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Abstract—This paper studies the performance of im-
proper Gaussian signaling (IGS) in a multicell broad-
cast multiple-input, multiple-output (MIMO) reconfigurable-
intelligent-surface (RIS)-assisted channel. The transceivers are
non-ideal devices with I/Q imbalance, which further motivates
the use of IGS. We propose IGS schemes to improve the spectral
and energy efficiency (EE) of the system by solving different op-
timization problems such as minimum-weighted-rate, weighted-
sum-rate, minimum-weighted-EE and global-EE maximization.
Two different RIS implementations are considered: in the
first one, the phase and amplitude of the RIS components
can be optimized independently, which provides an upper-
bound for RIS performance. In the second implementation,
the amplitude of each RIS component is fixed, and only its
phase can be optimized, which is referred to as reflecting
surfaces. We show that RIS can significantly increase the
spectral and energy efficiency of the system, while the reflecting
surfaces perform very close to the upper-bound performance
of RISs. Moreover, distributed RIS implementations that use
spatially separated RIS with fewer components, can outperform
centralized implementations consisting of a single RIS with co-
located reflecting elements. Additionally, our results indicate
that IGS can provide considerable gains from both spectral
and energy-efficiency perspectives, and the benefits of IGS can
be even higher in RIS-assisted systems.

Index Terms—Energy efficiency, fairness rate, improper
Gaussian signaling, I/Q imbalance, majorization minimization,
MIMO broadcast channels, reflecting intelligent surface, sum-
rate maximization.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) contain a large
number of low-cost controllable elements, which have sizes
and inter-distances much smaller than the wavelength, and
are able to dynamically modulate wireless channels [1]–[3].
RISs are currently receiving a lot of attention as a promising
technology to improve the spectral and energy efficiency of
beyond 5G (B5G)/6G wireless communication systems [4]–
[12]. Due to ever-increasing demand for data rate and band-
width shortage, modern wireless communication systems are
mainly restricted by interference and thus, it is interesting to
investigate the performance of RISs in interference-limited
systems under realistic assumptions.

A. Related work
RIS is a new promising technology, which is expected to

play a key role in next generations of wireless communi-
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cation systems. The performance of RISs has been studied
in various systems [1]–[12]. For instance, the authors in
[4] considered the downlink of a single-cell system with
a multiple-antenna base station (BS) and multiple single-
antenna users in the presence of RIS. They assumed that
there is no direct link between the BS and users, and
proposed schemes to improve the sum rate and global
EE of the system. The authors in [5] considered a multi-
user single-cell multiple-input, single-output (MISO) RIS-
assisted system and proposed beamforming schemes to max-
imize the signal-to-interference-plus-noise ratio (SINR) of
users. They showed that RIS can substantially improve the
system performance if the RIS components are optimized
properly. The paper [6] proposed an algorithm to maximize
the minimum SINR of a single-cell MISO RIS-assisted
system. In [10], the authors studied the uplink of a single-
user single-input, single-output (SISO) orthogonal frequency
division multiplexing (OFDM) RIS-assisted with frequency-
selective channels and proposed a power allocation scheme
as well as a channel estimation algorithm to increase the
user rates. Algorithms to improve the spectral efficiency
of different MIMO RIS-assisted systems have also been
proposed in [8], [9]. Finally, a power allocation algorithm
to maximize the sum rate of a multi-cell SISO RIS-assisted
system with non-orthogonal multiple-access (NOMA) was
proposed in [12].

The aforementioned works considered ideal devices. Un-
fortunately, devices in practice suffer from hardware impair-
ments (HWI), which is one of the most limiting factors
in wireless communication systems [13]–[17]. HWI may
drastically degrade the system performance especially when
these imperfections are overlooked in the design [18]. A
particularly important source of distortion in non-ideal de-
vices is I/Q imbalance (IQI), which is modeled as a widely
linear transformation of the input signal [16]–[18]. Hence,
IQI makes the output signal improper and motivates us to
employ improper signaling to compensate this imperfection.
In a complex improper variable, the real and imaginary parts
are correlated and/or have unequal powers [19].

Another main performance limitation in modern wireless
communication systems is interference from other users
sharing the same communication channel. It has been shown
that improper Gaussian signaling (IGS) is able to improve
the spectral and energy-efficiency of various interference-
limited systems such as cognitive radio systems [20]–[23],
multi-user interference channels (IC) [14], [18], [24]–[31],
NOMA systems [32], [33], broadcast channels [7], [34],
device-to-device communications [35], and energy harvest-
ing systems [36], [37], to mention a few. Employing IGS,
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on the one hand, decreases the undesired consequences of
interference and, on the other hand, reduces the entropy
of the desired signal at the receiver side. Thus, we should
design the parameters of the transmit signals such that the
overall performance is improved. Employing IGS has also
another advantage, which is to provide more parameters to
optimize and consequently, more flexibility in the design. In
a zero-mean proper Gaussian signal, the real and imaginary
parts are independent and identically distributed (i.i.d). How-
ever, when IGS is used the real and imaginary parts can be
correlated and/or have unequal powers. In other words, the
powers of the real and imaginary parts can be considered as
two different optimization variables. This feature has been
used for the first time in [27], where the authors showed
that by using IGS the degrees of freedom (DoF) of the 3-
user SISO ICs are maximized. This idea was later used in
other works such as [18], [26] to propose spectral and/or
energy-efficient IGS schemes. Note that proper Gaussian
signaling (PGS) schemes can never outperform the optimal
IGS scheme since IGS includes PGS as a special case.

B. Motivation

In RIS-assisted systems, it is expected that interference
is more easily managed since RISs can shape the channels,
making for example the interference links weaker. In other
words, RISs give us some freedom in designing the channels,
which can help us to mitigate undesired interference effects.
Therefore, it would be reasonable to think that in a RIS-
assisted system, the benefits provided by IGS would be
minor (if there are any). The reason is that the benefits
of IGS have been shown to decrease (or even vanish) as
the number of resources either in time (by allowing time
sharing [38]), frequency (by employing OFDM [39]) or
spatial (by employing MIMO [18]) increases. This happens
because users experience less interference when the number
of resources increases for a fixed number of users. Thus, the
following question arises: Can RISs manage interference in
a multicell MIMO network well enough so that there is no
need to employ IGS? In this paper, we answer this question in
the negative, and show that IGS can still provide significant
gains even in the presence of RIS. Indeed, although the
use of RIS improves the system performance, the main
performance bottleneck is the number of transmit/receive
antennas. In other words, RIS improves the performance of
both IGS and PGS schemes, but the relative performance
may remain unchanged with/without RIS. Interestingly, RIS
may even increase the benefits of IGS in some cases, as will
be shown.

C. Contribution

In this paper, we consider a multi-cell broadcast MIMO
RIS-assisted system possibly with IQI at the transmit and
receive sides. To the best of our knowledge, it is the first
work that considers the performance of IGS in MIMO RIS-
assisted systems. Additionally, it is the first work that studies
EE metrics for IGS in RIS-assisted systems. To evaluate the
performance of RIS, we consider two possible implementa-
tions regarding the reflecting coefficients. In the first imple-
mentation, we assume that the amplitude and the phase of
each reflecting component can be independently optimized
[10]. Although this may not be a realistic assumption, it can

give us an upper bound for the performance of RISs [1].
Second, we consider a more realistic RIS implementation in
which the amplitudes of their reflecting elements are fixed,
and only the phases can be optimized, similar to [1], [2],
[5]–[9]. In both scenarios, we consider treating interference
as noise (TIN) as the decoding strategy and propose IGS
schemes to maximize different utility functions such as
minimum weighted rate, weighted sum rate, global EE and
minimum weighted EE. Note that TIN is a simple, but
practical, decoding scheme, which is shown to be optimal in
terms of generalized DoF (GDoF) when the desired signals
are strong enough at receivers [40].

