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and a Semi-Definite Programming Solution

Miguel Lazaro-GredillaMember, IEEE, and Steven Van VaerenbergWiember, |EEE

Abstract—In this paper we propose a Bayesian model for L5 ‘ ‘ Tt &
the data association problem, in which trajectory smoothnes 17."-"';\, fereet o,
is enforced through the use of Gaussian process priors. This osl . -’,-,’ e )
model allows to score candidate associations by using theiggnce RV Yo "o n
framework, thus casting the data association problem into a . “ gy S
optimization problem. Under some additional mild assumptons, 087 ” ..-'a’-' -':.
this optimization problem is shown to be equivalent to a con- - . .,_.v." ® s
strained Max K-Section problem. Furthermore, for K = 2, -5y LYY e,
a MaxCut formulation is obtained, to which an approximate -2 ‘ S ‘ ‘ %°
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solution can be efficiently found using an SDP relaxation. time

Solving this MaxCut problem is equivalent to finding the optimal
association out of the combinatorially many possibilities The Fig. 1. A data association problem with two moving sourcesyhich one
obtained clustering depends only on two hyperparameters, lich  observation (black dots) from each source is measured &t tae instant.
can also be selected by maximum evidence. Data association aims to determine which observationssuned at different
time instants, originate from each source.
Index Terms—clustering, data association, Gaussian processes,

multi-target tracking, semi-definite programming

and the Multiple Hypothesis Tracker (MHT) [7]. An important
. INTRODUCTION disadvantage of these techniques is that they usually neequi

Data association is a fundamental problem in multi-targl@"9€ number of parameters, which motivated the developmen

tracking and computer vision. Given a set of observatioas ttPf Several conceptually simpler approaches based on motion
represent the positions of a number of sources, typically §gometry heuristics [2]. [9]. [10]. These approaches avelys
motion, such as persons, vehicles or particles, data as&oi limited to specific scenarios, and they show difficulties in

consists in inferring which observations originate fronctea (N€ Presence of a large amount of noise or when several
sourcl [, [2]. For instance, given a set of unlabeled medfaiéctories cross. Another strategy to improve perforrean
surements of the positions of two persons in a room at sevef@€S on postponing the decisions until enough informmatio
time instants, we would like to group the measurements t{§t2vailable to exclude ambiguities| [2], although this s

correspond to each person. Fif. 1 illustrates this concépt wiN€ number of possible trajectories to grow exponentially.
a typical example including two moving particles in a one>everal attempts have been made to restrain this combigdator

dimensional setting. Data association is encountered imymaXPlosion, including([11],[[12], [13].

target tracking applications, such as sensor netwoiks48pr ~ We present an approach based on Gaussian processes (GPs)
tracking [£], and computer visior [[5], and it is sometimefL4] that is capable of tackling these issues. Specificétly,
referred to as motion correspondence [2], or multiple mod@lodels the target trajectories as GPs and it only requires to

regression (MME)([B] in case motion is not explicitly considdetermine two hyperparameters, i.e. an approximate etgtima
ered. of the Signal-to-Noise ratio (SNR) and a timescale, which

Traditional multi-target tracking algorithms operateinal relates to the motion smoothness. Furthermore, it is able to

To predict the target’s trajectory they use tracking teqhB'B consider all available data points in batch form whilst d“ﬂg

that incorporate the knowledge of the motion model, such H¥ exponential growth in potential tracks. Additionaitydoes
joint Kalman filters [7] or joint particle filters([8]. Giverhe not require the time instants to be uniformly spaced, andrt c
predicted positions of the targets and a number of candidgiéen be applied to problems where the input space has mul-
observed positions, they commonly make instant data as§gle dimensions. On the other hand, the presented algorith
ciation decisions based on statistical approaches sucheasrequires that at each time instant &ll sources are observed,

Joint Probabilistic Data-Association Filter (JPDAF) [48] resulting inK measurements per time instant. In other words,
in this work we do not explicitly deal with the problem of
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multiple targets for any given location in the input spacefficient algorithm for the case df = 2 is proposed. Finally,
typically corresponding to multiple objects at the sameetima number of experiments are conducted in Sedfion VII, and
instant in a tracking system, we will use a G#iture in which ~ Section VIl summarizes the main conclusions of this work.
each component is used to model one trajectory. Standard GP

mixtures are used to model data with local nonstationardie Il. PROBLEM SETTING

discontinuities([15],[[17],[[18],[19], but they are not dgsed . by formally describing the data association prob-

to deal with multiple trajectories. This issue was recentlI)ém. Considers independent data sources that generate a total

tackled in [13], which introduced aaverlapping mixture of . S
) . of n observations. Each observation is generated by a source
Gaussian processes (OMGP) and proposed an approximate

I . L . . o s; €41,...,K},withi=1,...,n, and corresponds to a sam-
variational Bayesian solution involving a nonlinear opdex . oo . . .
tion over a large number of free parameters. pling location in the input space. Throughout the discussio

o we will use a one-dimensional input space that represamts ti
The present work addresses the data association prOble”?rP%rder to focus on the target-tracking application, alijio

modeling trajectories as independent GPs, just as [13]. Th& nroposed method is not limited to one-dimensional input
novelties of this paper with respect to [13] are: spaces. The-th observation is thus taken at a time instant
« The non-linear optimization problem posed by the GR € R, and it consists oD components, collected in a vector
model is addressed in [13] by using variational inferenagbservatioriy: (;), ...,yp(t;)]" € RP. In the initial problem
to obtain an approximate posterior. This requires nogescription we do not assume any additional restrictions. |
linear minimization of a non-convex objective. Thusparticular, it is not required to receive an observatiomiro
different initializations of the algorithm, as well as dif-each source at each time instant, and several observations,
ferent non-linear optimization techniques, may result ieither from the same or different sources, can occur at the
different solutions. Il.e., the algorithm is bound to gesame instant (i.e., fof # j it is possible to have; = t;).
trapped in local minima (which may be very poor foiGiven all observations, the data association problem stsi
difficult problems). in finding which source corresponds to each observation.
In contrast, the present approach relaxes the originalln this work we assume that each soufces {1,..., K}
minimization objective to a convex problem that can bis fully described by a set of (unobservable) latent funtio
optimized very efficiently using semidefinite program{f¥(-)}2_,, which can be interpreted as trajectories in a
ming. This optimization process is guaranteed to alway3-dimensional space. Furthermore, each observagig;)
converge to the unique, global optimum. Then, using ttie regarded as a noisy version of the corresponding latent
random hyperplane rounding technique (see Se€flon \Wnction f%(¢;). Note how the unobservable latent functions
we retrieve a solution for the original problem that isarry a super-indek to indicate which source it corresponds
guaranteed to be very close to the global optimum. Suth, whereas observations do not carry such an index, siige th
guarantee was not available in [13], which could possiblgabeling is the very purpose of the data association problem
get stuck at very bad local minima. Our objective is two-fold: We want to a) approximately
. Because we are minimizing a convex functional, theecover the set of labels = [sq,...,s,] that identify the

