a tradeoff between the complexity to solve a GEV problemExample 2. For the same scenario, we now consider the
(recall that each kernel matrix in the GEV problem presence of an interferer under the null hypothesis. Fig.
has dimensionsN x N), and the obtained detection 4(a) shows that the interference power is much higher
performance. Also, itis important that the scenario remainsthan the primary signal, thus requiring a more complex
more or less static over the whole training period, which decision function. In this example, the obtained KCCA
also calls for using a reduced number of sensing periodsdecision function assigns high values to the noise and the
On the other hand, we should mention that the valueinterference signal, whereas low values are assigned to
of N, =50 does not target a particular application or the primary signal. Notice also that the use of a Gaussian
standard'. Again, this value has been chosen mainly for kernel function is related with the shape of the decision
computational reasons, as well as to avoid abrupt changeftinction, and for that reason very low or very high values
in the scenario statistics. of energy levels are mapped around zero. Nevertheless, this

For the KCCA-based detector a Gaussian kernel issaturating effect can be avoided by applying a different
employed, the kernel widthy; for each set of data; is kernel function or by setting a different kernel width.
chosen by applying the Silverman’s rul@2g[30], and the  Furthermore, its impact does not affect the performance

regularization parameter is setde= 10. since these extreme energy values rarely occur. In fact,
this might even increase the robustness of the proposed
4.1. Decision functions and ROC Curves detector under impulsive noise. As it is depicted by the

ROC curves in Fig.4(b), we observe that the energy
detector is clearly outperformed by the proposed KCCA-
based scheme, which is able to distinguish the PU and the
interference signals based solely on the correlation among
test statistics.

For each example, we plot the estimated probability
density function (PDF) of the feature used as input of
the test statistic under both hypothesess well as the
decision functiondl’;, which represent the projections of
the transformed data sets.

This allows us to study how the KCCA decision

function is able to separate both hypotheses. In mosExample 3. Finally, in Figs. 5(a) and 5(b) we have
considered a scenario witlh/ =3 SUs, where the

advantages of including more information in the feature
fIn practice, much larger sensing periods are typically used. For instane ~ VECLOT Is |IIustratepI. Inthis ex_amplef the 'nterfe_rer utilizes a
requirements of the spectrum sensing of ATSC DTV signals establish that theBPSK single-carrier modulation and we consider a feature
miss detection should not exceed 0.1 subject #;3 = 0.1 when the SNR is vector composed of the energy and the kurtosis estimated
-20.8 dB, these requirements yield sensing periods of thousandmpfesaat a . . .
sampling rate of 21.52 MHZE], over thg sensnng_per!od. The PDF corresponding to the
energy is shown in Fig5(a), where we observe that the

£ The PDFs for the results shown in this paper are obtained using a Pazsityd . . .
estimator with a Gaussian kern&ll]. energy of the primary signal almost overlaps with that of
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Figure 3. (a) Probability density function for the primary and noise signals at SU 1 for a SNR = -5.3 dB, and the corresponding KCCA decision function
T;. (b) The corresponding ROC curves for local decisions (at each SU) and centralized decisions (at the FC) using KCCA and an energy detector.
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decision function T;. (b) The corresponding ROC curves for local decisions (at each SU) and centralized decisions (at the FC) using KCCA and an energy

detector.

the interfering signal, and thus this feature alone is notthe kurtosis alone seem to be able to distinguish the
discriminative enough to detect the primary signal. This primary signal from the null hypothesis. However, if we

limitation can be avoided by including into the feature use both features the proposed KCCA-based provides
vector the kurtosis32], which is defined as the normalized a considerable advantage, which is quantified by the

fourth-order cumulant,
2
E (Irinl*) = |B (r)|” = 2E7 (jrin®)
E2 (\rm|2)
The PDF of the kurtosis is shown in Fi§(b), where
it can be observed that it is unable to distinguish the

primary signal from the noise, since both follow a
Gaussian distribution. Therefore, neither the energy nor

kur (rin)
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corresponding ROC curve in Fig(c).
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5. EXPERIMENTAL RESULTS from Matlab.
The transmitters and receivers are composed of
N210 USRP motherboards and Radio Frequency (RF)
. CVR2450 daughterboards; and allow us to operate in the
several USRP nodes in the laboratory of the AdvancedlxswI bands of 2.4GHz to 2.5GHz, and 4.9GHz to 5.8GHz.