In order to develop IGS schemes, we have to tackle
complicated non-convex optimization problems. To this end,
we employ a generalized framework based on majorization-
minimization (MM) and alternating optimization, which
conducts a separate optimization of the transmit covariance
matrices and the reflecting coefficients. This framework
belongs to the family of MM algorithms and converges
to a stationary point of the considered problems when
the amplitude and phase of each RIS component can be
optimized separately. Additionally, the framework can be
applied to every optimization problem in which the objective
and/or constraints are linear functions of achievable rates.
In the numerical results, we show that RIS may provide
negligible gains if the reflecting coefficients are not properly
optimized. This suggests the importance of the generalized
framework to fully exploit the RIS benefits. We also show
that the reflecting surfaces, in which only the reflecting
elements’ phases can be optimized, perform closely to the
upper-bound attainable when the amplitudes and phases can
both be optimized.

In this work, we compare a centralized implementation of
RIS with co-located reflecting elements versus a distributed
implementation consisting of smaller RISs deployed in a
larger area. We show that a distributed implementation can
improve the system performance. In particular, our results
show that the position of RIS components can play a key role
in the system performance. The reason is that RIS may suffer
from more severe path loss than a direct link since the RIS
path loss is a function of the product of the distance between
RIS and BS and the distance between RIS and users, rather
than a sum distance [1]. Thus, RIS should be located as
close as possible to users in order to provide more benefits.
This result indicates that it is advisable to use a distributed
RIS implementation, especially when users are not clustered
or located close to each other. Additionally, we show that
the position of RIS as well as the system topology can play
major roles in the performance of RIS. For instance, RIS can
significantly improve the performance of cell-edge users but
may not provide a considerable gain for the users located
close to the BSs.

The main contributions of the paper are as follows:

• We provide a general framework to solve a variety of
optimization problems in RIS-assisted MIMO systems
possibly transmitting improper signals. This framework
is also able to account for hardware impairments such
IQI.

• We propose IGS schemes to improve the spectral and
energy efficiency of a multicell broadcast MIMO RIS-
assisted system with IQI showing that IGS can provide
considerable system gains. Our results show that IGS
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can provide more gains with RIS than without RIS,
specially in SISO systems.

• RIS can significantly improve the system performance,
while the performance of a reflecting surface, in which
only the phases can be optimized, is very close to the
upper-bound performance for RIS.

• We show that a distributed RIS implementation out-
performs a centralized RIS with co-located elements.
Moreover, we show that the system topology and RIS
position play key roles in performance.

D. Paper outline

This paper is organized as follows. In Section II, we pro-
vide some preliminaries on improper signaling and present
the IQI model. We present the system model in Section III.
Section IV and Section V propose algorithms to improve
the spectral and energy efficiency of the considered system,
respectively. Section VI presents some numerical results, and
finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we provide some preliminaries on improper
signaling as well as on modeling IQI. In Section II-A,
we provide the definition of improper signals and briefly
describe the real decomposition method to analyze improper
signals. In Section II-B, we describe the considered IQI
model, which is based on the model in [16], [18].

A. Improper signaling

A zero-mean complex Gaussian scalar variable x is called
proper if its complementary variance is zero E{x2} = 0,
and it is called improper otherwise [19]. The concept of
impropriety can be extended to random vectors. A zero-
mean complex Gaussian random vector x is proper if its
complementary variance E{xxT } = 0. Otherwise, it is
called improper [19].

There are different analytical tools to deal with impropri-
ety. In this paper, we employ the real decomposition method
since it simplifies the analysis in multiple-antenna systems,
as also discussed in [18]. In the real decomposition model,
every variable is written in the real domain. For instance,
consider a typical point-to-point MIMO link as

y = Hx + n, (1)

where y ∈ CNR×1 is the received signal, x ∈ CNT×1 is
the transmitted signal, n ∈ CNR×1 is the additive proper
Gaussian noise, and H ∈ CNR×NT is the channel matrix.
The real decomposition model for the link is[

R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{x}
I{x}

]
+

[
R{n}
I{n}

]
.

(2)
Moreover, the achievable rate of the system for proper and/or
improper x and n is [18], [41]

R =
1

2
log2 det

(
Cn + HPHT

)
− 1

2
log2 det (Cn) , (3)

where Cn is the covariance matrix of [ R{n}T I{n}T ]T ,
P is the covariance matrix of [ R{x}T I{x}T ]T , and H
is

H =

[
R{H} −I{H}
I{H} R{H}

]
. (4)

Note that we can use similar analytical tools for improper
and proper signaling when using the real decomposition
method. The main difference of improper and proper signals
with the real decomposition method lies in the structure of
the covariance matrices and consequently in the feasibility
set of their parameters. The covariance matrix of an improper
Gaussian random vector in the real decomposition model
can be any arbitrary symmetric and positive semi-definite
covariance matrix [19]. However, the covariance matrix of
a proper Gaussian signal x has the following structure [18],
[19]

P = E
{[

R{x}T I{x}T
]T [

R{x}T I{x}T
]}

=

[
A B
B A

]
, (5)

where A ∈ RN×N is symmetric and positive semi-definite,
and B ∈ RN×N is skew-symmetric, i.e., B = −BT , which
implies that its diagonal elements are zero.

B. IQI model

When there is IQI at either the transmit or the receive
side, the received signal can be represented as a widely
linear transformation of the transmitted signal. The widely
linear transformation is actually a linear transformation of
the signal and its conjugate [19]. In this paper, we employ
the IQI model in [16], [18]. For the sake of completeness,
we briefly describe the IQI model in the following and refer
the reader to [16], [18] for more details.

Consider a MIMO system with Nt transmit antennas
and Nr receive antennas with IQI at the transceivers. The
received signal can be written as

y = Γr,1 (Hxtx + r) + Γr,2 (Hxtx + r)
∗
, (6)

where H is the channel matrix, r is the additive proper
Gaussian noise, and xtx is the transmitted signal. Moreover,
Γr,1 ∈ CNr×Nr and Γr,2 ∈ CNr×Nr capture the amplitude
and rotational imbalance and are given by [16]

Γr,1 =
I + Are

jφr

2
, Γr,2 = I− Γ∗r,1 =

I−Are
−jφr

2
,

(7)

where I is the identity matrix, and the matrices Ar and
φr are diagonal and, respectively, reflect the amplitude
and phase errors of each branch at the receiver side [16].
Additionally, the transmit signal xtx is also a widely linear
transformation of the input signal x as

xtx = Γt,1x + Γt,2x
∗, (8)

where the matrices Γt,1 ∈ CNt×Nt and Γt,2 ∈ CNt×Nt are
[16]

Γt,1 =
I + Ate

jφt

2
, Γt,2 = I− Γ∗t,1 =

I−Ate
−jφt

2
,

(9)

where the matrices At and φt are diagonal and, respectively,
reflect the amplitude and phase errors of each branch at the
transmitter side [16]. There is no I/Q imbalance at transmitter
(receiver) if Γt,1 = I (Γr,1 = I) and consequently Γt,2 = 0
(Γr,2 = 0).
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Fig. 1: The system model for a multicell broadcast system with
RIS.

