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A Gaussian Process Model for Data Association
and a Semi-Definite Programming Solution
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Abstract—In this paper we propose a Bayesian model for
the data association problem, in which trajectory smoothness
is enforced through the use of Gaussian process priors. This
model allows to score candidate associations by using the evidence
framework, thus casting the data association problem into an
optimization problem. Under some additional mild assumptions,
this optimization problem is shown to be equivalent to a con-
strained Max K-Section problem. Furthermore, for K = 2,
a MaxCut formulation is obtained, to which an approximate
solution can be efficiently found using an SDP relaxation.
Solving this MaxCut problem is equivalent to finding the optimal
association out of the combinatorially many possibilities. The
obtained clustering depends only on two hyperparameters, which
can also be selected by maximum evidence.

Index Terms—clustering, data association, Gaussian processes,
multi-target tracking, semi-definite programming

I. I NTRODUCTION

Data association is a fundamental problem in multi-target
tracking and computer vision. Given a set of observations that
represent the positions of a number of sources, typically in
motion, such as persons, vehicles or particles, data association
consists in inferring which observations originate from each
source1 [1], [2]. For instance, given a set of unlabeled mea-
surements of the positions of two persons in a room at several
time instants, we would like to group the measurements that
correspond to each person. Fig. 1 illustrates this concept with
a typical example including two moving particles in a one-
dimensional setting. Data association is encountered in many
target tracking applications, such as sensor networks [3],radar
tracking [4], and computer vision [5], and it is sometimes
referred to as motion correspondence [2], or multiple model
regression (MME) [6] in case motion is not explicitly consid-
ered.

Traditional multi-target tracking algorithms operate online.
To predict the target’s trajectory they use tracking techniques
that incorporate the knowledge of the motion model, such as
joint Kalman filters [7] or joint particle filters [8]. Given the
predicted positions of the targets and a number of candidate
observed positions, they commonly make instant data asso-
ciation decisions based on statistical approaches such as the
Joint Probabilistic Data-Association Filter (JPDAF) [4],[8]

M. Lázaro-Gredilla is with the Dept. of Signal Theory and Communications,
University Carlos III in Madrid, Spain, Email: miguel@tsc.uc3m.es.

S. Van Vaerenbergh is with the Dept. of Communications Engineering,
University of Cantabria, Spain, Email: steven@gtas.dicom.unican.es.

This work was supported by MICINN (Spanish Ministry for Sci-
ence and Innovation) under grants TEC2010-19545-C04-03 (COSIMA) and
CONSOLIDER-INGENIO 2010 CSD 2008-00010 (COMONSENS).

1We will use the terms source and target interchangeably.
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Fig. 1. A data association problem with two moving sources, in which one
observation (black dots) from each source is measured at each time instant.
Data association aims to determine which observations, measured at different
time instants, originate from each source.

and the Multiple Hypothesis Tracker (MHT) [7]. An important
disadvantage of these techniques is that they usually require a
large number of parameters, which motivated the development
of several conceptually simpler approaches based on motion
geometry heuristics [2], [9], [10]. These approaches are usually
limited to specific scenarios, and they show difficulties in
the presence of a large amount of noise or when several
trajectories cross. Another strategy to improve performance
relies on postponing the decisions until enough information
is available to exclude ambiguities [2], although this causes
the number of possible trajectories to grow exponentially.
Several attempts have been made to restrain this combinatorial
explosion, including [11], [12], [13].

We present an approach based on Gaussian processes (GPs)
[14] that is capable of tackling these issues. Specifically,it
models the target trajectories as GPs and it only requires to
determine two hyperparameters, i.e. an approximate estimate
of the Signal-to-Noise ratio (SNR) and a timescale, which
relates to the motion smoothness. Furthermore, it is able to
consider all available data points in batch form whilst avoiding
the exponential growth in potential tracks. Additionally,it does
not require the time instants to be uniformly spaced, and it can
even be applied to problems where the input space has mul-
tiple dimensions. On the other hand, the presented algorithm
requires that at each time instant allK sources are observed,
resulting inK measurements per time instant. In other words,
in this work we do not explicitly deal with the problem of
missing data. We provide an efficient implementation for the
case ofK = 2 sources (such as the case of Fig. 1).

Gaussian processes are a powerful tool for Bayesian non-
linear regression due to the way in which they naturally incor-
porate smoothness [15]. In this case we will take advantage
of this smoothness to model trajectories. Since there will be
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multiple targets for any given location in the input space,
typically corresponding to multiple objects at the same time
instant in a tracking system, we will use a GPmixture in which
each component is used to model one trajectory. Standard GP
mixtures are used to model data with local nonstationarities or
discontinuities [16], [17], [18], [19], but they are not designed
to deal with multiple trajectories. This issue was recently
tackled in [13], which introduced anoverlapping mixture of
Gaussian processes (OMGP) and proposed an approximate
variational Bayesian solution involving a nonlinear optimiza-
tion over a large number of free parameters.

The present work addresses the data association problem by
modeling trajectories as independent GPs, just as [13]. The
novelties of this paper with respect to [13] are:

• The non-linear optimization problem posed by the GP
model is addressed in [13] by using variational inference
to obtain an approximate posterior. This requires non-
linear minimization of a non-convex objective. Thus,
different initializations of the algorithm, as well as dif-
ferent non-linear optimization techniques, may result in
different solutions. I.e., the algorithm is bound to get
trapped in local minima (which may be very poor for
difficult problems).
In contrast, the present approach relaxes the original
minimization objective to a convex problem that can be
optimized very efficiently using semidefinite program-
ming. This optimization process is guaranteed to always
converge to the unique, global optimum. Then, using the
random hyperplane rounding technique (see Section V),
we retrieve a solution for the original problem that is
guaranteed to be very close to the global optimum. Such
guarantee was not available in [13], which could possibly
get stuck at very bad local minima.

• Because we are minimizing a convex functional, the
minimization process is much faster than in [13]. In Fig.
4 we include a comparison of the running times for GP-
BTT and OMGP, for different numbers of observations.
GP-BTT is remarkably faster than OMGP, typically a
factor of 10 or greater.

• The variational algorithm provided by [13] works for
any numberK of trajectories. In contrast, the algorithm
provided in this work is only valid forK = 2 trajectories
and is casted as a MaxCut optimization problem. Despite
this limitation, in Section V-A we show that for a general
number of trajectoriesK, it is possible to re-cast the
problem as a standard MaxK-Section problem plus
an additional linear constraint. We conjecture that it is
also possible to solve this problem using semidefinite
programming, thus paving the way for the development of
a more general technique for the cases in whichK > 2.