minimization process is much faster than in [13]. In Figsource of each data point (i.e., solve the data associata p
we include a comparison of the running times for GRem) from observable dat® = {t;,y1(¢;),...,yp(t:) i,
BTT and OMGP, for different numbers of observationsand b) infer the latent function describing each source
GP-BTT is remarkably faster than OMGP, typically & f5(-)}%_,, so that we can predict the outputs of the sources

factor of 10 or greater. at new time instants.

o The variational algorithm provided by [13] works for
any numberK of trajectories. In contrast, the algorithm IIl. BACKGROUND ON GAUSSIAN PROCESSES FOR
provided in this work is only valid fol = 2 trajectories REGRESSION

and is casted as a MaxCut optimization problem. Despite
this limitation, in Sectiof VA we show that for a genera‘ljIr
number of trajectorieds, it is possible to re-cast the

Within the Bayesian framework, Gaussian processes (GPs)
e a type of stochastic process commonly used as a prior
X for functions. The defining property of GPs is that any finite
p”’b'e”.‘. as a standard MgK—Sectlon .problem plqs collection of its samples forms a multivariate Gaussiaracem
an add|t|o.nal linear constr aint. We conjgcture tl'_1at '_t Yariable. They have recently attracted a lot of attentioe du
also pOSS|_bIe to SOIVe. this problem using semldeflmE their nice analytical properties and their state-ofdine
programming, thus paving the way forthe_development ?)erformance in regression tasks (seel [15]). In this work, we
a more general technique for the cases in whith- 2. will use independent GP priors on the functions that describ
The remainder of this paper is organized as follows. Theach trajectory over each dimension. Some background on GPs
data association problem is shortly described in Sefioml!l and its use for regression is provided here.
Sectionll, an introduction to Gaussian process regressio Assuming that a set of time-observation paifs =
given, after which a GP-based model for data association{is, y(t;)}?_, corresponding to a single trajectory are avail-
proposed in Section IV. Sectidnl V details how the model &ble, the regression task goal is, given a new irtpubbtain a
reduced to a Max K-Section problem by considering only or@edictive distribution for the corresponding observatjd..)
observation per source per time instant, and in Seéfidon VI Based orD.
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The GP regression model assumes that the observations cafypplicable search algorithms are described in standard
be modeled as some noiseless latent function of time pliextbooks such as [14], [21]. When the analytical deriesiv
independent noise of (3) are available and conjugated gradient ascent is used f

y = f(t)+e, optimization, each step tak&3(n?) time.

If several independent GPs are present (for instance, to
model K trajectories ovelD dimensions), their log-likelihood
is simply the sum of the log-likelihoods for each GP:

f(t) ~ g'P(O,k(t,tl)), €~ N(O’ 02) K,D

N 1

wherek(t,t') is a covariance function and? is a hyperpa- logp(yl0,0) = — log(2m) — 5 [Kexex + a
rameter that specifies the noise power. The covarianceifumct k=1,d=1 .
plays an analogous role to thernel function used in the - %ynkT (ng;fg; +U2Ink)_ Yn (4)
support vector machine literature (see for instancé [20]).

The covariance functiork(t,t') specifies the degree ofwhere k is used to index the quantities related to each
coupling betweeny(t) and y(¢') and encodes properties oftrajectory.
the GP such as power level, smoothness, etc. One of the best-
known covariance functions, and the one that we will be usingyy, A GP MODEL FOR THE DATA ASSOCIATION PROBLEM
here, is the isotropic squared exponential. It has the fofm o
an unnormalized Gaussian,

and then sets a zero m&@P prior onf(t) and a Gaussian
prior one:

In this section we will introduce a Bayesian model for the
data association problem based on GPs. Recall that our aim
k(E 1) = o2 —[t =t is to infer both the unknown source labeisand the latent
Do\ T ) ()L
d\")Sd=1k=1" ) ) )

We proceed in a Bayesian way by placing priors on the
unknown parameters of our model. If we assume that trajec-
tories { f¥(t;)} ¥ ,_, are smooth, it is reasonable to model
them with independent GP priors (using some parameétéos

values for/ result in faster decays and therefore correspor?(?leCt the levels of amplitude and smoothness). Noise can be

to rapidly varying latent functions, whereas a bigger vslluém)dele(_j with a Gau55|an_pr|0r of selectaple powér_s[nce
encode smoother latent functions. all possible source allocatiossare equally likely a priori, we

Due to the very definition of GP, the joint distribution ofWiII place a un.iform prior oyer_them. The resulting model can
the available observations (collectedyimand some unknown then be described by the likelihood

outputy(t.) form a joint multivariate distribution, with pa- pyat){fE )y, 1) = N(ya(t) | £ (t:), 02)  (5)
rameters specified by the covariance function: a

y Kg + %1, Kes
~ N O,
Y

k;r* kuw + 02
whereKg, ke, andk,, are a matrix with elements(t;, t;),
a vector with elements(t;, t..), andk (¢, t.), respectivelyl,
is used to denote the identity matrix of size
From (1) and conditioning on the observed training outpu?
we obtain the desired predictive distribution t

and depends on two hyperparameter$,and ¢, which are
collectively referred to as the covariance hyperpararsdéter
The power of the GP is controlled oy, whereas the smooth-
ness can be selected by tuning the length-séal&€maller

and the independent priors
) (1) p(f5(t:)) = GP(0,k(t:,1)) and P(s)=1/K" (6)

(note the use of a uniform, non-informative prior sn

For notational simplicity, in the following we omit explici
conditioning on hyperparametefs and o2, which will be
garded as known for the moment, as well as on time instants
1™, (which are always known, since they are part of the
observations).