Lemma 1 ([18]). The real decomposition of the aforemen-
tioned MIMO system with IQI is

y = H x + n, (10)

where y =
[
R{y}T I{y}T

]T
, x =[

R{x}T I{x}T
]T

, and n =
[
R{n}T I{n}T

]T
are, respectively, the real decomposition of y, x, and
n = Γr,1r + Γr,2r

∗. Moreover, H is

H =

[
R{H̄1 + H̄2} −I{H̄1 − H̄2}
I{H̄1 + H̄2} R{H̄1 − H̄2}

]
, (11)

where

H̄1 = Γr,1HΓt,1 + Γr,2H
∗Γ∗t,2 ∈ CNR×NT , (12a)

H̄2 = Γr,1HΓt,2 + Γr,2H
∗Γ∗t,1 ∈ CNR×NT . (12b)

The statistics of the vector n ∈ R2Nr×1 are E{n} = 0, and
E{n nT } = Cn = Γ CrΓ

T , where

Γ ,

[
R{Γr,1 + Γr,2} −I{Γr,1 − Γr,2}
I{Γr,1 + Γr,2} R{Γr,1 + Γr,2}

]
, (13)

and Cr is the real decomposition of Cr. For example, if
Cr = σ2INt , then Cr = 1

2σ
2I2Nt .

Proof. Please refer to [18, Lemma 2].

III. SYSTEM MODEL

We consider the downlink of a cellular system with L base
stations (BS) as show in Fig. 1. To simplify the notations,
we assume that each BS has NBS antennas and serves K
users with NU antennas without loss of generality. We also
assume that the devices at the BSs and users are imperfect
and suffer from IQI according to the model described in Sec.
II-B. Obviously, it is straightforward to extend the results to
a more general case in which the number of users in each
cell and/or the number of transmit/receive antennas and/or
the IQI parameters at the transmit/receive transceivers are
different. We further assume that there are M RISs with
NRIS antennas each that help the BSs to serve the users.
Note that the considered scenario is a standard multicell BS,
which is also considered in, e.g., [8], [42]. For the ease of
readers, we provide the most frequently used notations of
this paper in Table I.

A. Channel model

There are two types of links between a BS and a user: a
direct link and a link through the RISs. Hence, the channel
between BS l and kth associated user to BS j, i.e., ujk, for
1 ≤ l, j ≤ L and 1 ≤ k ≤ K is [8], [9]

Hjk,l ({Θ}) =

M∑
m=1

Gjk,mΘmGm,l︸ ︷︷ ︸
Link through RIS

+ Fjk,l︸ ︷︷ ︸
Direct link

∈ CNU×NBS ,

(14)
where Fjk,l ∈ CNU×NBS is the channel matrix between
the BS l and ujk, Gjk,m ∈ CNU×NRIS is the channel
matrix between the mth RIS and ujk, Gm,l ∈ CNRIS×NBS
is the channel matrix between the BS l and the mth RIS.
Additionally, {Θ} is the set of {Θm}Mm=1, where Θm ∈
CNRIS×NRIS is the matrix of the reflecting coefficient for
the mth RIS

Θm = diag
(
θm1

, θm2
, · · · , θmNRIS

)
, (15)

in which θmn for all m,n are complex-valued optimization
parameters. Ideally, the amplitude and the phase of each
reflecting coefficient can be treated as independent optimiza-
tion variables [1], [10], [11]. In this case, the feasibility set
of the reflecting coefficients is [1, Eq. (11)]

TI =
{
θmn : |θmn |2 ≤ 1 ∀m,n

}
. (16)

Unfortunately, this assumption does not hold in practice [1],
[2]; however, it can give us the theoretical performance
limit of the RIS-assisted systems [1]. Thus, in this paper,
we consider the feasibility set TI as an upper bound on
performance. In addition, we consider a more practical
assumption regarding the reflecting coefficients in which the
amplitude of the coefficients is fixed, and we can only control
the phase or equivalently the reflecting angles of each RIS
component, similar to the model in [1], [2], [5]–[9]. This
model leads to the following feasibility set

TR = {θmn : |θmn | = 1 ∀m,n} . (17)

This case is also referred to as intelligent reflecting surface
(IRS) to emphasize that there is only a passive phase-
shifting beamforming at the intelligent surfaces [2]. It is
worth emphasizing that this assumption may accurately
hold if an RIS is made of discrete tiny antenna elements,
which are sufficiently distant from each other [2]. Since
we consider both feasibility sets TI and TR throughout this
paper; hereafter, we use T for the feasibility to simplify the
notations when we do not refer to a specific feasibility set.

The channel matrices Fjk,l, Gjk,m and Gm,j for all
j, k, l,m in (14) are not controllable and, in general, depend
on the path-loss, large-scale shadowing as well as small-scale
fading [1]. Depending on the presence of line-of-sight (LoS)
link, the small-scale fading can be modeled as Rayleigh (for
non-LoS link) [4] or Rician (for LoS link) [8], [9] fading.
The main difference of the link through RISs and the direct
link is in the path-loss effect, where the RIS link follows
the product-distance path-loss model rather than the sum-
distance one [1]. That is, the channel gain is proportional to
the product of the distance between the BS and RIS, d1, as
well as distance between the RIS and user, d2, as

βRIS ∝
1

dα1
1 dα2

2

, (18)
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TABLE I: List of frequently used notations.

L/M Total number of BSs/RISs
K Total number of associated users to each BS
NBS/NU/NRIS Number of transmit antennas at each BS/user/RIS
ulk k-th associated user to BS l
xlk ∈ CNBS×1 Transmit signal of BS l intended for ulk

Plk ∈ R2NBS×2NBS Covariance matrix of xlk

Hlk,l ∈ CNU×NBS Equivalent channel between BS l and ulk

Fjk,l ∈ CNU×NBS Channel matrix between the BS l and ujk

Gjk,m ∈ CNU×NRIS Channel matrix between the mth RIS and ujk

Gm,l ∈ CNRIS×NBS Channel matrix between the BS l and the mth RIS
Θm ∈ CNRIS×NRIS Matrix of the reflecting coefficient for the mth RIS
Dlk(·) ∈ R2NU×2NU Interference-plus-noise covariance matrix at ulk

nlk ∼ CN (0, σ2I) Additive white Gaussian noise at ulk

EElk/rlk Energy efficiency/rate of ulk

pl Power budget of BS l

RIS 

BS 

U 

d2 

d 

d1 

Fig. 2: A typical RIS-assisted system.

where α1 and α2 are, respectively, the path-loss component
for the BS-RIS and RIS-U links (see Fig. 2). The link
through RIS can be much weaker than the direct link if
dα1
1 dα2

2 � dα, where d and α are, respectively, the distance
and path-loss component of the direct link. This implies that
the RIS position can play a major role on the performance of
RIS-assisted systems. When there is a LoS channel between
the RISs and BSs/users the value of α1 and α2 are small,
which makes the link through RISs stronger. Additionally,
the RISs should be positioned relatively close to the users
or the BS such that dα1

1 dα2
2 is minimized. We will discuss

the effect of the position of RIS with more details in the
numerical results section.