The remainder of this paper is organized as follows. The
data association problem is shortly described in Section II. In
Section III, an introduction to Gaussian process regression is
given, after which a GP-based model for data association is
proposed in Section IV. Section V details how the model is
reduced to a Max K-Section problem by considering only one
observation per source per time instant, and in Section VI an

efficient algorithm for the case ofK = 2 is proposed. Finally,
a number of experiments are conducted in Section VII, and
Section VIII summarizes the main conclusions of this work.

II. PROBLEM SETTING

We start by formally describing the data association prob-
lem. ConsiderK independent data sources that generate a total
of n observations. Each observation is generated by a source
si ∈ {1, . . . ,K}, with i = 1, . . . , n, and corresponds to a sam-
pling location in the input space. Throughout the discussion
we will use a one-dimensional input space that represents time,
in order to focus on the target-tracking application, although
the proposed method is not limited to one-dimensional input
spaces. Thei-th observation is thus taken at a time instant
ti ∈ R, and it consists ofD components, collected in a vector
observation[y1(ti), . . . , yD(ti)]⊤ ∈ R

D. In the initial problem
description we do not assume any additional restrictions. In
particular, it is not required to receive an observation from
each source at each time instant, and several observations,
either from the same or different sources, can occur at the
same instant (i.e., fori 6= j it is possible to haveti = tj).
Given all observations, the data association problem consists
in finding which source corresponds to each observation.

In this work we assume that each sourcek ∈ {1, . . . ,K}
is fully described by a set of (unobservable) latent functions
{fk

d (·)}Dd=1
, which can be interpreted as trajectories in a

D-dimensional space. Furthermore, each observationyd(ti)
is regarded as a noisy version of the corresponding latent
function fk

d (ti). Note how the unobservable latent functions
carry a super-indexk to indicate which source it corresponds
to, whereas observations do not carry such an index, since this
labeling is the very purpose of the data association problem.

Our objective is two-fold: We want to a) approximately
recover the set of labelss = [s1, . . . , sn]

⊤ that identify the
source of each data point (i.e., solve the data association prob-
lem) from observable dataD ≡ {ti, y1(ti), . . . , yD(ti)}ni=1,
and b) infer the latent function describing each source
{fk

d (·)}Dd=1
, so that we can predict the outputs of the sources

at new time instants.

III. B ACKGROUND ON GAUSSIAN PROCESSES FOR

REGRESSION

Within the Bayesian framework, Gaussian processes (GPs)
are a type of stochastic process commonly used as a prior
for functions. The defining property of GPs is that any finite
collection of its samples forms a multivariate Gaussian random
variable. They have recently attracted a lot of attention due
to their nice analytical properties and their state-of-the-art
performance in regression tasks (see [15]). In this work, we
will use independent GP priors on the functions that describe
each trajectory over each dimension. Some background on GPs
and its use for regression is provided here.

Assuming that a set of time-observation pairsD ≡
{ti, y(ti)}ni=1 corresponding to a single trajectory are avail-
able, the regression task goal is, given a new inputt∗, obtain a
predictive distribution for the corresponding observation y(t∗)
based onD.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2014 (TO APPEAR) 3

The GP regression model assumes that the observations can
be modeled as some noiseless latent function of time plus
independent noise

y = f(t) + ε,

and then sets a zero mean2 GP prior onf(t) and a Gaussian
prior on ε:

f(t) ∼ GP(0, k(t, t′)), ε ∼ N (0, σ2)

wherek(t, t′) is a covariance function andσ2 is a hyperpa-
rameter that specifies the noise power. The covariance function
plays an analogous role to thekernel function used in the
support vector machine literature (see for instance [20]).

The covariance functionk(t, t′) specifies the degree of
coupling betweeny(t) and y(t′) and encodes properties of
the GP such as power level, smoothness, etc. One of the best-
known covariance functions, and the one that we will be using
here, is the isotropic squared exponential. It has the form of
an unnormalized Gaussian,

k(t, t′) = σ2
0 exp

(−|t− t′|2
2ℓ2

)

,

and depends on two hyperparameters,σ2
0 and ℓ, which are

collectively referred to as the covariance hyperparameters θ.
The power of the GP is controlled byσ2

0 , whereas the smooth-
ness can be selected by tuning the length-scaleℓ. Smaller
values forℓ result in faster decays and therefore correspond
to rapidly varying latent functions, whereas a bigger values
encode smoother latent functions.

Due to the very definition of GP, the joint distribution of
the available observations (collected iny) and some unknown
output y(t∗) form a joint multivariate distribution, with pa-
rameters specified by the covariance function:

[

y

y∗

]

∼ N
(

0,

[

Kff + σ2In kf∗

k⊤
f∗ k∗∗ + σ2

])

(1)

whereKff , kf∗ andk∗∗ are a matrix with elementsk(ti, tj),
a vector with elementsk(ti, t∗), andk(t∗, t∗), respectively.In
is used to denote the identity matrix of sizen.

From (1) and conditioning on the observed training outputs
we obtain the desired predictive distribution

pGP(y∗|t∗,D) = N (y∗|µGP∗, σ
2
GP∗) (2a)

µGP∗ = k⊤
f∗(Kff + σ2In)

−1y (2b)

σ2
GP∗ = σ2 + k∗∗ − k⊤

f∗(Kff + σ2In)
−1k~f∗ (2c)

which is computable inO(n3) time. This cost arises from the
inversion of then× n matrix Kff + σ2In.

Hyperparameters{θ, σ} are typically selected by Type-II
Maximum Likelihood, i.e., to maximize the marginal log-
likelihood (also called log-evidence) of the observations:

log p(y|θ, σ) = −n

2
log(2π)− 1

2
|Kff + σ2In|

− 1

2
y⊤
(

Kff + σ2In
)−1

y. (3)

2It is customary to subtract the sample mean to data{y(ti)}ni=1
, and then

to assume a zero mean model.

Applicable search algorithms are described in standard
textbooks such as [14], [21]. When the analytical derivatives
of (3) are available and conjugated gradient ascent is used for
optimization, each step takesO(n3) time.

If several independent GPs are present (for instance, to
modelK trajectories overD dimensions), their log-likelihood
is simply the sum of the log-likelihoods for each GP:

log p(y|θ, σ) =
K,D
∑

k=1,d=1

−nk

2
log(2π)− 1

2
|K

f
k

d
f
k

d

+ σ2Ink
|

− 1

2
ynk

⊤
(

K
f
k

d
f
k

d

+ σ2Ink

)−1

ynk
, (4)

where k is used to index the quantities related to each
trajectory.