Pep(Yslts, D) = N (ys|picpe, o&p,) (2a)
e = ki, (Kg + 021,) "ty (2b) A. Label recovery

0ap = 0% + kyw — k;‘r*(Kﬂ‘ + aQIn)*lkf* (2¢c) The posterior probability of any particular set of labels
(i.e., any possible grouping of data points in trajectQrgggen

o : 3\ b . :
which is computable ifO(n") time. This cost arises from the . yata is obtained from Bayes' formula:

inversion of then x n matrix Kg + ¢21,,. | ) 5)
Hyperparameterg, o} are typically selected by Type-ll /vy _ _P(YIS)P(s) _ p(Yls v 7
Maximum Likelihood, i.e., to maximize the marginal log- (s1Y) > <p(Y[s)P(s) > p(Y]s) xp(Yls) (1)

likelihood (also called log-evidence) of the observations Don _ )
whereY = {yq(t;)} ;" ,_, collects all available observations.

logp(y|@,0) = _n log(27) — 1|Kff + 01, | The first identity of [U) f_oIIows becausE(s)_ =1/K"is
1 2 2 a constant, uniform prior independent «f This makes the
_ EyT (Kff + oQIn)_ly. (3) posterior proportional to the likelihood. The proportititya

constant (the denominator) is known, but implies a summatio
2It is customary to subtract the sample mean to daté;)}?_,, and then over all K™ poss!ble Iabelllngs. As a result, computing it in
to assume a zero mean model. reasonable time is only possible for very small problems.
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The likelihood of s, and therefore its posterior (up to aC. Model selection

constant) can be computed in closed form: We have seen that we select the best configuration
c B g nD according to the ML criterion. For GPs, it is standard piati
log P(s|Y) = logp(Y[s) = > _logp(ya) = ——5 108(27) {4 select hyperparameters using ML, so we can express both
k,d the model selection and the best configuration selection as a

1 -1 - A
-5 D I Kpipr + 07T, [+ yh" (KfoZ + O'QInk) y%  joint maximization:

k,d {s*, 8, 0?} = argmin — logp(Y]s,0,c?) (11)
(8) s*,0,02

wherey* is a column vector collecting alj4(¢;) such that where we have explicitly included the conditioning @h
s; = k and similarly,f* is a column vector collecting the latentand 2. Cost functional—log p(Y]s,6,02) could even be
values f%(¢;) such thats; = k. Without loss of generality, used to select the most likely number of sourdésof the
we assume that observations and latent values are orderextlel: Increasing the number of the clusters only affeats th
within their corresponding vectors according to time. Thetfi independence relations appearing in the prior, but does not
equality follows from the independence assumption betweasacessarily reduce the cost, unlike other clustering nsodel
different sources and dimensions, introduced in pfibrii@hie

form of independenaeamong trajectorieq f¥(t;) fz’szl. V. REDUCTION TO AMAXCUT PROBLEM

The secopd equality corresponds to the evidence of a stzhn_darm this section we will introduce a simplifying assumption
GP [3). independently evaluated at the groups of poif{§hich often holds in practice) that converts optimization
specified bys, as described il {4). ~__ problem [®) into a constrained Max-Section problem. Then

The most probable set of labels (i.e., the MAP estimation) e will consider thek = 2 case, which further simplifies
corresponds in this case to the ML estimation, since we &fgs opjective, yielding an unconstrained MaxCut problem.
using a flat prior oves: Finally, we provide an efficient algorithm to address theadat

s* = argmax log P(s[Y) = argmax logp(Y|s) (9) association problem in the mentionéd = 2 case, in which
s s only two trajectories are involved.

Since s is a discrete variable, we can find the mode of
the posterior by an exhaustive search overfall possible A The data association problem as a constrained Max
configurations. However, this approach is only valid foryer g _ Section problem
small problems. In Section]V we will see how by imposing
some additional constraints, it is possible to (approxatyat
find the mode of the distribution very efficiently.

We will first introduce a simplifying constraint in the pre-

vious model: We will assume that! sources produce exactly

one vector observatiofiy (t;),...,yp(t;)]" at every time

. , , ingtant. Then,f%, which only collects the latent valuei (t,)

B. Inferring the trajectories such thats; = &, will now collect every latent value exactly
Once each data point has been allocated to a trajectefyce, regardless of. Thus, under this constraint, we have

via s, standard GP regression can be applied to infer th€atK,... = Kg (i.e., the covariance matrix corresponding to

latent functions describing the trajectories. Fully priolistic ~ each source and dimension no longer depends on the allocatio

predictions for the value of any observation at new timeainst s). Substituting in[(B) and removing additive terms that do no

t. can be obtained as follows depend ors, we have:
K k 2
t Y, :N T4 %, O 10a c 1 —1
p(ya(t:)]Y,s) T(l/d( )|u ‘72) . (10a) log P(s|Y) < -3 Zys‘r (K + U2In’) k. (12)
pe = Kea, (Kggpa + 0710, )"y (10b) kd
02 =02 + kyw — kaZ*(ngfg +0°Ln,) " ke, For any given dimensiod, each vectoy” collects then’ =

(10c) n/K observations flagged by as belonging to trajectory.
This is a standard result from the GP literature, see foaimns Therefore, the dependence Bfl(12) ois expres_sed by how
each actual observation is allocated to egfhThis obscures

[14]. :
A fully Bayesian method should integrate over all post-he dependence dbg P(s|Y) on s, which does not appear

sible configurationss to obtain the predictive distribution exﬁllc(')t%é? t::)e Sﬁ;?ires?h(?g' dependence. we need the fol
p(yi(t.)|Y), but again this would require a summation ovey ing two definitiofzS' First I\Dlve coIIec't all available ob
K™ values. It is possible to obtain a reasonably good estimé?é(v g ) '

by considering only the most probable configuration S.e“’a“?ﬂs for d”}g?”s'ord. n dlagoneﬂ matrix A.‘i N
diagly;', ..., y; '], of sizen x n, using any arbitrary

p(yk(t)Y) = Zp(yfj(t*)lD,s)P(sW) ~ p(yk(t.)[Y,s*), valid allocation. l.e., for each time instant;, we randomly
s assign each of thé& available observations to one of ttié
i.e., replacings with s* in (10). available sources and build matricéa,}2_, according to

that allocation.
SIntroducing dependencies among different sources or difoes does not
prevent tractability, and can be simply achieved by modiythe prior. It “We use operator didg) to convert a vector into matrix by arranging the
increases computational complexity, though. elements of the former in the main diagonal of the latter.
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Second, we express as an equivalent set ok binary
indicator vectors{bk}szl, each of lengt, consisting only
of zeros and ones. Each element of indicaldr is set to
1 if the corresponding element of the diagonal of matr

as described in_[22]/[23]. Observe that this formulation ex
presses the Mak -cut problem as the desire of minimizing the
weight of intra-partition edges, whereas an equivalenttemo
igtandard formulation would require maximizing the weight o