B. Signal model

We represent the transmit signal of BS l by

xl =

K∑
k=1

xlk ∈ CNBS×1, (19)

where xlk ∈ CNBS×1 is the transmit signal of BS l
intended for its kth associated user, i.e., ulk, and xlks are
uncorrelated, i.e., E

{
xlkx

H
lj

}
= 0 for k 6= j. We assume

that xlks for all l, k are zero-mean Gaussian and can be
improper. To model the impropriety, we employ the real de-
composition method and represent the covariance matrix of
xlk = [ R {xlk}T I {xlk}T ]T by Plk = E

{
xlkx

T
lk

}
∈

R2NBS×2NBS . We define the feasibility set of the covariance
matrices for IGS as

PIGS =

{
{Plk}∀l,k :

K∑
k=1

Tr (Plk) ≤ pl,Plk < 0,∀l, k

}
,

(20)

where pl is the power budget of BS l, and for PGS, as

PPGS ={
{Plk}∀l,k :

K∑
k=1

Tr (Plk) ≤ pl,Plk = Pt,Plk < 0,∀l, k

}
,

(21)

where Pt fulfills the structure in (5). Since the algorithms
proposed in this paper can be applied to both improper
and proper signaling schemes, the feasibility set for the
covariance matrices is denoted as P to simplify the notations.

Considering the channel link in (14) and the IQI model in
Section II-B, the real decomposition model for the received
signal at ulk is [8], [9]

y
lk

=

L∑
i=1

Hlk,i ({Θ})
K∑
j=1

xij + nlk (22a)

= Hlk,l ({Θ}) xlk︸ ︷︷ ︸
Desired signal

+ Hlk,l ({Θ})
K∑

j=1,j 6=k

xlj︸ ︷︷ ︸
Intra-cell interference

+

L∑
i=1,i6=l

Hlk,i ({Θ})
K∑
j=1

xij︸ ︷︷ ︸
Inter-cell interference

+ nlk︸︷︷︸
noise

, (22b)

where y
lk

, xij , Hlk,l(·) ∈ R2NU×2NBS , and nlk ∈ R2NU×1

are given by Lemma 1. We consider an additive white
Gaussian noise at users with the covariance Cn = 1

2σ
2I. In

this paper, due to its simplicity and usefulness we assume
that each user treats the interference (both inter-cell and
intra-cell) as noise, as in other works such as [8], [42].

C. Rate and energy-efficiency expressions

Treating interference as noise, the achievable rate of ulk is
(23) and (24) on the top of the next page, where {P} is the
set including all possible covariance matrices, i.e., {Pij}∀i,j ,
and Dlk(·) is the interference-plus-noise covariance matrix
at ulk

Dlk (·) =

L∑
i=1,i6=l

K∑
j=1

Hlk,i ({Θ}) PijH
T
lk,i ({Θ})

+

K∑
j=1,j 6=k

Hlk,l ({Θ}) PljH
T
lk,l ({Θ}) +

σ2

2
I. (25)
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rlk =
1

2
log2

∣∣∣I + Hlk,l ({Θ}) PlkH
T
lk,l ({Θ}) D−1lk ({P}, {Θ})

∣∣∣ (23)

=
1

2
log2

∣∣∣Hlk,l ({Θ}) PlkH
T
lk,l ({Θ}) + Dlk ({P}, {Θ})

∣∣∣︸ ︷︷ ︸
rlk,1

− 1

2
log2 |Dlk ({P}, {Θ})|︸ ︷︷ ︸

rlk,2

, (24)

Note that the rates depend on all optimization parameters,
i.e., {Pij}∀i,j , {Θ}Mm=1. To simplify the notations, we drop
this dependency and represent the rate of ulk by rlk.

The global EE (GEE) for the system is defined as the ratio
between the sum rate and total power consumption as [43]

GEE =

∑L
l=1

∑K
k=1 rlk∑L

l=1

∑K
k=1 (Pc + ηTr (Plk))

, (26)

where η−1 is the power transmission efficiency of each BS,
and Pc is the constant power consumption for transmitting
data to a user, which can be obtained as

Pc =
MPRIS
KL

+
PBS
K

+ PUE , (27)

where PRIS is the power consumption by an RIS, PBS/PUE
is the constant power consumption by a BS/user. Note
that, for notational simplicity, we assume the same power
transmission efficiency and constant power consumption for
all BS/RIS/users without loss of generality. Obviously, it
can be easily extended to a more general scenario with
asymmetric BS/RIS/users. The GEE is a metric to measure
the overall system EE and does not consider the EE of each
individual user. A metric that provides fairness among users
maximizes the minimum weighted EE of users [44]. The EE
of a user can be defined as the ratio between its achievable
rate and the power intended for the data transmission to the
user, i.e., [43], [44]

EElk =
rlk

Pc + ηTr (Plk)
. (28)

IV. SPECTRAL EFFICIENCY OPTIMIZATION

In this paper, we consider different utility functions such
as minimum weighted rate, weighted sum rate, global EE,
and minimum weighted EE. In all these problems, the
objective function and/or constraints are linear functions
of the achievable rates. We propose a general optimiza-
tion framework to solve all these problems using similar
optimization tools. It would be possible to study specific
solutions for any of the problems considered in this work
using suboptimal or heuristic techniques, perhaps with a
lower computational cost. However, in this paper we have
preferred to consider a general methodology for the solution
of the different problems, thus emphasizing the common
aspects of the different cost functions, as well as providing
a more comprehensive overview on the performance of IGS
in RIS-assisted systems.

In this section, we consider the spectral efficiency metrics,
i.e., the minimum-weighted and weighted-sum rate maxi-
mization. Note that the minimum [weighted] rate can be
considered as a metric of fairness among the users since
it is very often the case that all users have the same rate
when the minimum rate is maximized [45]. Clearly, there are
other fairness metrics such as the geometric mean of rates
[46]. As shown in [46, Eq. (10)], the maximization of the

geometric mean of rates can be solved through a sequence
of weighted-sum-rate maximization problems. Hence, the
algorithms proposed in this section could be also applied to
the maximization of the geometric mean of rates. However,
due to the space limitation, we only consider the minimum-
weighted and weighted-sum rate maximization problems.

The minimum-weighted-rate maximization (MWRM)
problem can be written as

max
r,{Θ}∈T ,{P}∈P

r, s.t. λlkrlk ≥ r, ∀l, k, (29)

where λlk ≥ 0 is the corresponding weight representing
the priority of users. Note that the achievable rate region
problem can be written as an MWRM problem by employing
the rate profile technique [47]. In this case, the whole
achievable rate region can be characterized by solving (29)
for all possible

∑
∀l
∑
∀k λ

−1
lk = 1. The weighted-sum-rate

maximization (WSRM) problem can be also written as

max
{Θ}∈T ,{P}∈P

L∑
l=1

K∑
k=1

λlkrlk, s.t. rlk ≥ r̄lk, ∀l, k,

(30)

where rlk ≥ r̄lk is a quality-of-service (QoS) constraint,
and r̄lk is the minimum required data rate for ulk. Note
that r̄lk has to be chosen such that (30) is feasible. In
this paper, we propose a centralized approach to solve (30)
(or (29)). This means that a central processing unit (CPU)
with sufficient computational resources solves the problem
and then sends, through a dedicated channel, the optimal
transmission parameters as well as the optimal reflecting
coefficients to the BSs and RISs, respectively. Note that all
parameters are computed simultaneously, and the problem is
solved only once.

Unfortunately, the MWRM and WSRM problems are not
convex due to the structure of the rates as well as the
feasibility sets TR. Furthermore, the joint optimization of
{Θ}, {P} requires an excessive amount of computations,
which might not be practical. Thus, most of the recent
works on RIS employ a disjoint alternating optimization [8]–
[10]. In [7], in addition to the alternating approach, a joint
optimization was proposed. However, the joint optimization
involved high computational complexity, and the authors
applied the joint algorithm as refinement procedure after the
disjoint optimization to reduce the number of computations.
Hence, in this paper, we propose a disjoint alternation
optimization approach with affordable computational cost.