IV. A GP MODEL FOR THE DATA ASSOCIATION PROBLEM

In this section we will introduce a Bayesian model for the
data association problem based on GPs. Recall that our aim
is to infer both the unknown source labelss and the latent
{fk

d (ti)}D,K
d=1,k=1

.
We proceed in a Bayesian way by placing priors on the

unknown parameters of our model. If we assume that trajec-
tories{fk

d (ti)}D,K
d=1,k=1

are smooth, it is reasonable to model
them with independent GP priors (using some parametersθ to
select the levels of amplitude and smoothness). Noise can be
modeled with a Gaussian prior of selectable powerσ2. Since
all possible source allocationss are equally likely a priori, we
will place a uniform prior over them. The resulting model can
then be described by the likelihood

p(yd(ti)|{fk
d (ti)}Kk=1, si) = N (yd(ti) | f si

d (ti), σ2) (5)

and the independent priors

p(fk
d (ti)) = GP(0, k(ti, t

′
i)) and P (s) = 1/Kn (6)

(note the use of a uniform, non-informative prior ons).
For notational simplicity, in the following we omit explicit

conditioning on hyperparametersθ and σ2, which will be
regarded as known for the moment, as well as on time instants
{ti}ni=1 (which are always known, since they are part of the
observations).

A. Label recovery

The posterior probability of any particular set of labelss

(i.e., any possible grouping of data points in trajectories) given
the data is obtained from Bayes’ formula:

P (s|Y) =
p(Y|s)P (s)

∑

s
p(Y|s)P (s)

=
p(Y|s)

∑

s
p(Y|s) ∝ p(Y|s) (7)

whereY = {yd(ti)}D,n
d=1,i=1

collects all available observations.
The first identity of (7) follows becauseP (s) = 1/Kn is

a constant, uniform prior independent ofs. This makes the
posterior proportional to the likelihood. The proportionality
constant (the denominator) is known, but implies a summation
over all Kn possible labellings. As a result, computing it in
reasonable time is only possible for very small problems.
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The likelihood of s, and therefore its posterior (up to a
constant) can be computed in closed form:

logP (s|Y)
c
= log p(Y|s) =

∑

k,d

log p(yk
d) = −nD

2
log(2π)

−1

2

∑

k,d

|K
f
k

d
f
k

d

+ σ2Ink
|+ yk⊤

d

(

K
f
k

d
f
k

d

+ σ2Ink

)−1

yk
d

(8)

whereyk
d is a column vector collecting allyd(ti) such that

si = k and similarly,fkd is a column vector collecting the latent
valuesfk

d (ti) such thatsi = k. Without loss of generality,
we assume that observations and latent values are ordered
within their corresponding vectors according to time. The first
equality follows from the independence assumption between
different sources and dimensions, introduced in prior (6) in the
form of independence3 among trajectories{fk

d (ti)}D,K
d=1,k=1

.
The second equality corresponds to the evidence of a standard
GP (3), independently evaluated at the groups of points
specified bys, as described in (4).

The most probable set of labelss∗ (i.e., the MAP estimation)
corresponds in this case to the ML estimation, since we are
using a flat prior overs:

s∗ = argmax
s

logP (s|Y) = argmax
s

log p(Y|s) (9)

Since s is a discrete variable, we can find the mode of
the posterior by an exhaustive search over allKn possible
configurations. However, this approach is only valid for very
small problems. In Section V we will see how by imposing
some additional constraints, it is possible to (approximately)
find the mode of the distribution very efficiently.

B. Inferring the trajectories

Once each data point has been allocated to a trajectory
via s, standard GP regression can be applied to infer the
latent functions describing the trajectories. Fully probabilistic
predictions for the value of any observation at new time instant
t∗ can be obtained as follows

p(ykd(t∗)|Y, s) = N (ykd (t∗)|µ∗, σ
2
∗) (10a)

µ∗ = k⊤
fd
k
∗(Kfd

k
fd
k

+ σ2Ink
)−1y (10b)

σ2
∗ = σ2 + k∗∗ − k⊤

fd
k
∗(Kf

d

k
f
d

k

+ σ2Ink
)−1k

f
d

k
∗.

(10c)

This is a standard result from the GP literature, see for instance
[14].

A fully Bayesian method should integrate over all pos-
sible configurationss to obtain the predictive distribution
p(ykd(t∗)|Y), but again this would require a summation over
Kn values. It is possible to obtain a reasonably good estimate
by considering only the most probable configuration

p(ykd(t∗)|Y) =
∑

s

p(ykd(t∗)|D, s)P (s|Y) ≈ p(ykd(t∗)|Y, s∗),

i.e., replacings with s∗ in (10).

3Introducing dependencies among different sources or dimensions does not
prevent tractability, and can be simply achieved by modifying the prior. It
increases computational complexity, though.

C. Model selection

We have seen that we select the best configurations

according to the ML criterion. For GPs, it is standard practice
to select hyperparameters using ML, so we can express both
the model selection and the best configuration selection as a
joint maximization:

{s∗, θ, σ2} = argmin
s∗,θ,σ2

− log p(Y|s, θ, σ2) (11)

where we have explicitly included the conditioning onθ
and σ2. Cost functional− log p(Y|s, θ, σ2) could even be
used to select the most likely number of sourcesK of the
model: Increasing the number of the clusters only affects the
independence relations appearing in the prior, but does not
necessarily reduce the cost, unlike other clustering models.

V. REDUCTION TO A MAX CUT PROBLEM

In this section we will introduce a simplifying assumption
(which often holds in practice) that converts optimization
problem (8) into a constrained MaxK-Section problem. Then
we will consider theK = 2 case, which further simplifies
the objective, yielding an unconstrained MaxCut problem.
Finally, we provide an efficient algorithm to address the data
association problem in the mentionedK = 2 case, in which
only two trajectories are involved.