{A4}E_, belongs to sourcé and to O otherwise. Note thatinter-partition edges.

this makes the choice of the arbitrary allocation used tatere

The inclusion of thebalance constraint[(14d), which forces

{A}ER_, irrelevant: Any allocatiors can be expressed by ato allocate the same number of points to every source (parti-

corresponding set o{b’“}szl.
Using these definitions, we can rearrangg (12) as:

logP(s|Y) = log P(b[Y) =

L D> b A (Ke + o*1,) " ® (11 k)] Agb”

2
k.d

K
1
=—3 > b*TMb* (13)
k=1
whereM = 32 A,[(Kg +02L,,) ' ® (1x15)]Ag, the
tensor product operator i and1g is a column vector with
K ones.

Eq. (I3) clearly elucidates the dependence of the posterio

probability onb. Note that matrixM is constant (for given
hyperparameter@ and o). If we include the constraints that
{b*}E | must fulfill to represent a valid allocation, we hav
the following optimization problem:

K

1
b* = argmin ~ » b""Mb" (14a)
{p* 5:1 k=1
s.t. b*e{0,1}" (14b)
K
> br=1, (14c)
k=1
> bMi=1,b" = % =/ Veer..x  (14d)
=1
K-—1
DMt jn = 1, Vet ks Viet,. (14e)

<.
o

The minimization objective can be alternatively expressedy! — 1

in terms of positive weights a1, b"" WbF, with W =

e

tion), yields the MaxK -Section problem. Just as Max-cut,
it can be solved using an SDP relaxation, as detailed ih [24].
Finally, thenon-simultaneity constraint[{I4e) avoids assign-
ing two points occurring in the same time instant to the same
source (partition). We conjecture that this additionakén
constraint still results in a problem that can be solved gisin
an SDP relaxation, probably a simple modification of the
algorithm proposed ir [24]. We are not currently aware of any
work addressing this constrained M&%Section problem and
leave it as an open problem that will be the subject of further
research.

B. The K = 2 case and MaxCut

it we know that only two trajectories are present in our
observations, ther = 2, and the previous problem can be
considerably simplified.

In this case, at each of thg time instants we have two
generating sources and two observations, and we must decide
which source generated which observation. Since there are
obviously only two different ways in which this observa-
tions could have been generated, we can code all possible
allocations for all time instantss) using a binary vector

h e [-1,+1]"/2.

Following the notation described in Section V-A, the binary
vectors b' and b* can be obtained as a function &f.
Since there are only two partitions, indicatdss and b are
complementary, i.e. if elemefib']; is 1, [b?]; must be 0 and
vice versa. Furthermore, becalibé]; corresponds to the same
time instant as{b’“]lqr%, one of them must be 1 and the other

0. Thus we have:
h
(h e ) as)

—h

+h
—h

1

) b2:_

2

1,
i (1o

M + wl,1, and w an arbitrary constant, big enough to Pplugging [I5) in [T4), we get the following simplified

make all the elements &V positive. Due to constrainf (T4d),

minimization problem:

this modification only shifts the objective by a constantd an

therefore does not modify the optimif:

1 K
5 Zkaka -

K
1
=3 > b T(M +wl,1,))b"
k=1

k=1

K
% 3 b1, bt
k=1
wKn'?

2

1 K
5 Z b* T Mb* +
k=1

1 K
ET 1k
§Zb MbF +
k=1
If the binary indicatorb is only constrained by[{I#c),
which enforcesmutual exclusiveness (i.e., each observa-

1 1
h* = argmin EhTQh + 5 1M1, (16a)
h

sit. hfe{-1,1}" (16b)
with Q = P diagy’ —y3) (K + 021,/) " diagy}—y?2).

Observe how all the constraints ih {14) are automatically
fulfilled due to the way in whictb! andb? are constructed
from h. Any h producesb”, fulfilling mutual exclusiveness,
balance and non-simultaneity constraints, so there is ed ne
to place constraints oh.

Excluding the term%lann, which is constant and there-
fore irrelevant in the minimization[{16) describes a stdd

tion must come from a single source), the minimization dflaxCut problem. MatrixQ is positive semidefinite, though

15K b*TWb* is a standard Maxs-cut problem, which
can be approximately solved by relaxing it to an SDP proble

its elements are not necessarily positive. The optimalllabe
aflocationh™ can then be found using an SDP relaxation.
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C. Solution using an SDP relaxation

45 ‘ ‘ o ]
To obtain a (remarkably good) approximation to the solutic
of problem [16), we proceed as described[in| [25]. :
First, we defineH = hh' and present optimization prob- 1r o
lem (I8) in the following equivalent form: o

N
(o]

H* = argmin tracd HQ) (17a) Nl ° ‘ ° ]
h -2 -1 1
st. H>0, diagH)=1x (17b)
Fig. 2. Data for the worked example.
rankKH) = 1 (17c)

Then, we relax the optimization problern {17), which igith 1 ¢ {~1,+113 as per eq.[{16). Each element of
exactly equivalent to[(16), by dropping constraint {17@), Syectorh tells us, for each time instant, if our initial arbitrary
that it becqmes convex and can be efficiently solved usin@gcation is kept 1) or reversed £1) in the computation
SDP techniques. _ L _ of —log P(s[Y). Thus, optimizing oveh yields the optimal

The (approximately) optimal labeling™ is retrieved from gjigcation. In order to solve this problem, we still need to
H" using random hyperplane rounding as follows: Use thgmpute this expression for thé possible values di, which
Cholesky decomposition to expalii’ = V'V and associate g unacceptable.
each column fromV' (which, due to constrain{_{I¥b) is @ |f we now assume for the sake of simplicity that we
vector located in the surface of a unitary hypersphere) witlte 3 linear kernek(t,t) = t’ and unit noise power
the element fromh™ in the same position. Then generate g2 — 1 we can instead minimize the relaxed problém] (17)

random hyperplane through the origin and assign +1 to th@cqHQ) s.t. H > 0, diag H) = 15 to getH*, with

elements oth™ corresponding to columns &f lying on one .

side of the hyperplane and -1 to the elements corresponding [ +31 +.50 —.08 +1 41 —1
to columns lying the other side. Q= | +50 +2.0 -.15 JH = +1 +1 -1
It can be proved that this procedure yields an 0.87856- —08 —.15 +.05 1 -1 41

approximation to the optimal solution (s€e |[25]). Sincetcos

function [18) can be evaluated very efficiently for any candi Using the hyperplane rounding technique, fréfi we get
date solution, this process can be repeated several tintes W = [+1,+1, —1], thus indicating that found trajectories are
different random hyperplanes and the best solution chosen|—2,0,4.5] and[2, 1, —2], each from a different source.