In the alternating approach, we first solve (30) (and/or
(29)) for a given {Θ(t−1)} and obtain {P(t)}. We then solve
(30) over {Θ} for the given {P(t)} to obtain {Θ(t)}. The
convergence of this algorithm is ensured since this approach
generates a non-decreasing sequence for the objective func-
tion. Unfortunately, even if we fix {Θ(t−1)} (or {P(t)}), the
corresponding optimization problems are not convex, so we
propose to find a suboptimal solution by employing MM.
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In the following, we first consider the WSRM problem and
then, modify the algorithm to solve the MWRM problem.

A. Optimization of covariance matrices
We fix {Θ(t−1)}, which simplifies the optimization prob-

lem as

max
{P}∈P

L∑
l=1

K∑
k=1

λlkrlk, s.t. rlk ≥ r̄lk, ∀l, k, (31)

This problem is not convex since the rates are not concave
in {P}. Thus, we apply MM to obtain a stationary point
of (31). To this end, we first find a lower-bound concave
function for the user rate. As can be observed through
(24), the rate of each user can be written as a difference
of two concave/convex functions. This feature of the rate
expressions allows us to apply convex-concave procedure
(CCP) to derive a lower-bound for the rates [48]. That
is, we approximate the convex part of the rate (−rlk,2)
by an affine (linear) function by employing the first-order
Taylor expansion expansion given by (32) on the top of
the next page, where r

(t−1)
lk,2 = rlk,2

(
{Θ(t−1)}, {P(t−1)}

)
and

∂rlk,2({Θ(t−1)},{P(t−1)})
∂Pij

is the derivative of rlk,2 with
respect to Pij at {Θ(t−1)}, {P(t−1)}. The derivative is

∂rlk,2 ({Θ}, {P})
∂Pij

=
1

2 ln 2
HT
ij,iDlk ({P}, {Θ})−1 Hij,i.

(33)
Note that we employ the first-order Taylor expansion to
approximate the convex part of the rates since an affine
function is the closest concave lower bound for a convex
function. Replacing the lower bound r̃

(t−1)
lk in (31), the

corresponding surrogate optimization problem is convex and
can be efficiently solved by the existing numerical solvers.
It is worth emphasizing that the error in the lower-bound
approximation in (32) does not affect the optimality conver-
gence of our algorithm since it falls into MM algorithms
[48].

B. Optimization of the reflecting-coefficient matrix
In this subsection, we tackle the optimization of the

reflecting coefficients for the two feasibility sets. To this end,
we first consider feasibility set TI since it is a convex set.
Note that |θmn |2 is a convex function, and consequently, the
constraint |θmn |2 ≤ 1 is a convex constraint. In this case,
the WSRM problem for the given {P(t)} is

max
{Θ}∈TI

L∑
l=1

K∑
k=1

λlkrlk

(
{Θ}, {P(t)}

)
, (34a)

s.t. rlk

(
{Θ}, {P(t)

lk }∀l,k
)
≥ r̄lk, ∀l, k. (34b)

This optimization problem is non-convex because of the rate
functions. To solve (34), we first employ MM by obtaining
suitable surrogate functions for the rates. To this end, we use
the inequality in the following lemma.

Lemma 2 ([7], [36]). Consider arbitrary matrices V and
V̄, and positive definite matrices Y and Ȳ, where all these
matrices are N ×N . Then the following inequality holds:

ln
∣∣I + VVHY−1

∣∣ ≥ ln
∣∣I + V̄V̄HȲ−1

∣∣
− Tr

(
V̄V̄HȲ−1

)
+ 2R

{
Tr
(
V̄HȲ−1V

)}
− Tr

(
(Ȳ−1 − (V̄V̄H + Ȳ)−1)H(VVH + Y)

)
(35)

Theorem 1. A concave lower-bound function
r̂
(t−1)
lk

(
{P(t)}, {Θ}

)
for the rate of users rlk

(
{P(t)}, {Θ}

)
can be found as in (36), shown on the top of the next page,
where r(t−1)lk = rlk

(
{P(t)}, {Θ(t−1)}

)
is the rate of ulk at

the beginning of the step, and

Vlk,l = Hlk,l ({Θ}) P
(t)1/2

lk , (37)

V̄lk,l = Hlk,l

(
{Θ(t−1)}

)
P

(t)1/2

lk , (38)

Ylk,l = Dlk

(
{P(t)}, {Θ}

)
, (39)

Ȳlk,l = Dlk

(
{P(t)}, {Θ(t−1)}

)
. (40)

Proof. We can easily obtain (36) by considering the rate
function in (23) and employing the inequality in Lemma
2.

Note that we can easily compute P
(t)1/2

lk since P
(t)
lk is a

positive semi-definite matrix. Considering TI , {Θ(t)} can be
obtained by solving

max
{Θ}

L∑
l=1

K∑
k=1

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
, (41a)

s.t. r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (41b)

|θmn |2 ≤ 1 ∀m,n, (41c)

where r̂
(t−1)
lk (·) is given by Theorem 1. The optimization

problem (41) is convex and can be efficiently solved. The
whole algorithm for the feasibility set TI falls into MM and
converges to a stationary point of the original problem.

We now consider the feasibility set TR in which |θmn | =
1. We rewriting |θmn | = 1 as the two following constraints:
(41c) and

|θmn |2 ≥ 1. (42)

As can be observed, the only difference between TI and
TR is in the non-convex constraint (42). To deal with
(42), we employ the convex-concave procedure (CCP) and
approximate |θmn |2 with a linear lower-bound function:

|θmn |2 ≥ 2R
{
θ(t−1)

∗

mn θmn

}
− |θ(t−1)mn |

2 ≥ 1 ∀m,n,
(43)

where θ(t−1)mn is the value of θmn at the previous step. To
speed up the convergence of the algorithm, we relax the
constraint (43) as

2R
{
θ(t−1)

∗

mn θmn

}
− |θ(t−1)mn |

2 ≥ 1− ε ∀m,n, (44)

where ε is a small value. Hence, the surrogate optimization
problem for TR is

max
{Θ}

L∑
l=1

K∑
k=1

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
, (45a)

s.t. (41b), (41c), (44). (45b)

This optimization problem is convex, and therefore can be
efficiently solved. Let us call the solution of (45a) as {Θ(?)}.
Since we relax (43) by introducing ε, {Θ(?)} might not
satisfy |θmn | = 1. Thus, we normalize {Θ(?)} as {Θ̂(?)}
to ensure that the new {Θ} satisfies |θmn | = 1 for all m,n.
It may happen that the normalized {Θ̂(?)} does not satisfy
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rlk ≥ r̃(t−1)lk = rlk,1 − r(t−1)lk,2 −
∑
∀i,j

Tr

(
∂rlk,2

(
{Θ(t−1)}, {P(t−1)}

)
∂Pij

(Pij −P
(t−1)
ij )

)
, (32)

rlk (·) ≥ r̂(t−1)lk (·) = r
(t−1)
lk − 1

2 ln 2
Tr
(
V̄lk,lV̄

H
lk,lȲ

−1
lk,l

)
+

1

ln 2
R
{

Tr
(
V̄H
lk,lȲ

−1
lk,lVlk,l

)}
− 1

2 ln 2
Tr
(

(Ȳ−1lk,l − (V̄lk,lV̄
H
lk,l + Ȳlk,l)