A. The data association problem as a constrained Max
K−Section problem

We will first introduce a simplifying constraint in the pre-
vious model: We will assume thatall sources produce exactly
one vector observation[y1(ti), . . . , yD(ti)]

⊤ at every time
instant. Then,fkd, which only collects the latent valuesfk

d (ti)
such thatsi = k, will now collect every latent value exactly
once, regardless ofk. Thus, under this constraint, we have
thatKfk

d
fk
d

= Kff (i.e., the covariance matrix corresponding to
each source and dimension no longer depends on the allocation
s). Substituting in (8) and removing additive terms that do not
depend ons, we have:

logP (s|Y)
c
= −1

2

∑

k,d

yk⊤
d

(

Kff + σ2In′

)−1
yk
d. (12)

For any given dimensiond, each vectoryk
d collects then′ =

n/K observations flagged bys as belonging to trajectoryk.
Therefore, the dependence of (12) ons is expressed by how
each actual observation is allocated to eachyk

d. This obscures
the dependence oflogP (s|Y) on s, which does not appear
explicitly in the expression.

In order to clarify this dependence, we need the fol-
lowing two definitions: First, we collect all available ob-
servations for dimensiond in diagonal4 matrix Ad =
diag([y1⊤

d , . . . , yK⊤
d ], of size n × n, using any arbitrary

valid allocation. I.e., for each time instantti, we randomly
assign each of theK available observations to one of theK
available sources and build matrices{Ad}Dd=1

according to
that allocation.

4We use operator diag(·) to convert a vector into matrix by arranging the
elements of the former in the main diagonal of the latter.
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Second, we expresss as an equivalent set ofK binary
indicator vectors{bk}Kk=1

, each of lengthn, consisting only
of zeros and ones. Each element of indicatorbk is set to
1 if the corresponding element of the diagonal of matrix
{Ad}Dd=1

belongs to sourcek and to 0 otherwise. Note that
this makes the choice of the arbitrary allocation used to create
{Ad}Dd=1

irrelevant: Any allocations can be expressed by a
corresponding set of{bk}Kk=1

.
Using these definitions, we can rearrange (12) as:

logP (s|Y)
c
= logP (b|Y)

c
=

− 1

2

∑

k,d

bk⊤Ad[
(

Kff + σ2In′

)−1 ⊗ (1K1⊤
K)]Adb

k

=− 1

2

K
∑

k=1

bk⊤Mbk (13)

whereM =
∑D

d=1
Ad[

(

Kff + σ2In′

)−1 ⊗ (1K1⊤
K)]Ad, the

tensor product operator is⊗ and1K is a column vector with
K ones.

Eq. (13) clearly elucidates the dependence of the posterior
probability onb. Note that matrixM is constant (for given
hyperparametersθ andσ). If we include the constraints that
{bk}Kk=1

must fulfill to represent a valid allocation, we have
the following optimization problem:

b∗ = argmin
{bk}K

k=1

1

2

K
∑

k=1

bk⊤Mbk (14a)

s.t. bk ∈ {0, 1}n (14b)
K
∑

k=1

bk = 1n (14c)

n
∑

i=1

[bk]i = 1⊤
nb

k =
n

K
= n′, ∀k=1,...,K (14d)

K−1
∑

j=0

[bk]i+jn′ = 1, ∀k=1,...,K , ∀i=1,...,n′ (14e)

The minimization objective can be alternatively expressed
in terms of positive weights as1

2

∑K
k=1

bk⊤Wbk, with W =
M + w1n1

⊤
n and w an arbitrary constant, big enough to

make all the elements ofW positive. Due to constraint (14d),
this modification only shifts the objective by a constant, and
therefore does not modify the optimalb∗:

1

2

K
∑

k=1

bk⊤Wbk =
1

2

K
∑

k=1

bk⊤(M+ w1n1
⊤
n )b

k

=
1

2

K
∑

k=1

bk⊤Mbk +
w

2

K
∑

k=1

bk⊤1n1
⊤
nb

k

=
1

2

K
∑

k=1

bk⊤Mbk +
wKn′2

2
.

If the binary indicatorb is only constrained by (14c),
which enforcesmutual exclusiveness (i.e., each observa-
tion must come from a single source), the minimization of
1

2

∑K
k=1

b
k⊤

Wb
k is a standard MaxK-cut problem, which

can be approximately solved by relaxing it to an SDP problem

as described in [22], [23]. Observe that this formulation ex-
presses the MaxK-cut problem as the desire of minimizing the
weight of intra-partition edges, whereas an equivalent, more
standard formulation would require maximizing the weight of
inter-partition edges.

The inclusion of thebalance constraint (14d), which forces
to allocate the same number of points to every source (parti-
tion), yields the MaxK-Section problem. Just as MaxK-cut,
it can be solved using an SDP relaxation, as detailed in [24].

Finally, thenon-simultaneity constraint (14e) avoids assign-
ing two points occurring in the same time instant to the same
source (partition). We conjecture that this additional linear
constraint still results in a problem that can be solved using
an SDP relaxation, probably a simple modification of the
algorithm proposed in [24]. We are not currently aware of any
work addressing this constrained MaxK-Section problem and
leave it as an open problem that will be the subject of further
research.

B. The K = 2 case and MaxCut

If we know that only two trajectories are present in our
observations, thenK = 2, and the previous problem can be
considerably simplified.

In this case, at each of then
2

time instants we have two
generating sources and two observations, and we must decide
which source generated which observation. Since there are
obviously only two different ways in which this observa-
tions could have been generated, we can code all possible
allocations for all time instants (s) using a binary vector
h ∈ [−1,+1]n/2.

Following the notation described in Section V-A, the binary
vectors b1 and b2 can be obtained as a function ofh.
Since there are only two partitions, indicatorsb1 andb2 are
complementary, i.e. if element[b1]i is 1, [b2]i must be 0 and
vice versa. Furthermore, because[bk]i corresponds to the same
time instant as[bk]i+ n

2
, one of them must be 1 and the other

0. Thus we have:

b1 =
1

2

(

1n +

[

+h

−h

])

, b2 =
1

2

(

1n −
[

+h

−h

])

. (15)

Plugging (15) in (14), we get the following simplified
minimization problem:

h∗ = argmin
h

1

2
h⊤Qh+

1

2
1nM1n (16a)

s.t. hk ∈ {−1, 1}n (16b)

with Q =
∑D

1
diag(y1

d−y2
d)
(

Kff + σ2In′

)−1
diag(y1

d−y2
d).

Observe how all the constraints in (14) are automatically
fulfilled due to the way in whichb1 andb2 are constructed
from h. Any h producesbk, fulfilling mutual exclusiveness,
balance and non-simultaneity constraints, so there is no need
to place constraints onh.

Excluding the term1

2
1nM1n, which is constant and there-

fore irrelevant in the minimization, (16) describes a standard
MaxCut problem. MatrixQ is positive semidefinite, though
its elements are not necessarily positive. The optimal label
allocationh∗ can then be found using an SDP relaxation.
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C. Solution using an SDP relaxation

To obtain a (remarkably good) approximation to the solution
of problem (16), we proceed as described in [25].