VI. THE GP-BTTALGORITHM (INCLUDING
HYPERPARAMETER LEARNING

For the case in which only two trajectories are present, it
is possible to learn the hyperparameters and infer theitapel
using an efficient algorithm, which we describe below.

D. A worked example

To clarify the ideas developed in this section, let us work
through a simple example. Assume that at time instant
—2 we have two output observations2 and?2. Likewise, at
t, = —1 we observe) and 1; and ati, = 1 we observe-2 - L
and4.5 (see Fig[P). Note that at each time instant we haveldea”y’ we would like to minimize[(11) w.r.t. both hyper

5 . i
exactly two observations, each from a different source, bﬁj?rameters{e,a } and the allocation (represented byin

o . ) ._the general case, and more compactly expresseh lnythe
it is not known which source generates which observation.

. ) 3 ) inary case). Instead, we have shown so far how to carry out
There are2z (in this case,2®) possible ways to allocate

. : . this minimization for each case: If the allocation was knoitn
observations to sources. For each possible allocatiare can : S
; . 1 would be possible to minimiz€ (IL1) w.r.t. the hyperparamsete
collect observations labeled as coming from sourceyl'iand . X . . SO
X : by using simple conjugate gradient descent, which is stahda
observations labeled as coming from source inThen we

can compute- log P(s|Y) £ Zke{u} v* (K + 021) -1y practice when learning regular GPs. If the hyperparameters

<kEl] . : were known, it would possible to approximately compute
as per eq.[{8). Note that optimizing this expression wet. }he optimal allocatiorh™, casting the problem as a MaxCut

s to compute tt;e .MAP solution for the Iapelmg mVOI.VeSaIgorithm, as per Sectiofi (IB), and using the SDP relaratio
recomputing it2z times, one for each possible allocation

. : . described in Sectior_(VIC).
and then selecting the one that yields the maximum value: . ) oo .
; . : . To combine both types of optimization, several strategies
The combinatorial explosion makes this unaffordable ewen f . .
can be used. A natural and straightforward option would be

medium sized. to iteratively alternate between optimizing the allocatand

.u;(glsosvlvj';% ';hne parr?)\i/tl:)aurs g"e(;';/;tif:foo;}ﬂx dsicgﬂz’v\\:\;ﬁecaféaming the hyperparameters, thus giving rise to an EM-lik
J y y Y algorithm. However, if this technique is directly appligtie

—log P(s[Y) (up to a constant) as quality of the obtained local minima will depend strongly on
the initialization. Instead, we propose to use a few diffiere
initializations and then optimize the allocations and tetire
hyperparameters only once. This scheme amounts to a joint
search as the number of initializations grows, but in pcacti

%thiaqyl _ y2) (Kff + 0_213)_1 dla(}(yl _ y2)h

:%thiag([zl, 1,6.5]) (Ker + 0°I;) " diag([4,1,6.5))h
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produces very good results when just a few are used. Of
course, other optimization schemes are possible.

In detail, the resulting algorithm, which we call GP Binary-
Target Tracking (GP-BTT) is:

1) Input: We are given a set of time instar{hs}?:/f and

two corresponding vectors of observation$ and y2
per dimension, each of sizg. (The two observations 1 o P RRET Rr
available at each time instantire randomly assigned to time
{[ytli]i}t?zl_ and{.[yz]i}l?zl; the goal of th? algorithm I_S Fig. 3. GP-BTT solution for the toy data set of Hg. 1.
to determine which source produced which observation).
2) Form a 2-dimensional grid of candidate values for
and the Signal-to-noise ratio SNR o2 /02, covering
a sufficiently wide range.

3) For each candidate paj¥, SNR}

a) Seto? to the variance of ddfa computes? =
o3 /SNR and buildQ from data.

b) Computeh™ using the MaxCut algorithm described
in Section [V=C).

c) Reorder the observation vectors to reflect the ob-
tained clustering. For every

time (s)

o If [h*]z = —|—1, do nOthing_ number of observations
« If [h*], = —1, swap[y}]; and [y}];, for every
d.

d) Now {y}}?  and{yl}7_, constitute2D inde-
pendent GPs. Learn their hyperparameters maxi- Toy data
mizing (4), using a gradient based procedure (such
as conjugate gradient), starting from their current we first apply the GP-BTT algorithm on the data of Fij. 1,
values. which represents the noisy one-dimensional observatiéns o
e) Compute the negative log marginal likelihoodwo particles that cross twice. The tracking results of GP-
(NLML) for the selected hyperparameters, with EQBTT are shown in FigI3, in which circles and crosses indicate
@). If its better than the NLML of previous itera- the obtained clustering solution and hence the estimateal da
tions, store the final values of the hyperparameteggsociation, and full lines mark the inferred trajectari@®-
{08,0°,£}, the allocationsh™ and the resulting BTT considers all possible data association solutions éeor

Fig. 4. Comparison of running times of OMGP versus GP-BTT.

NLML obtained for this candidate pair. to recovers the data associations, but by relaxing the enobl
4) Output the allocatiorh™ and hyperparameters Corre.to an SDP prOblem it avoids the combinatorial eXplOSion
sponding to the best NLML. associated to evaluating all of them explicitly.

. . . . In order to get an idea of the time complexity of GP-
In practice, the algorithm seems fairly robust to the ChOICI§’TT, we show its running times for different numbers of
or the SNR, and to a lesser extent, 10 _the ch0|c_e of trEB?)servations in Fid.]4, obtained on a Pentium Intel Core2 Duo
length-scale. Depending on the computational reqwreme%achine with 3GHz processors running Matlab 7.11. As can

the search grid can be very small, and even reasonable fi ed cen GP-BTT is remarkably faster than OMGP, typically
values for both parameters can be used, without incurring Neactor ,ofl() or greater '

a dramatic reduction in the clustering quality.