−1)H(Vlk,lV
H
lk,l + Ylk,l)

)
(36)

Algorithm I Proposed IGS algorithm for WMRM with TI .
Initialization
Set t = 1, {P} = {P(t−1)}, and{Θ} = {Θ(t−1)}

While
(
min
∀l,k

r
(t)
lk −min

∀l,k
r
(t−1)
lk

)
/min
∀l,k

r
(t−1)
lk ≥ ε

Optimizing over {P(t−1)} by fixing {Θ} = {Θ(t−1)}
Derive r̃(t−1)

lk

(
{P}, {Θ(t−1)}

)
in (32)

Obtain {P(t)} by solving (47)
Optimizing over {Θ} by fixing {P} = {P(t−1)}

Derive r̂(t−1)
lk

(
{P(t)}, {Θ}

)
in Theorem 1

Obtain {Θ(t)} by solving (48)
t = t+ 1

End (While)
Return {P?} and {Θ?}.

rlk

(
{P(t)}, {Θ̂(?)}

)
≥ r

(t−1)
lk . To address this issue, we

choose {Θ(t)} as

{Θ(t)} =

{
{Θ̂(?)} if rlk

(
{P(t)}, {Θ̂(?)}

)
≥ r(t−1)lk

{Θ(t−1)} Otherwise.
(46)

C. Minimum-weighted-rate maximization

The approach for the WSRM can easily be applied to the
MWRM problem since the WSRM and MWRM problems
have a very similar structure. Indeed, we only need to replace
the objective function with a new optimization variable r
similar to (29). For the sake of completeness, we only
mention the final surrogate optimization problems for each
part. The covariance matrices {P(t)} can be obtained by
solving

max
r,{P}∈P

r, s.t. λlkr̃
(t−1)
lk ≥ r, ∀l, k, (47)

where r̃(t−1)lk is given by (32). Additionally, {Θ(t)} for TI
is given by

max
r,{Θ}

r, (48a)

s.t. λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, (48b)

|θmn |2 ≤ 1 ∀l, k,m, n, (48c)

where r̂
(t−1)
lk (·) is given by Theorem 1. For the ease of

readers, the proposed IGS scheme for WMRM with the
feasibility set TI is summarized in Algorithm I. Note that
it is also straightforward to derive {Θ(t)} for TR as in the
previous subsection.

V. ENERGY EFFICIENCY OPTIMIZATION

In this section, we consider the EE metrics for the system
and solve the GEE maximization and minimum-weighted
EE (MWEE) problems. The EE and GEE functions have

a fractional structure in {P}. Thus, it is more complicated
to optimize the EE metrics rather than spectral efficiency
ones, especially when we optimize over {P}. To solve these
problems, we employ Dinkelbach-based algorithms as well
as MM and alternating approach [14], [43], [49].

A. GEE maximization

The GEE maximization problem is

max
{Θ}∈T ,{P}∈P

GEE, s.t. rlk ≥ r̄lk, ∀l, k, (49)

where rlk ≥ r̄lk is the QoS constraint similar to (30) and
has to be chosen such that (49) is feasible. The optimization
problem (49) is not convex, but we can obtain a subopti-
mal solution for it by an alternating optimization approach
similar to the proposed algorithm in Section IV.

1) Optimization of covariance matrices: We first fix
{Θ(t−1)} and maximize the GEE over {P}. To this end,
we employ MM and the Dinkelbach algorithm (DA) to solve
the GEE maximization problem [18], [43]. That is, we first
employ the concave lower-bound functions for the rates in
(32), which leads to the following surrogate optimization
problem

max
{P}∈P

∑L
l=1

∑K
k=1 r̃

(t−1)
lk∑L

l=1

∑K
k=1 (Pc + ηTr (Plk))

, (50a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k, (50b)

This optimization problem is not convex; however, we can
obtain its global optimal solution by the Dinkelbach algo-
rithm as indicated in Lemma 3.

Lemma 3. The global optimal solution of (50) can be
obtained by iteratively solving

max
{P}∈P

L∑
l=1

K∑
k=1

r̃
(t−1)
lk − µ(i)

(
L∑
l=1

K∑
k=1

(Pc + ηTr (Plk))

)
,

(51a)

s.t. r̃(t−1)lk ≥ r̄lk, ∀l, k, (51b)

and updating µ(i) as µ(i) =

∑L
l=1

∑K
k=1 r̃lk

(
P

(i−1)
lk

)
∑L
l=1

∑K
k=1

(
Pc+ηTr

(
P

(i−1)
lk

)) ,
where P

(i−1)
lk is the solution of (51) at the (i− 1)th step.

2) Optimization of the reflecting-coefficient matrix: For a
given {P(t)}, the GEE maximization problem has a structure
similar to the WSRM and MWRM problems. Hence, we can
solve it by the proposed algorithm in Section IV. That is, we
first approximate the rates by the lower bound in Theorem
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1. Considering the feasibility set TR, the GEE maximization
is

max
{Θ}

∑L
l=1

∑K
k=1 λlkr̂

(t−1)
lk

(
{Θ}, {P(t)}

)∑L
l=1

∑K
k=1

(
Pc + ηTr

(
P

(i−1)
lk

)) , (52a)

s.t. (41c), (44), (52b)

r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (52c)

which is a convex optimization problem and can be solved
efficiently. Finally, {Θ} is updated according to (46). Note
that, for feasibility set TI , {Θ} is updated by solving

max
{Θ}

∑L
l=1

∑K
k=1 λlkr̂

(t−1)
lk

(
{Θ}, {P(t)}

)∑L
l=1

∑K
k=1

(
Pc + ηTr

(
P

(i−1)
lk

)) , (53a)

s.t. (52c), (41c). (53b)

B. Minimum weighted EE maximization

The MWEE maximization problem can be written as

max
{Θm}∀m∈T ,{Plk}∀l,k∈P

min
∀l,k
{λlkEElk} , (54a)

s.t. rlk ≥ r̄lk, ∀l, k. (54b)

which is very similar to the maximization of the GEE. The
main difference of these two problems is that MWEE is
multiple-ratio fractional program (instead of single ratio),
and we have to employ the generalized DA (GDA) for
optimizing covariance matrices [14], [43], [49].

1) Optimization of covariance matrices: At this step, we
fix {Θ(t−1)} and solve the MWEE problem for {P} by
employing the GDA and MM. That is, we first approximate
the rates with the concave lower-bound in (32), which yields
the following optimization problem

max
{Plk}∀l,k∈P

min
∀l,k

{
λlk

r̃
(t−1)
lk

Pc + ηTr (Plk)

}
, (55a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k. (55b)

Although this optimization problem is not convex, we can
obtain its global optimal solution by employing the GDA as
mentioned in the following lemma [18], [43].

Lemma 4. The global optimal solution of (55) can be
derived by iteratively solving

max
{Plk}∀l,k∈P

min
∀l,k

{
λlkr̃

(t−1)
lk − µ(i) (Pc + ηTr (Plk))

}
,

(56a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k. (56b)

and updating µ(i) as µ(i) =

min∀l,k

{
λlk

r̃
(t−1)
lk ({Θ(t−1)},{P(i−1)})

Pc+ηTr(Plk)

}
, where P

(i−1)
lk

is the solution of (56) at the (i− 1)-th step.