First, we defineH = hh⊤ and present optimization prob-
lem (16) in the following equivalent form:

H∗ = argmin
h

trace(HQ) (17a)

s.t. H � 0, diag(H) = 1n

2
(17b)

rank(H) = 1 (17c)

Then, we relax the optimization problem (17), which is
exactly equivalent to (16), by dropping constraint (17c), so
that it becomes convex and can be efficiently solved using
SDP techniques.

The (approximately) optimal labelingh∗ is retrieved from
H∗ using random hyperplane rounding as follows: Use the
Cholesky decomposition to expandH∗ = V⊤V and associate
each column fromV (which, due to constraint (17b) is a
vector located in the surface of a unitary hypersphere) with
the element fromh∗ in the same position. Then generate a
random hyperplane through the origin and assign +1 to the
elements ofh∗ corresponding to columns ofV lying on one
side of the hyperplane and -1 to the elements corresponding
to columns lying the other side.

It can be proved that this procedure yields an 0.87856-
approximation to the optimal solution (see [25]). Since cost
function (16) can be evaluated very efficiently for any candi-
date solution, this process can be repeated several times with
different random hyperplanes and the best solution chosen.

D. A worked example

To clarify the ideas developed in this section, let us work
through a simple example. Assume that at time instantt1 =
−2 we have two output observations,−2 and2. Likewise, at
t2 = −1 we observe0 and 1; and att2 = 1 we observe−2
and 4.5 (see Fig. 2). Note that at each time instant we have
exactly two observations, each from a different source, but
it is not known which source generates which observation.
There are2

n

2 (in this case,23) possible ways to allocate
observations to sources. For each possible allocations, we can
collect observations labeled as coming from source 1 iny1 and
observations labeled as coming from source 2 iny2. Then we
can compute− logP (s|Y)

c
=
∑

k∈{1,2} y
k(Kff + σ2I3)

−1yk

as per eq. (8). Note that optimizing this expression w.r.t. to
s to compute the MAP solution for the labeling involves
recomputing it2

n

2 times, one for each possible allocation,
and then selecting the one that yields the maximum value.
The combinatorial explosion makes this unaffordable even for
medium sizedn.

Following the previous derivations of this section, we can
just assume any arbitrary allocation to filly1 andy2 and write
− logP (s|Y) (up to a constant) as

1

2
h⊤diag(y1 − y2)

(

Kff + σ2I3
)−1

diag(y1 − y2)h

=
1

2
h⊤diag([4, 1, 6.5])

(

Kff + σ2I3
)−1

diag([4, 1, 6.5])h

−2 −1 1

−2

0
1
2

4.5

Fig. 2. Data for the worked example.

with h ∈ {−1,+1}3 as per eq. (16). Each element of
vectorh tells us, for each time instant, if our initial arbitrary
allocation is kept (+1) or reversed (−1) in the computation
of − logP (s|Y). Thus, optimizing overh yields the optimal
allocation. In order to solve this problem, we still need to
compute this expression for the2

n

2 possible values ofh, which
is unacceptable.

If we now assume for the sake of simplicity that we
use a linear kernelk(t,′ t) = tt′ and unit noise power
σ2 = 1, we can instead minimize the relaxed problem (17)
trace(HQ) s.t.H � 0, diag(H) = 13 to getH∗, with

Q =







+.31 +.50 −.08

+.50 +2.0 −.15

−.08 −.15 +.05







−1

,H∗ =







+1 +1 −1

+1 +1 −1

−1 −1 +1







Using the hyperplane rounding technique, fromH∗ we get
h = [+1,+1,−1], thus indicating that found trajectories are
[−2, 0, 4.5] and [2, 1,−2], each from a different source.

VI. T HE GP-BTT ALGORITHM (INCLUDING

HYPERPARAMETER LEARNING)

For the case in which only two trajectories are present, it
is possible to learn the hyperparameters and infer the labeling
using an efficient algorithm, which we describe below.

Ideally, we would like to minimize (11) w.r.t. both hyper-
parameters{θ, σ2} and the allocation (represented bys in
the general case, and more compactly expressed byh in the
binary case). Instead, we have shown so far how to carry out
this minimization for each case: If the allocation was known, it
would be possible to minimize (11) w.r.t. the hyperparameters
by using simple conjugate gradient descent, which is standard
practice when learning regular GPs. If the hyperparameters
were known, it would possible to approximately compute
the optimal allocationh∗, casting the problem as a MaxCut
algorithm, as per Section (V-B), and using the SDP relaxation
described in Section (V-C).

To combine both types of optimization, several strategies
can be used. A natural and straightforward option would be
to iteratively alternate between optimizing the allocation and
learning the hyperparameters, thus giving rise to an EM-like
algorithm. However, if this technique is directly applied,the
quality of the obtained local minima will depend strongly on
the initialization. Instead, we propose to use a few different
initializations and then optimize the allocations and learn the
hyperparameters only once. This scheme amounts to a joint
search as the number of initializations grows, but in practice
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produces very good results when just a few are used. Of
course, other optimization schemes are possible.

In detail, the resulting algorithm, which we call GP Binary-
Target Tracking (GP-BTT) is:

1) Input: We are given a set of time instants{ti}n/2i=1
and

two corresponding vectors of observationsy1
d and y2

d

per dimension, each of sizen
2

. (The two observations
available at each time instanti are randomly assigned to
{[y1

d]i}Dd=1
and{[y2

d]i}Dd=1
; the goal of the algorithm is

to determine which source produced which observation).
2) Form a 2-dimensional grid of candidate values forℓ

and the Signal-to-noise ratio SNR= σ2
0/σ

2, covering
a sufficiently wide range.

3) For each candidate pair{ℓ,SNR}
a) Setσ2

0 to the variance of data5, computeσ2 =
σ2
0/SNR and buildQ from data.

b) Computeh∗ using the MaxCut algorithm described
in Section (V-C).

c) Reorder the observation vectors to reflect the ob-
tained clustering. For everyi:

• If [h∗]i = +1, do nothing.
• If [h∗]i = −1, swap [y1

d]i and [y1
d]i, for every

d.

d) Now {y1
d}Dd=1

and {y1
d}Dd=1

constitute2D inde-
pendent GPs. Learn their hyperparameters maxi-
mizing (4), using a gradient based procedure (such
as conjugate gradient), starting from their current
values.

e) Compute the negative log marginal likelihood
(NLML) for the selected hyperparameters, with Eq.
(4). If its better than the NLML of previous itera-
tions, store the final values of the hyperparameters
{σ2

0 , σ
2, ℓ}, the allocationsh∗ and the resulting

NLML obtained for this candidate pair.