Signal Processing Group at thg Unlverglty of Cantabrla.For a more detailed description of the node characteristics,
Each of these nodes works with a universal hardware

driver (UHD) as a host driver. By default this UHD driver the reader is referred (@{].

gllows US. t9 coniral only a USRP device, Wh'Ch. makesThe processing chain at the transmitter side in our
it more difficult to set up more complex scenarios. We setup is as follows:

have developed a custom Universal Software Architecture
for Software Defined Radio (USASDR) that employs the

UHD driver to operate simultaneously over several USRP
devices from a remote PC running higher level instructions

5.1. Testbed Description

A cognitive radio platform has been built by integrating

e After an instruction from Matlab is executed, the
Gigabit Ethernet controller of the host computer
transfers the data to the USRP. This received
complex signal is upconverted to an analog
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Intermediate Frequency (IF) signal and transmittedat each SU, are collected in a central PC acting as a FC.
over the air by the RF transceiver. Finally, the canonical weighta; are calculated and used
form the statistid; (z), whose performance is evaluated

On the other hand, the process at the receiver side is a5 . .
uring an off-line process.

follows:

e The flow of the signal at the receiver side is similar 5.3, Experimental Measurements
to its counterpart, but in a reverse order. After ) ) ) )
capturing the data, a Gigabit Ethernet controller In this section, we describe the experimental results
is in charge of transferring it to the host computer Obtained by the proposed procedure, and highlight the
where the rest of the signal processing tasks arén°re challenging cases where the interference is present
performed. A detailed description of the flow of during the sensing period. The following results were

data with our custom implementation can be found obtained by a feature vector only composed of energy
in [33]. measurements witl/ = 2 (number of SUs),Ns = 50

(number of samples during each sensing peridd}: 300
(number of training patterns sent to the FC), and the ROC

In addition, a Pulse Per Second (PPS) signalcyrves were computed after collecting)000 sensing
provided by an external clock is employed for timing periggs.

synchronization among the nodes in the testbed, it allows
the transmission and reception among the USRP nodes At the transmitter side, the maximum transmission

simultaneously, as it is shown in Fi§(a), where a PU, ower allowed by the N210 USRP #sdBm, and it is
two SU nodes and an interfering node are configured a”(gontrolled by applying a constant factor to the signal’s
synchronized in time by a PPS signal for simultaneousamplitude. This allow us to control the measured SNR at
transmission and reception during the measurementhe receiver side at baseband. On the other hand, the energy
procedure. levels indicated in the experimental results correspond to
the energy of the acquired discrete-time signal normalized
Notice that the experimental part only considers two py jts maximum value. This normalization step plays the

SUs, since.we aim to show the feasibility of our proposal. (gle of an automatic gain control (AGC) system, which is
An scenario composed of more SUs turns out to benot implemented by the USRP nodes.

interesting for boosting the performance as more feature

vectors are available. However, it also involves higher ag we already mentioned, the measurements corre-
complexity to solve the GEV problem (eq. 5), along with gpond to an indoor channel that presents long coherence
new approaches which deserve further research beforgmes in comparison to the time elapsed during each data
implementing them in complex experimental scenarios.  acquisition. In fact, for the same scenario it was shown
in Gutierrez et al 34] that the channel remains almost
constant at the band of 5 GHz with coherence times on