When data fom /2 different time instants is provided, the
described method require®(n?) space (dominated by the
storage of the:/2 x n/2 covariance matrix) and(n3) time B. Missile-to-air tracking scenario
(dominated by the SDP optimization process, see(Hig. 4).

Next, we consider a missile-to-air tracking scenario as
described in[[B]. This scenario follows a state-space model
in which the state vector contains the position and velocity

VII. EXPERIMENTS components of a source, = [X¢, s, Zi, Vi i, Vyoty Vat]. The
full motion dynamics are defined by the following state-gpac
In this section we apply the GP-BTT algorithm to several
problems with X' = 2. We also compare is results to differ- _ g .
A . . Note that for a given SNR and the value ofo§ is irrelevant, since it only
ent state-of-the-art data association algorithms incigcthe would only scaleKg, and the solution of (A6)h*, is invariant to scalings
SIR/MCJPDA filter [8], ClusterTrack [3] and OMGP_[13]. of Kg-.
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Fig. 5. Data and results for the missile-to-air trackingnse®. The z and time axis are not displayed. Top row: Obskdata (a). (b) Data association
results of OMGP. (c) Data association results of GP-BTT.Tdjcking results of the SIR/MCJIPDA online filter. (e) Trawliresults of OMGP in online
mode. (f) Tracking results of GP-BTT in online mode.

equations: which provides instantaneous data association. The nuafber
LTI 2 particles used for this experiment is fixed 160 per source.
Spq — 3 3 s, + 71 v, OMGP is a data association algorithm based on the same
* O3 Iz TI; ’ mixture model as GP-BTT. OMGP considers a more general
c XTI VIT 2 scenario in which the number of sources may be higher 2han
t ¢ ¢ (18) but since it requires to solve a nonlinear optimization peob
Y: it i i -
r, = h(s) = arctan (Y,) te, it is less robust to noise than GP-BTT. _
. In order to operate correctly, the SIR/MCJPDA filter re-
_arCtan (W quires complete knowledge of the true dynamics of the model,

including the initial states. In contrast, OMGP and GP-BTT

whereT is the sampling interval, anty andOs represent the are completely blind with regard to the initial states: They
3 x 3 unit matrix and null matl‘iX, respectively. The Vecmr 0n|y require to determine the hyperparameters' in paard:hb
contains the observation at time instanfThe process noise length-scalé and the data SNRZ/o2. Since this application
v; and measurement noisg are assumed Gaussiaw; € represents an online scenario in which the running timelshou
N(0,Q) with Q = diag(10% 10%,10°) ande; € N(0,R) pe kept low, we did not use the automatic learning of the
with R = diag(50%, 0.017,0.01%). For additional details refer hyperparameters as described in Sedfioh VI. Rather, we fixed
to [8]. We consider a bi-target tracking problem with iniitiathe hyperparameters @= 10 and SNR= 100, based on
states the amplitudes used in the state-space model. Concernéng th

sy = [6000, —5000, 2000, 10, 550, 0] 7, 10 robustness of these choices, we ve_rified that changes in the

&2 — (5050, —4500, 2000, 100, 500, 0] (19) sSNR of up to one order of magnitude did not affect the

clustering results. The choice of the correct length-sésle
This choice of the initial states results in trajectorieattare more critical, akin to the choice of the kernel width in sugpo
very close and similar, making this a particularly hard faultvector machine (SVM) literature. Similarly, the SNR is akin
target tracking problem. The corresponding observatipase to the regularization in SVMs.
displayed in Fig[b(a). SIR/MCJPDA is an online algorithm and thus performs each
We compare the results of the GP-BTT algorithm witlprediction without knowledge of future data, in contrasthe

the SIR/MCJPDA filter from[[8] and the OMGP algorithmbatch algorithms OMGP and GP-BTT. In order to make a fair
from [13]. The SIR/MCJPDA filter is a state-of-the-art multi comparison, we also run OMGP and GP-BTT in an online
target tracking algorithm that consists of a set of jointtigle manner by performing these batch algorithms on a growing
filters that perform tracking of multiple sources, combinedindow of observations: The tracking solution at instars
with a joint probability data association (JPDA) techniquthen only based on the observations up tilt the instant
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Fig. 6. Data and results for the binary proximity sensor expent. (a) Observed data. (b) Data association resul@irgdt by OMGP. (b) Data association
results obtained by GP-BTT. (d) Tracking results of the @oEack algorithm from[[3]. (e) Tracking results of OMGP dnline mode. (f) Tracking results
of GP-BTT in online mode.

TABLE | of wireless sensor networks [26]. In this scenario we carsid
NUMBER OF LABELING ERRORS ON THE MISSILETO-AIR DATA binary sensors that produce a single bit as their output;hwhi
ASSOCIATION PROBLEM OUT OF 60 OBSERVATIONS. . P .
is 1 when one or more targets are in its sensing raRgand
mode  SIRIMCIJPDA OMGP GP-BTT 0 otherwise. Despite the minimal information provided by an
batch nia 18 4 individual binary proximity sensor, a network of such sasso

online 20 11 4

can provide remarkably good target tracking performance of
a single target[[26]. The problem becomes more complex
) ) if multiple targets are present, and only few methods have
The number of labeling errors obtained by each meth@ait with this situation. In particular, a tracking alghrn

are listed in Tabléll. We also plot the trajectories obtaingghsed on particle filtering was recently proposed In [3]lechl

by the three algorithms in Fid.] 5, along with the predicte@|ysterTrack. We will conduct an experiment to compare
measurements. Figureb 5(b) and (c) illustrate the solsitin the performance of this algorithm and the proposed GP-BTT
OMGP and GP-BTT when applied as batch algorithms gfethod.

all available data. While OMGP retrieves smooth trajee®ri  \ye simulate a scenario with two targets that move through

it makes a data association mistake at the instant when bﬁtlane-dimensional sensor arraydsensors. The sensors are
observation are close, causing it to swap labels after $iisp ositioned uniformly at intervals of = 200 distance units,
GP-BTT does not commit this error. _ and their ideal sensing radius is fixed Bs= 0.755. These