4) Output the allocationh∗ and hyperparameters corre-
sponding to the best NLML.

In practice, the algorithm seems fairly robust to the choice
or the SNR, and to a lesser extent, to the choice of the
length-scale. Depending on the computational requirements,
the search grid can be very small, and even reasonable fixed
values for both parameters can be used, without incurring in
a dramatic reduction in the clustering quality.

When data forn/2 different time instants is provided, the
described method requiresO(n2) space (dominated by the
storage of then/2× n/2 covariance matrix) andO(n3) time
(dominated by the SDP optimization process, see Fig. 4).

VII. E XPERIMENTS

In this section we apply the GP-BTT algorithm to several
problems withK = 2. We also compare is results to differ-
ent state-of-the-art data association algorithms including the
SIR/MCJPDA filter [8], ClusterTrack [3] and OMGP [13].

20 40 60 80 100 120
−2

−1.5
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−0.5

0

0.5

1

1.5

time

Fig. 3. GP-BTT solution for the toy data set of Fig. 1.
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Fig. 4. Comparison of running times of OMGP versus GP-BTT.

A. Toy data

We first apply the GP-BTT algorithm on the data of Fig. 1,
which represents the noisy one-dimensional observations of
two particles that cross twice. The tracking results of GP-
BTT are shown in Fig. 3, in which circles and crosses indicate
the obtained clustering solution and hence the estimated data
association, and full lines mark the inferred trajectories. GP-
BTT considers all possible data association solutions in order
to recovers the data associations, but by relaxing the problem
to an SDP problem it avoids the combinatorial explosion
associated to evaluating all of them explicitly.

In order to get an idea of the time complexity of GP-
BTT, we show its running times for different numbers of
observations in Fig. 4, obtained on a Pentium Intel Core2 Duo
machine with 3GHz processors running Matlab 7.11. As can
be seen, GP-BTT is remarkably faster than OMGP, typically
a factor of10 or greater.

B. Missile-to-air tracking scenario

Next, we consider a missile-to-air tracking scenario as
described in [8]. This scenario follows a state-space model,
in which the state vector contains the position and velocity
components of a source,st = [Xt, Yt, Zt, Vx,t, Vy,t, Vz,t]. The
full motion dynamics are defined by the following state-space

5Note that for a given SNR andℓ, the value ofσ2

0
is irrelevant, since it only

would only scaleKff , and the solution of (16),h∗, is invariant to scalings
of Kff .
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Fig. 5. Data and results for the missile-to-air tracking scenario. The z and time axis are not displayed. Top row: Observed data (a). (b) Data association
results of OMGP. (c) Data association results of GP-BTT. (d)Tracking results of the SIR/MCJPDA online filter. (e) Tracking results of OMGP in online
mode. (f) Tracking results of GP-BTT in online mode.

equations:

st+1 =

[

I3 T I3

O3 I3

]

st +

[

T 2

2
I3

T I3

]

vt,

rt = h(st) =











√

X2
t + Y 2

t + Z2
t

arctan
(

Yt

Xt

)

arctan

(

−Zt√
X2

t
+Y 2

t

)











+ et,

(18)

whereT is the sampling interval, andI3 andO3 represent the
3× 3 unit matrix and null matrix, respectively. The vectorrt
contains the observation at time instantt. The process noise
vt and measurement noiseet are assumed Gaussian,vt ∈
N (0,Q) with Q = diag(102, 102, 102) and et ∈ N (0,R)
with R = diag(502, 0.012, 0.012). For additional details refer
to [8]. We consider a bi-target tracking problem with initial
states

s10 = [6000,−5000, 2000, 10, 550, 0]T,

s20 = [5050,−4500, 2000, 100, 500, 0]T.
(19)

This choice of the initial states results in trajectories that are
very close and similar, making this a particularly hard multi-
target tracking problem. The corresponding observationsrt are
displayed in Fig. 5(a).

We compare the results of the GP-BTT algorithm with
the SIR/MCJPDA filter from [8] and the OMGP algorithm
from [13]. The SIR/MCJPDA filter is a state-of-the-art multi-
target tracking algorithm that consists of a set of joint particle
filters that perform tracking of multiple sources, combined
with a joint probability data association (JPDA) technique

which provides instantaneous data association. The numberof
particles used for this experiment is fixed to100 per source.
OMGP is a data association algorithm based on the same
mixture model as GP-BTT. OMGP considers a more general
scenario in which the number of sources may be higher than2,
but since it requires to solve a nonlinear optimization problem
it is less robust to noise than GP-BTT.

In order to operate correctly, the SIR/MCJPDA filter re-
quires complete knowledge of the true dynamics of the model,
including the initial states. In contrast, OMGP and GP-BTT
are completely blind with regard to the initial states: They
only require to determine the hyperparameters, in particular the
length-scalel and the data SNRσ2

0/σ
2. Since this application

represents an online scenario in which the running time should
be kept low, we did not use the automatic learning of the
hyperparameters as described in Section VI. Rather, we fixed
the hyperparameters asℓ = 10 and SNR= 100, based on
the amplitudes used in the state-space model. Concerning the
robustness of these choices, we verified that changes in the
SNR of up to one order of magnitude did not affect the
clustering results. The choice of the correct length-scaleis
more critical, akin to the choice of the kernel width in support
vector machine (SVM) literature. Similarly, the SNR is akin
to the regularization in SVMs.

SIR/MCJPDA is an online algorithm and thus performs each
prediction without knowledge of future data, in contrast tothe
batch algorithms OMGP and GP-BTT. In order to make a fair
comparison, we also run OMGP and GP-BTT in an online
manner by performing these batch algorithms on a growing
window of observations: The tracking solution at instantt is
then only based on the observations up tilt the instantt.
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Fig. 6. Data and results for the binary proximity sensor experiment. (a) Observed data. (b) Data association results obtained by OMGP. (b) Data association
results obtained by GP-BTT. (d) Tracking results of the ClusterTrack algorithm from [3]. (e) Tracking results of OMGP inonline mode. (f) Tracking results
of GP-BTT in online mode.