All the measurements were tested in an indoor quasi-statiéhe order of seconds. Thus, we expect that the PDFs under
(the coherence time is rather long in comparison to thePoth hypothesis do not change abruptly, since the measured
measurement time) channel of 4 MHz centered at 5.6 GHzscenario is almost stationary. For a non-stationary environ-
To recreate a scenario in which the interferences observef€nt, our scheme should include an updating procedure,
by each SU are independent, we divide the 4 MHz channePut this is left as future work.

into 2 sub-channels of 2 MHz each. Each SU senses a

different sub-channel, whereas the PU transmits over the&example 1. In Figs. 7(a) and 7(b) the PDFs of the
whole 4 MHz channel. On the other hand, the interfering measured energy levels are shown for each SU under both
node randomly transmits on one of the two sub-channelshypotheses. It can be observed that the primary, the noise
or on both simultaneously. Each interfering node follows and the interfering signal approximately follow Gaussian
independent Bernoulli distributions with a probability of distributions. For this case, the interference power lies
sub-channel occupancy = 0.5. In this configuration, below the received power of the primary signal, and as it
either both SUs, only one of them, or neither of them is expected from the simulation results, the KCCA-based
will be affected by the interference, while both SUs are detector is able to separate the interference and noise from
able to detect a busy channel when the PU is presentthe primary signal, by mapping them to different values
The transmission/sensing cycle is shown in Figb), of the test statistic. The corresponding ROC curves for this
where the transmitted signal is an orthogonal frequencyexample are shown in Fig(a), where we see that each SU,
division multiplexing (OFDM) waveform that follows the when operating autonomously, obtains similar results. This
IEEE 802.11a standard. This waveform is generated withcan be explained by the fact that both detectors are close to
a rate of 9 Mbps using BPSK symbols, and up-sampled tathe optimal solution to separate both PDFs. On the other
modify the bandwidth of the signal so as to accomplish thehand, a slight improvement is obtained when the decision
described configuration. After multiple sensing periods, is cooperatively taken at the FC, as it employs all feature
two sets of data composed of the estimated energy levelsectors from both SUs to attain a better performance.

5.2. Measurement Procedure
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Figure 6. (a) Two SUs acting as sensing nodes, an interfering node (INT), a PU, and a FC in the middle of them. All USRP are synchronized by a pulse

per second signal (PPS) provided by Signal Generator. The SUs are located at approximately 1 m from the PU and the interfering node. (b) Measurement

procedure: the PU transmits using two bands of frequency channels represented by two colors (2-4 & 4-6MHz), each SU senses a different band, and the
interfering node transmits randomly on any of the channels, or in both.

Example 2. A more interesting case is depicted in Figs. local statistical tests at the fusion center that maximize
7(c) and 7(d), where the power of the interference signal the non-linear correlation by means of a KCCA approach.
is high enough to be above the primary signal power, These test statistics are then broadcasted to the secondary
and the primary and noise signals have similar energyusers for online operation. We have carried out a set of
levels at a SU. For this case, the energy detector issimulations as well as experimental measurements using
unable to distinguish between the noise and the primarya CR testbed to assess the performance of the proposed
signal. However, in spite of the degraded measurementletector. Both the simulations and the experimental results
at one of the SUs, the KCCA-based detector obtains ashow that the proposed method is robust under the presence
significant improvement, as the ROC curves in F¢b) of interference, and obtains a considerable advantage with
show. This advantage can be attributed to the fact thatespect to the use of an energy detector either locally or
the KCCA detector effectively exploits the non-linear cooperatively.

correlation between the sensor measurements at the FC.
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Figure 7. Three considered cases (rows): KCCA decision function and probability density function for the primary, the interfering and noise signal at SU
1 (left) and SU 2 (right). (a) and (b) with an approx. SNR 0.63 dB, (c) and (d) with an approx. SINR -11.4 dB and -9.2 dB respectively, and finally (e) and
(f) with an approx. SINR -6.3 dB and -5.1 dB.
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