~ The result of the SIR/MCJIPDA filter, shown in Figl. 5(d)ranges guarantee that a target is always detected by at least
is initially correct for both trajectories, though it beces g, o censor when it is moving through the array. To obtain

erroneous at.the instant where the observation_s are vessg.clqhe target movements, we consider only the x-components of
From this point on the results are very poor. Figlifes 5(e) apsk state-space mod@[{18), with initial stasgs= [500, 10]7,

(f) show the results of OMGP and GP-BTT in online modez _ 11, 10]7. Fig.[6(a) shows the observations of this model

While the tracking solutions are not as smooth as the baigfyasured duringo time instants. The targets cross each other
algorithms other algorithms, their label assignments sfeow  5.4ndt = 17. Compared to the examples i [3], the number

errors. Finally, note that both OMGP and GP-BTT requirg sensors in this experiment is very low and the targets are
much Iess_, problem-specific information than SIR/MCJPDA t\‘?ery close to each other during the entire experiment, givin
reach their results. rise to a hard tracking problem.
] o o Figure[6(b) shows the data association results obtained by

C. Target tracking with binary proximity sensors the OMGP algorithm from[13]. In order to apply the GP-

For the next experiment we consider the problem of targBT T algorithm to the data, exactly two measurements per
tracking with a grid of binary proximity sensors. This prefnl time instant are required. We therefore preprocess the data
has recently drawn a lot of interest as a promising appboatias follows. If the activated sensors comprise two disjoint
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groups (i.e. there is at least one deactivated sensor betwe -so00 0 5000
them), the centre of each group is used as the input t |
the algorithm. Otherwise, the two centres are chosen as tr - i =
positions that maximize the likelihood of the observatians i g B k‘ k ' ) 1
that time instant. The results for of the GP-BTT algorithm § 5 J. =g I - 1.
with hyperparameters = 20 and SNR= 100 are shown in 8 u u * ﬂ ] |+ N -
B(c). Despite the minimal information provided by the bipar 1055 E=E-U0 20 o
sensors, it can be observed that the batch versions of bo OFDM subcarrier
OMGP and GP-BTT obtain very reasonable results. (@)
Next, we apply the ClusterTrack algorithm frornl [3] t0 54 ‘ — ‘
these data, withl00 particles per target. ClusterTrack uses ° o . ° ° oo
complete knowledge of the state-space model in order to | ® o ° o0 o' o°
. . . 0 0%e® © o° P o Py )
operate correctly (seel[3] for additional details). Whihast ° . e g o e ©
algorithm is capable of estimating the number of sources by 5000 R
performing multiple runs over the data, we consider itsrali 0 5 10 15 20 25 30 35 40 45 50
. OFDM subcarrier
mode, which has knowledge of the number of sources and
only performs one run. Fig[]6(d) shows its tracking results. (b)
The source positions are estimated with great precision at >°® e e o ‘
most time instants. Nevertheless, it also shows some rggion ° 0, @° ® RY % ¢%0% o
N A 000, o O 00 [ R4 OgO ®
of higher error, particularly around the start, and between  9f 0092.%0 .-QO oo, o N .900’
t = 20 andt = 35 for the second trajectory. We then repeat o R S P )
the experiment using the OMGP and GP-BTT algorithms 5000 —— /= = —— o o
in online mode. As shown in Fig&l 6(e) and (f), the online OFDM subcarrier
algorithms obtain trajectories that are more irregular garad (c)
to the batch algorithms. Still, the estimated trajectordes 5000 ; ; NIV o ; ; ; ;
reasonably close to the true, unobservable source pasition x OMGP XX Dy xR dmd)
. . X Q. x P x x O
The fact that the results for OMGP are practically identical ol 8%% Ogy X % x o%d
those of GP-BTT should not come as a surprise, as OMGP C x* O 0 X © A7 Ky, X ©
. ) T : o ooooo % . Cam Xx
typically performs well in problem with little noise. Notdsa 5000 ‘ ‘ ‘ ‘ x " ‘ s s s
that OMGP and GP-BTT in online mode performs similar to R S S
the ClusterTrack algorithm, which is specifically tailorea (d)
handle this problem. 5000
; ; ; ; - ; ; ;
0 GP-BTT x X% O O xeX
. . . . Oy x XX © % o
D. Blind decoding of BPSK symbols in OFDM transmissions ol W O%; §O O ng Qe
: . - x0 0
For the fourth experiment we consider a data association e K P XX X OQﬁoOO ook X
problem from the field of wireless communication networks. -sqoo x x e X x s s :
5 10 15 20 25 30 35 40 45 50

The setting includes a high level of noise, which allows us to OEDM subcarrier
assess the robustness of GP-BTT to noise. (€)

The IEEE Standard 802.11a-1999 describes the data trans- ) ) ]
mission in wireless local area network (WLAN) computes,:, 0 and resus ofthe BPSK decoding experimenih rceied
communications [27]. According to these specificationda dareal part is plotted. (b) Received data of the first time framiy, ¢ = 1. (c)
is transmitted using orthogonal frequency-division nmiék- Received data of = 1 plus virtual patterns (white dots) obtained by flipping
ing (OFDM) modulation with52 subcarrier frequencies [28].:gzuqtesci';g?nggtzy(g)P%lth'e”ng results obtained by OMEPClustering
In other words, each data packet is split up into several se-
guences and each sequence is transmitted over a diffetent su
carrier frequency, during several time frames. The seq®®ng¢mjitude received at each frequency are due to the wireless
themselves can be chosen from several different consteifat channel's frequency selectivity. Variations in time alstar,

in particular “binary phase-shift keying” (BPSK), whichess 1,45t importantly due to movement of the transmitter or the
binary symbolse {—1,+1}. BPSK is a robust modulation, receiver, or due to changes in the wireless channel, though

used typically when noise levels are high. these changes are much smoother.