2) Optimization of the reflecting-coefficient matrix: For
a given {P(t)}, the MWEE optimization problem can be
solved similar to the GEE maximization problems. In other
words, we can approximate the rates by the lower-bound in

Theorem 1, which results in the following convex optimiza-
tion for the feasibility set TR

max
{Θ}

min
∀l,k

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
Pc + ηTr

(
P

(i−1)
lk

)
 , (57a)

s.t. (41c), (44), (57b)

r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (57c)

and {Θ} is updated according to (46). Additionally, for
feasibility set TI , {Θ} is updated by solving the following
convex problem

max
{Θ}

min
∀l,k

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
Pc + ηTr

(
P

(i−1)
lk

)
 , (58a)

s.t. (57c), (41c). (58b)

VI. NUMERICAL RESULTS

In this section, we provide some numerical results. We
consider both large-scale and small-scale fading to accurately
evaluate the performance of RISs. The large-scale path loss
in dB is given by

PL = PL0 +G0 − 10α log10

(
d

d0

)
, (59)

where PL0 is the path loss at the reference distance d0 = 1m,
d is the link distance, α is the path-loss exponent, and
G0 is the antenna gain at the transmitter side. Note that
the channel attenuation coefficient is β = 10PL/10. In the
numerical results, we consider a two-cell MIMO broadcast
channel with two users in each cell as depicted in Fig.
3. We assume that the BSs are located at (0, 0, 25) and
(400, 0, 25), where 25m is the height of BSs. We further
assume that the users with height 1.5m are uniformly located
in a 20m × 20m area centered at (x, 0, 1.5) in cell 1 and
(400−x, 0, 1.5) in cell 2. We also assume there is only one
RIS with height 15m, located at (200, 0, 15) unless otherwise
is explicitly mentioned. We choose the noise power density
−174 dBm/Hz, channel bandwidth 1.5 MHz, G0 = 6 dB for
BSs and G0 = 5.5 dB for RISs, PL0 = −30 dB, α = 2.2 for
the links related to RISs, and PL0 = −35.9 dB, α = 3.75 for
the direct links between the BSs and users. In other words,
we consider a scenario that the direct links between the BSs
and users is weaker than the links related to RISs, similar
to, e.g., [8]. Some important parameters are summarized in
Table II. We consider a Rayleigh fading as a small-scale
fading for the link between the BSs and the users, which
means that each elements of F̃jk,l for all j, k, l is derived
from a zero-mean complex proper Gaussian distribution with
a unit variance, where Fjk,l = βjk,lF̃jk,l, and βjk,l is the
channel attenuation coefficient (related to the large-scale path
loss) for the direct link between ujk and BS l. Moreover, we
consider a Rician fading as a small-scale fading for the links
related to the RISs. That is, we assume [8]

G̃ =

√
γ

1 + γ
G̃LoS +

√
1

1 + γ
G̃NLoS, (60)

where γ = 3 is the Rician factor, G̃LoS is the line-of-sight
(LoS) component, and G̃NLoS is the non-LoS component,
which is assumed to follow a Rayleigh fading similar to
F̃jk,l. We set γ = 3 similar to [8]. G̃LoS is deterministic
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TABLE II: List of Most Important Parameters.

Parameter αBR αRU αBU PL0,BR PL0,RU PL0,BU GBS GRIS γ Noise Power D. Ch. Bw.
Value 2.2 2.2 3.75 30 30 35.9 6 5.5 3 −174 dBm/Hz 1.5 MHz

BS1 BS2 

C
el

l 
E

d
g

e 
 

Position of Users in cell 1 Position of Users in cell 2 

M=1 M=2 M=4 

RIS1 RIS2 

RIS1 RIS2 RIS3 RIS4 (0,0,25) (400,0,25) 

(2
0

0
,0

,0
)  

(x,0,15) (400-x,0,15) 

RIS 

Fig. 3: System topology.

and can be derived as G̃LoS = aNr
(
φA
)
aHNt

(
φD
)
, where

φA ∼ Unif[0, 2π] is angle of arrival, φD ∼ Unif[0, 2π] is
angle of departure, Nt/Nr is the number of transmit/receive
antennas, and

aNr (·)=

[
1, ej

2πd sin(φA)
λ , ..., ej

2(Nr−1)πd sin(φA)
λ

]
, (61)

aNt(·)=

[
1, ej

2πd sin(φD)
λ , ..., ej

2(Nt−1)πd sin(φD)
λ

]
, (62)

where d/λ is chosen 1/2 for simplicity [8]. In the simula-
tions, we consider an equal weight for all users, i.e., αlk = 1
for all l, k as well as an equal power budget P for all
users. We average the results over 100 channel realizations.
We consider the IQI parameters as in [18]. Due to space
restriction, we skip the parameters and refer the readers to
[18]. We will provide our simulation codes in our GitHub
at https://github.com/SSTGroup after publishing the paper.

To the best of our knowledge, there is no other work
that considers IGS with IQI in RIS-assisted MIMO sys-
tems. Hence, we compare our proposed algorithm with the
proposed PGS scheme as well as a PGS scheme that does
not consider IQI in the design. Moreover, we consider our
algorithm with a system without RIS. To summarize, the
considered algorithms in the simulations are as follows:
• IGS-M: The proposed IGS scheme for the feasibility

set TI , which can be referred to as an upper-bound for
the IGS performance.

• IGS: The proposed IGS scheme for the feasibility set
TU .

• IGS-N: The IGS scheme for traditional multi-cell BCs
(i.e., without RIS).

• IGS-R: The IGS scheme with a random reflecting
coefficients.

• PGS-M: The proposed PGS scheme for the feasibility
set TI , which can be referred to as an upper-bound for
the performance of PGS schemes.

• PGS: The proposed PGS scheme for the feasibility set
TU .

• PGS-N: The PGS scheme for traditional multi-cell BCs
(i.e., without RIS).

• PGS-R: The PGS scheme with a random reflecting
coefficients.

• PGS-U: The PGS scheme, which is unaware of IQI,
with optimizing over reflecting coefficients for the
feasibility set TU .
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Fig. 4: The average fairness rate versus P for NBS = Nu = 1,
NRIS = 100, L = 2, K = 2, M = 1 with different position of
users.

• PGS-RU: The PGS scheme, which is unaware of IQI,
with a random reflecting coefficients.
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Fig. 5: The average fairness rate versus P for NRIS = 100, L = 2,
K = 2, M = 1.

A. Fairness rate

In this subsection, we consider the WMRM problem. The
minimum rate of the users is also referred to as the fairness
rate [18]. Figure 4 shows the average fairness rate of a two-
cell system with two users in each cell for NBS = Nu = 1,
and NRIS = 100 with different position of users. As can be
observed, the IGS design can substantially outperform the
PGS scheme. The reason is that the rate of PGS schemes in
a broadcast channel with TIN is bounded due to the intracell
interference, but IGS can efficiently manage the intracell
interference. For instance, by employing maximally IGS,
the BS can transmit the signal of each user in orthogonal
dimensions and thus, manage the intracell interference more
effectively [30].

In Fig. 4, we study how the position of users impact on
the RIS performance. As can be observed, the benefits of
RIS decrease when the distance between the RIS and users
increases. It is expected that the benefits of RIS vanishes if
the users are sufficiently close to the BS and far from RIS
as discussed in Section III-A. Additionally, Fig. 4 shows
that RIS may not increase the fairness rate if the reflecting
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Fig. 6: The average fairness rate versus the number of RISs (M )
for NRIS = 100

M
, L = 2, K = 2, M = 1.
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coefficients are not optimized. We can also observe that the
performance of the reflecting surface is very close to the
upper bound attainable when both the amplitudes and phases
of the reflecting RIS elements are optimized. It means that
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we do not lose a considerable gain when only the phases of
the RIS elements are optimized.