TABLE I
NUMBER OF LABELING ERRORS ON THE MISSILE-TO-AIR DATA

ASSOCIATION PROBLEM, OUT OF60 OBSERVATIONS.

mode SIR/MCJPDA OMGP GP-BTT
batch n/a 18 4
online 20 11 4

The number of labeling errors obtained by each method
are listed in Table I. We also plot the trajectories obtained
by the three algorithms in Fig. 5, along with the predicted
measurements. Figures 5(b) and (c) illustrate the solutions of
OMGP and GP-BTT when applied as batch algorithms on
all available data. While OMGP retrieves smooth trajectories,
it makes a data association mistake at the instant when both
observation are close, causing it to swap labels after this point.
GP-BTT does not commit this error.

The result of the SIR/MCJPDA filter, shown in Fig. 5(d),
is initially correct for both trajectories, though it becomes
erroneous at the instant where the observations are very close.
From this point on the results are very poor. Figures 5(e) and
(f) show the results of OMGP and GP-BTT in online mode.
While the tracking solutions are not as smooth as the batch
algorithms other algorithms, their label assignments showfew
errors. Finally, note that both OMGP and GP-BTT require
much less problem-specific information than SIR/MCJPDA to
reach their results.

C. Target tracking with binary proximity sensors

For the next experiment we consider the problem of target
tracking with a grid of binary proximity sensors. This problem
has recently drawn a lot of interest as a promising application

of wireless sensor networks [26]. In this scenario we consider
binary sensors that produce a single bit as their output, which
is 1 when one or more targets are in its sensing rangeR, and
0 otherwise. Despite the minimal information provided by an
individual binary proximity sensor, a network of such sensors
can provide remarkably good target tracking performance of
a single target [26]. The problem becomes more complex
if multiple targets are present, and only few methods have
dealt with this situation. In particular, a tracking algorithm
based on particle filtering was recently proposed in [3], called
ClusterTrack. We will conduct an experiment to compare
the performance of this algorithm and the proposed GP-BTT
method.

We simulate a scenario with two targets that move through
a one-dimensional sensor array of9 sensors. The sensors are
positioned uniformly at intervals ofS = 200 distance units,
and their ideal sensing radius is fixed asR = 0.75S. These
ranges guarantee that a target is always detected by at least
one sensor when it is moving through the array. To obtain
the target movements, we consider only the x-components of
the state-space model (18), with initial statess10 = [500, 10]T ,
s20 = [100, 10]T . Fig. 6(a) shows the observations of this model
measured during40 time instants. The targets cross each other
aroundt = 17. Compared to the examples in [3], the number
of sensors in this experiment is very low and the targets are
very close to each other during the entire experiment, giving
rise to a hard tracking problem.

Figure 6(b) shows the data association results obtained by
the OMGP algorithm from [13]. In order to apply the GP-
BTT algorithm to the data, exactly two measurements per
time instant are required. We therefore preprocess the data
as follows. If the activated sensors comprise two disjoint



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2014 (TO APPEAR) 10

groups (i.e. there is at least one deactivated sensor between
them), the centre of each group is used as the input to
the algorithm. Otherwise, the two centres are chosen as the
positions that maximize the likelihood of the observationsat
that time instant. The results for of the GP-BTT algorithm
with hyperparametersl = 20 and SNR= 100 are shown in
6(c). Despite the minimal information provided by the binary
sensors, it can be observed that the batch versions of both
OMGP and GP-BTT obtain very reasonable results.

Next, we apply the ClusterTrack algorithm from [3] to
these data, with100 particles per target. ClusterTrack uses
complete knowledge of the state-space model in order to
operate correctly (see [3] for additional details). While this
algorithm is capable of estimating the number of sources by
performing multiple runs over the data, we consider its online
mode, which has knowledge of the number of sources and
only performs one run. Fig. 6(d) shows its tracking results.
The source positions are estimated with great precision at
most time instants. Nevertheless, it also shows some regions
of higher error, particularly around the start, and between
t = 20 and t = 35 for the second trajectory. We then repeat
the experiment using the OMGP and GP-BTT algorithms
in online mode. As shown in Figs. 6(e) and (f), the online
algorithms obtain trajectories that are more irregular compared
to the batch algorithms. Still, the estimated trajectoriesare
reasonably close to the true, unobservable source positions.
The fact that the results for OMGP are practically identicalto
those of GP-BTT should not come as a surprise, as OMGP
typically performs well in problem with little noise. Note also
that OMGP and GP-BTT in online mode performs similar to
the ClusterTrack algorithm, which is specifically tailoredto
handle this problem.

D. Blind decoding of BPSK symbols in OFDM transmissions

For the fourth experiment we consider a data association
problem from the field of wireless communication networks.
The setting includes a high level of noise, which allows us to
assess the robustness of GP-BTT to noise.

The IEEE Standard 802.11a-1999 describes the data trans-
mission in wireless local area network (WLAN) computer
communications [27]. According to these specifications, data
is transmitted using orthogonal frequency-division multiplex-
ing (OFDM) modulation with52 subcarrier frequencies [28].
In other words, each data packet is split up into several se-
quences and each sequence is transmitted over a different sub-
carrier frequency, during several time frames. The sequences
themselves can be chosen from several different constellations,
in particular “binary phase-shift keying” (BPSK), which uses
binary symbols∈ {−1,+1}. BPSK is a robust modulation,
used typically when noise levels are high.

During transmission, the symbols are corrupted by the
wireless channel and they have to be recovered at the receiver
side. Fig. 7(a) shows the real part6 of the first10 time frames
of a received data packet. At each time frame, data is received
in each of the subcarrier frequencies. The variations in the

6Since the wireless channel has a complex impulse response, the received
signal is complex as well.
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Fig. 7. Data and results of the BPSK decoding experiment. (a)Data received
during 10 time frames. The color legend is shown on top. Note that only the
real part is plotted. (b) Received data of the first time frameonly, t = 1. (c)
Received data oft = 1 plus virtual patterns (white dots) obtained by flipping
the received data. (d) Clustering results obtained by OMGP.(e) Clustering
results obtained by GP-BTT.

amplitude received at each frequency are due to the wireless
channel’s frequency selectivity. Variations in time also occur,
most importantly due to movement of the transmitter or the
receiver, or due to changes in the wireless channel, though
these changes are much smoother.