During transmission, the symbols are corrupted by tr?eln order to restore the original symbols from the received

V\{ireles_s channel and they have to be re_covere_d at the r'Bcegl@nal, the wireless channel has to be identified. This is
side. FigL¥(a) shows the real ;@m‘ the first10 time frames _achieved through the transmission of a known sequence of “pi

.Of a received data pack_et. At each t|me frame, dz?\tq IS rq¢e| 6t" BPSK symbols during the first two time frames, denoted
in each of the subcarrier frequencies. The variations in t e “long-training sequence”. In this experiment we wilbah

6Since the wireless channel has a complex impulse respdrseeteived that GP-BTT is capable of b!indly recovering the piIOt Sy_mbo
signal is complex as well. sequence. In other words, it allows to estimate the wireless
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TABLE |I data are described by different models. A motivation fos thi
NUMBER OF SYMBOL ERRORS IN THEBPSKDECODING EXPERIMENT AT scenario is discussed in [6]

DIFFERENT SIGNAL-TO-NOISE RATES . . . . .
Specifically, we consider a problem in which the input
space is two-dimensional. The latent functions chosenim th

frames SNR OMGP GP-BTT ! . . .
0 dB n 5 experiment are the two smooth surfaces dep|_cted in[FFig. 8({;1)
t=1 15 dB 0 0 We assume that the measurement process yields observations
T0dB oa 1 that sample both functions jointly, and that the nature ef th
=12 | 15 g n/a 0 measurement process does not allow to determine in which

order both observations were taken. In other words, at each
location of the input space two samples are obtained, but
channel, based only on an unknown sequence of receirtis not known to which source each of them corresponds.
symbols. This sequence, which is transmitted during thet pilNote that, in the case of a one-dimensional input space this
time frames, can be used to transmit additional informatiodescription corresponds to the standard multi-targekinac
effectively raising the information load of WLAN, and it isproblem. Finally some noise is added to the observations. Th
the scope of a parallel ongoing research project. observed values are graphically represented in[Hig. 8(e). W
We captured WLAN data packets using a wireless commused a grid of grid oR5 by 25 points to sample them.
nication test bed in a realistic indoor environment ($e¢ {@9 To the observed data we apply the GP-BTT algorithm with
a more detailed description of the test bed). The signaleise hyperparameter learning (see Sectiod VI), fir different
ratio (SNR) varied betweet) dB and15 dB. Specifically, we candidate pairs¢, SNR}. The maximal NLML is obtained
capturedl00 data packets t0 db SNR and anothei00 at15 for the hyperparameters = 1.01, SNR = 20.34 dB. The
dB SNR. An example of one of the received pilot sequencestrieved latent surfaces are shown in Higj. 8(c). As can be
att = 1 is shown in Fig[d7(b). We process the data as followsbserved, they correspond closely to the true hidden sesfac
If the inverted BPSK sequence were transmitted, the redeiviee., GP-BTT has disambiguated the latent functions thateho
signal would be the negative of the true received signal, dtfee observations. This demonstrates that GP-BTT is capable
to the linearity of the channel's operatian [30]. Therefose of solving the data association problem and de-noising the
add the negative signal as a set of “virtual” patterns toiotda observed data.
scenario that can be clustered by GP-BTT, see[Fig. 7(c). Once
these data are correctly clustered, it is possible to xetribe
labels of the transmitted data (the black dots in Eig. 7),civhi
correspond to the transmitted byte sequence. This work proposes a Bayesian model for data associa-
From each of the captured packets we took the first frartien that enforces the grouping of observations in smooth
(t = 1) and added virtual patterns to it, as described above. \Wajectories by using GP priors. A simple expression for the
applied OMGP from[[13] and the proposed GP-BTT algorithr@vidence of this model is provided, such that the suitahbilit
to cluster the resulting data, for each packet separatelgh E of any candidate set of labellings and hyperparameters ean b
algorithm used automatic hyperparameter learning. The- clgvaluated in closed form. Using this idea, we can turn tha dat
tering result then allows to determine the label§—1,+1} association problem into an optimization problem.
corresponding to the received data up to a sign ambiguity,Evidence maximization for this model is a challenging task,
which can be resolved by sending one known pilot symbdaispecially when considering that the number of possible la-
The results are shown in Figsl 7(d) and (e). This procedusellings grows exponentially with the number of observadio
could allow to add up t®00 bytes of additional information One of the main results of this paper is the reduction of this
payload to thel.2 kbytes contained in the WLAN data packepptimization problem, under some additional assumptitms,
[27]. a constrained Max<-Section problem, which can be further
The total number of symbol decoding errors for eackeduced to a MaxCut problem when the number of sources is
algorithm are listed in Tablelll. We then repeat the expenimeK = 2. This latter case allows to be efficiently and accurately
but now use data from both pilot symbol time frames=(1,2) solved using an SDP relaxation, yielding the proposed GP-
to perform clustering. The input data space of the clusmriBTT algorithm. We believe that the more general case in which
problem is now two-dimensional with input variables f). K > 2 can be solved by using the constrained Mé&&ection
GP-BTT can be applied without any modification to such dategpresentation provided in this paper and SDP relaxations,
On the other hand, the implementation of OMGP [in] [13] ithough we leave this as an open problem.
suitable only for sequential input data, and could theeefmt ~ The use of the Bayesian framework enables us to use
be applied to this scenario. the same objective function to perform model selection: Dis
crete optimization over labellings can be interleaved with
continuous, nonlinear optimization over hyperparameters
a grid search can be used. In both cases, the evidence is a
In the final experiment we visit a more general settingound criterion that allows direct comparison between any
in which the latent functions do not necessarily representtwo candidate solutions. This is in contrast with otherknag
motion model. This corresponds to the most general casenoéthods in which parameters must be set by cross validation
data association, in which it is only assumed that the differ or trial-and-error.

VIIl. CONCLUSIONS ANDFUTURE DIRECTIONS

E. Model estimation with multiple input dimensions
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Fig. 8. Latent functions and observations of the data aasoni experiment from Sectidn VIIE. (a) Left column: theerunderlying functions. (b) Middle
column: observations, including measurement noise. (ghtRiolumn: the function surfaces as retrieved by the pre@d3P-BTT algorithm.

Although the equivalence between bi-target tracking angh]
the MaxCut problem is an interesting theoretical result by
itself, we have performed experiments to compare its pralcti 4]
performance against existing tracking algorithms. In o e
periments, the competing methods had either more infoomati
than GP-BTT (for instance a more detailed, ground truti®!
model, of the underlying dynamics of the sources) or wergs
specifically tailored to the problem at hand (for instance
discrete-valued observations coming from a sensor grief), Yz
produced similar or worse results at a higher computational
cost. GP-BTT is fast, requires few hyperparameters, is verigl
robust against model misspecification and it is capable of
formulating an (approximate) offline solution that consgle [g]
all possible data associations. Furthermore, as desciibed
Section[VIE-E, it can be applied to problems with moré
than oneinput dimension, extending the concepts of data
association and tracking beyond time-based concepts,hwhitl]
is how they have been conceived so far.

Naive implementation of GPs limits their applicability to
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