Figure 5 shows the fairness rate of a two-cell broadcast
channel with two-users in each cell for NRIS = 100 and
different number of antennas at the BSs and users. As can
be observed, the benefits of employing IGS decrease with the
number of antennas, which is in line with our previous study
in [18] for the K-user IC. The reason is that the interference
is more easily managed by PGS when the number of spatial
transmit dimensions increases, and the improvement pro-
vided by IGS can be marginal when the number of resources
is much greater than the number of users. We also observe
that our IQI-aware algorithms can significantly outperform
the PGS scheme, which is unaware of IQI. We again observe
that RIS does not provide a considerable gain when the
reflecting coefficients are not optimized. Additionally, the
results suggest that the performance of reflecting surfaces is
very close to the upper-bound performance specially at low
SNRs.

In Fig. 6, we compare centralized and distributed imple-
mentations of RIS. We consider three different scenarios: a
centralized RIS with NRIS = 100, two distributed RISs with
NRIS = 50, and four distributed RISs with NRIS = 25
as illustrated in Fig. 3. Indeed, the total number of RIS
elements is fixed in these scenarios, and only the position of
the elements varies. As can be observed, the average fairness
rate increases when we employ distributed implementations.
As indicated, the distance between RIS elements and users
plays a key role in the performance of RIS. Thus, we
should position the RISs as close as possible to the users,
which explains the superiority of distributed implementations
of RISs. Note that Fig. 6b suggests that there can be an
optimal value for the number of co-located RISs, which may
depend on the position of users. It means that the number
and position of RISs can be considered as optimization
variables, whose optimnal values depend on the topology of
the network as well as system parameters such as path-loss
components and antenna gains.

In Fig. 7, we show the average fairness rate versus the
number of iterations for a two-cell broadcast channel with
two-users in each cell. As can be observed, the algorithms
for RIS-assisted systems require more iterations to converge,
which implies that these algorithms are slower. Note that one
iteration of the proposed algorithm consists of solving two

convex optimization problems, and it is therefore compu-
tationally more costly than one iteration of the algorithms
that do not optimize the reflecting coefficients. However,
interestingly, we can observe that after a single iteration the
algorithms with optimized reflecting coefficients provide a
better minimum rate than the final value of the algorithms
that do not optimize the reflecting coefficients. This improve-
ment outweighs the complexity of our proposed algorithms.

B. Sum-rate maximization

Figure 8 shows the average sum rate of a two-cell broad-
cast channel with two-users in each cell for NBS = Nu = 1,
NRIS = 100, and M = 1. In this figure, we assume that the
minimum required rate of users can be 0, which means that
some users may be switched off if they do not have good
channel gains. Thus, the interference level can be lower,
which in turn reduces the benefits of IGS as an interference-
management technique. This is due to the fact that the higher
the interference level is, the more benefits by IGS can be
achieved as also showed in [18]. We can observe this issue
in Fig. 8, where the proposed IGS scheme outperforms the
PGS schemes, but the IGS benefits are lower than those
observed in terms of the fairness rate. Moreover, we observe
that there are only minor gains by employing RIS when the
RIS components are chosen randomly and not optimized.
On the contrary, RIS can provide a considerable gain when
the RIS elements are optimized properly. Additionally, we
observe that the reflecting surfaces perform very close to the
upper-bound performance of RIS. Finally, we observe that
PGS, which is unaware of IQI, performs even worse than the
PGS scheme without RIS. This result shows the importance
of implementing IQI-aware schemes.

C. Fairness EE

Figure 9 shows the fairness EE of a two-cell broadcast
channel with two-users in each cell for NRIS = 100 and
different number of antennas at the BSs and users. As
can be observed, the proposed IGS scheme outperforms
PGS schemes. Moreover, there is a huge performance im-
provement by optimizing RIS components in both IGS and
PGS schemes. Similar to WMRM and WSRM, RIS does
not provide a considerable gain when the RIS components
are chosen randomly. Additionally, the reflecting surface
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Fig. 9: The average fairness EE versus Pc for NRIS = 100, L = 2,
K = 2, M = 1 with different NBS , Nu.

performs very close to the upper-bound performance, which
is given by jointly optimizing the amplitude and phase of RIS
components. Finally, we observe that the IQI-aware scheme
significantly outperforms the PGS scheme, which is unaware
of IQI.

D. Global-EE maximization

Figure 10 shows the global EE of a two-cell broadcast
channel with two users in each cell for NRIS = 100 and
different number of antennas at the BSs and users. As can
be observed, we can get a considerable improvement by
optimizing over the RIS components. However, the perfor-
mance of RIS with random but fixed phases is very close
to the case without RIS. Additionally, we observe that the
IGS and PGS schemes perform very close to each other. In
other words, IGS provides only minor improvements over
the PGS scheme. This is in line with the results in [18] in
which it was shown that the benefits of IGS from global EE
perspective vanishes in the K-user MIMO ICs with HWI.
Note that our IQI-aware schemes always outperform the PGS
scheme, which is unaware of IQI.

E. Summary of numerical results

Our results show that IGS can substantially improve the
spectral and energy-efficiency of RIS-assisted systems. It
is precisely the combined use of RISs together with an
interference-management technique such as IGS that makes
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Fig. 10: The average global EE versus Pc for NRIS = 100, L = 2,
K = 2, M = 1.

it possible to achieve satisfactory results in interference-
limited multicell MIMO scenarios. Interestingly, our numer-
ical results suggest that employing RIS substantially boosts
the benefits of IGS especially in SISO systems. Finally, our
results also show that a distributed implementation of RIS
outperforms a centralized implementation, thus indicating
that the location of the different RISs in the network should
be optimized to maximize performance.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed IGS schemes to improve the
spectral and energy efficiency of a multicell RIS-assisted
broadcast channel with IQI, showing the performance im-
provements that improper signaling schemes can bring to
this scenario. Additionally, we proposed schemes to optimize
the RIS elements. Our numerical results showed that RIS
may provide only minor benefits if the RIS components are
chosen randomly. We also showed that the benefits of RISs
highly depend on their position. If the distance between the
RIS and users is large, it may not offer considerable gains.
Furthermore, we showed that distributed RIS implementa-
tions can bring more benefits than centralized implemen-
tations. Altogether, these results suggest that the number
and position of RISs should be considered as optimization
parameters. We also considered a RIS implementation for
which the amplitude and phase of each RIS component
can be independently optimized, which can be seen as an
upper bound on the RIS performance. Our numerical results
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suggest that reflecting surfaces, in which only the phases
are optimized, can perform very close to the upper bound
where both amplitudes and phases are optimized. Finally,
we showed that neglecting IQI in the design can result in
a huge performance degradation, while IQI-aware schemes
significantly improve system performance.

As future lines of work, the asymptotic behavior of the
spectral and energy efficiency metrics can be studied for
BSs with a large number of antennas (massive MIMO).
Furthermore, the performance of IGS in the presence of im-
perfect and/or statistical CSI is undoubtedly another aspect
to be investigated. It can be also interesting to study the
performance of IGS when a NOMA-based technique is em-
ployed in RIS-assisted systems. Finally, the development of
distributed and/or low complexity versions of our algorithms
is an interesting research avenue.
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