In order to restore the original symbols from the received
signal, the wireless channel has to be identified. This is
achieved through the transmission of a known sequence of “pi-
lot” BPSK symbols during the first two time frames, denoted
the “long-training sequence”. In this experiment we will show
that GP-BTT is capable of blindly recovering the pilot symbol
sequence. In other words, it allows to estimate the wireless
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TABLE II
NUMBER OF SYMBOL ERRORS IN THEBPSKDECODING EXPERIMENT AT

DIFFERENT SIGNAL-TO-NOISE RATES.

frames SNR OMGP GP-BTT

t=1
10 dB 10 2
15 dB 0 0

t=[1,2]
10 dB n/a 1
15 dB n/a 0

channel, based only on an unknown sequence of received
symbols. This sequence, which is transmitted during the pilot
time frames, can be used to transmit additional information,
effectively raising the information load of WLAN, and it is
the scope of a parallel ongoing research project.

We captured WLAN data packets using a wireless commu-
nication test bed in a realistic indoor environment (see [29] for
a more detailed description of the test bed). The signal-to-noise
ratio (SNR) varied between10 dB and15 dB. Specifically, we
captured100 data packets at10 db SNR and another100 at 15
dB SNR. An example of one of the received pilot sequences
at t = 1 is shown in Fig. 7(b). We process the data as follows.
If the inverted BPSK sequence were transmitted, the received
signal would be the negative of the true received signal, due
to the linearity of the channel’s operation [30]. Therefore, we
add the negative signal as a set of “virtual” patterns to obtain a
scenario that can be clustered by GP-BTT, see Fig. 7(c). Once
these data are correctly clustered, it is possible to retrieve the
labels of the transmitted data (the black dots in Fig. 7), which
correspond to the transmitted byte sequence.

From each of the captured packets we took the first frame
(t = 1) and added virtual patterns to it, as described above. We
applied OMGP from [13] and the proposed GP-BTT algorithm
to cluster the resulting data, for each packet separately. Each
algorithm used automatic hyperparameter learning. The clus-
tering result then allows to determine the labels∈ {−1,+1}
corresponding to the received data up to a sign ambiguity,
which can be resolved by sending one known pilot symbol.
The results are shown in Figs. 7(d) and (e). This procedure
could allow to add up to200 bytes of additional information
payload to the1.2 kbytes contained in the WLAN data packet
[27].

The total number of symbol decoding errors for each
algorithm are listed in Table II. We then repeat the experiment
but now use data from both pilot symbol time frames (t = 1, 2)
to perform clustering. The input data space of the clustering
problem is now two-dimensional with input variables (t, f ).
GP-BTT can be applied without any modification to such data.
On the other hand, the implementation of OMGP in [13] is
suitable only for sequential input data, and could therefore not
be applied to this scenario.

E. Model estimation with multiple input dimensions

In the final experiment we visit a more general setting
in which the latent functions do not necessarily represent a
motion model. This corresponds to the most general case of
data association, in which it is only assumed that the different

data are described by different models. A motivation for this
scenario is discussed in [6].

Specifically, we consider a problem in which the input
space is two-dimensional. The latent functions chosen in this
experiment are the two smooth surfaces depicted in Fig. 8(a).
We assume that the measurement process yields observations
that sample both functions jointly, and that the nature of the
measurement process does not allow to determine in which
order both observations were taken. In other words, at each
location of the input space two samples are obtained, but
it is not known to which source each of them corresponds.
Note that, in the case of a one-dimensional input space this
description corresponds to the standard multi-target tracking
problem. Finally some noise is added to the observations. The
observed values are graphically represented in Fig. 8(b). We
used a grid of grid of25 by 25 points to sample them.

To the observed data we apply the GP-BTT algorithm with
hyperparameter learning (see Section VI), for25 different
candidate pairs{ℓ,SNR}. The maximal NLML is obtained
for the hyperparametersℓ = 1.01, SNR = 20.34 dB. The
retrieved latent surfaces are shown in Fig. 8(c). As can be
observed, they correspond closely to the true hidden surfaces,
i.e., GP-BTT has disambiguated the latent functions that model
the observations. This demonstrates that GP-BTT is capable
of solving the data association problem and de-noising the
observed data.

VIII. C ONCLUSIONS ANDFUTURE DIRECTIONS

This work proposes a Bayesian model for data associa-
tion that enforces the grouping of observations in smooth
trajectories by using GP priors. A simple expression for the
evidence of this model is provided, such that the suitability
of any candidate set of labellings and hyperparameters can be
evaluated in closed form. Using this idea, we can turn the data
association problem into an optimization problem.

Evidence maximization for this model is a challenging task,
especially when considering that the number of possible la-
bellings grows exponentially with the number of observations.
One of the main results of this paper is the reduction of this
optimization problem, under some additional assumptions,to
a constrained MaxK-Section problem, which can be further
reduced to a MaxCut problem when the number of sources is
K = 2. This latter case allows to be efficiently and accurately
solved using an SDP relaxation, yielding the proposed GP-
BTT algorithm. We believe that the more general case in which
K > 2 can be solved by using the constrained MaxK-Section
representation provided in this paper and SDP relaxations,
though we leave this as an open problem.

The use of the Bayesian framework enables us to use
the same objective function to perform model selection: Dis-
crete optimization over labellings can be interleaved with
continuous, nonlinear optimization over hyperparameters, or
a grid search can be used. In both cases, the evidence is a
sound criterion that allows direct comparison between any
two candidate solutions. This is in contrast with other tracking
methods in which parameters must be set by cross validation
or trial-and-error.
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(a) Source states. (b) Noisy, mixed observations. (c) Recovered states.

Fig. 8. Latent functions and observations of the data association experiment from Section VII-E. (a) Left column: the true underlying functions. (b) Middle
column: observations, including measurement noise. (c) Right column: the function surfaces as retrieved by the proposed GP-BTT algorithm.

Although the equivalence between bi-target tracking and
the MaxCut problem is an interesting theoretical result by
itself, we have performed experiments to compare its practical
performance against existing tracking algorithms. In our ex-
periments, the competing methods had either more information
than GP-BTT (for instance a more detailed, ground truth
model, of the underlying dynamics of the sources) or were
specifically tailored to the problem at hand (for instance
discrete-valued observations coming from a sensor grid), yet
produced similar or worse results at a higher computational
cost. GP-BTT is fast, requires few hyperparameters, is very
robust against model misspecification and it is capable of
formulating an (approximate) offline solution that considers
all possible data associations. Furthermore, as describedin
Section VII-E, it can be applied to problems with more
than oneinput dimension, extending the concepts of data
association and tracking beyond time-based concepts, which
is how they have been conceived so far.

Naı̈ve implementation of GPs limits their applicability to
only a few thousand data samples. However, recent advances
in sparse approximations (for instance [31], [32], [33]) should
enable our approach to be applied to much larger data sets.
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