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Subspaces as data objects
I In many signal processing problems data sets are high

dimensional, but their intrinsic dimension is much smaller
than the dimension of the ambient space

I Data objects admit a subspace representation

I Example: Image, video processing & computer vision
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Subspaces in wireless communication problems

I Non-coherent MIMO communications

Unitary precoding Non-Coherent MIMO 
Detector = Subspace 
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Subspaces in wireless communication problems

I Multi-sensor array processing: source enumeration
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Problem

Given a sequence of experimentally derived subspaces

〈Vr 〉 ∈ G(qVr , n), r = 1, . . . ,R

1. to obtain a central subspace and estimate its dimension

2. to apply the resulting algorithm as a method for source
enumeration in array processing under the challenging
conditions of

I high-dimensional data (massive MIMO)
I few snapshots (small sample regime)
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Subspace averaging
I The Karcher mean or Riemannian center of mass is

〈U〉 = argmin
〈U〉∈G(s,n)

1

R

R∑
r=1

min(s,dim(Vr ))∑
i=1

θ2
r ,i

I The extrinsic mean is

〈U〉 = argmin
〈U〉∈G(s,n)

1

2R

R∑
r=1

‖PVr − PU‖2
F

Closed-form solution U∗s = (f1, f2, . . . , fs) = Fs where Fs is a
matrix containing the s largest left eigenvectors of the average
projection matrix

P =
1

R

R∑
r=1

Pr =
1

R

R∑
r=1

VrV
H
r
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Order estimation problem

I The proposed order estimation criterion is

(s∗,P∗s ) = arg min
s ∈{0,1,...,n}
P∈P(s,n)

1

2R

R∑
r=1

‖P− Pr‖2
F ,

where P(s, n) denotes the set of rank-s projection matrices

I Writing P = UUH and expanding the cost function we obtain

min
U∈S(s,n)

tr
(

UH(I− 2P)U
)
,

where P = 1
R

∑R
r=1 Pr with eigenvalues 0 ≤ ki ≤ 1

I The optimal order s∗ is the number of negative eigenvalues
of the matrix

S = I− 2P,
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A few comments

I Does not rely on any statistical model for the generated data
and is free of penalty terms or tuning parameters, unlike most
order determination criteria like MDL, AIC, BIC

I The eigenvectors of the average projection matrix whose
eigenvalues are above 1/2 determine the signal subspace

I If all eigenvalues are smaller than 1/2 → No central subspace,
noise only hypothesis

I The order fitting rule arises naturally when we force P to be a
projection matrix (quantizing its eigenvalues to 0/1)
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A probabilistic interpretation
Given a collection of subspaces Pr with average P = FKFH

I The eigenvalues 0 ≤ ki ≤ 1 can be interpreted as
probabilities

I This allows us to define a discrete distribution D on the set
of projection matrices (or subspaces) with orientation matrix
U and concentration parameters α

P ∼ D(U,α),

useful as a random subspace generation mechanism
I A measure of the spread of the collection of subspaces is given

by the sample entropy

Ĥ =
1

n

n∑
i=1

(−ki log(ki )− (1− ki ) log(1− ki ))

useful for subspace clustering
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Robust formulation (outliers)

min
s ∈{0,1,...,n}
P∈P(s,n)

1

R

R∑
r=1

ρ

(
1

2
‖P− Pr‖2

F

)
where ρ (·) is a smooth concave function
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Majorization-minimization (MM) algorithms

I At each iteration, use a majorizer of the objective function

)()( )()1( kk ff PP ≤+ ∑
=







 −ρ=

R

r
rR

f
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)(kP)1( +kP)2( +kP

I As a majorizer, we linearize the concave function ρ(·)

min
P ∈ P(s,n)

1

R

R∑
r=1

ρ
(
d2
r

(
P(k)

))
+ ρ′

(
d2
r

(
P(k)

))(
d2
r (P)− d2

r

(
P(k)

))
where d2

r (P) = 1
2 ‖P− Pr‖2

F
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I At each iteration we solve a weighted SA problem

min
s ∈{0,1,...,n}
P∈P(s,n)

1

2

R∑
r=1

w̄
(k)
r ‖P− Pr‖2

F .

where

w̄
(k)
r =

ρ′
(
d2
r

(
P(k)

))∑R
r=1 ρ

′
(
d2
r

(
P(k)

)) , w̄
(k)
r ≥ 0,

∑
r

w̄
(k)
r = 1,

I The optimal order at iteration k + 1, s(k+1), is the number of
negative eigenvalues of the matrix

S(k) = I− 2P
(k)
w .

where P
(k)
w is now a weighted average projection matrix

P
(k)
w =

R∑
r=1

w̄
(k)
r Pr .
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Application to multi-sensor array processing



1φ

Source 1

Source 2

Source K

2/λ

array with M elements

2φ

I Uniform linear array (ULA) with M antennas

I K sources

I Electrical angles: θk = 2πd
λ sin(φk)

I M >> K antennas (e.g., massive MIMO, large-scale arrays)

I Small-sample regime: few snapshots
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I Received signal

x[t] =


1 . . . 1

e jθ1 . . . e jθK
...

...
...

e j(M−1)θ1 . . . e j(M−1)θK


 s1[t]

...
sK [t]

+


e1[t]
e2[t]

...
eM [t]

 = As[t]+e[t],

I e[t] ∼ CNM(0, σ2I)

I s[t] ∼ CNK (0,S)

I R = E
[
x[t]xH [t]

]
= ASAH + σ2I

Source enumeration (order estimation) problem

I To estimate K from R̂ = 1
N

∑N
t=1 x[t]xH [t]

I Typically solved by information-theoretic criteria such as MDL
(penalized functions of the eigenvalues of R̂)

I These methods underperform in the small-sample regime
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Subspace averaging for source enumeration

I To apply SA we need a collection of subspaces to start with

I The extracted subspaces should overlap as much as possible
with the true signal subspace

I But the noise portions of each subspace should be “as
independent as possible”

I How can we generate a good collection of subspaces for this
problem?

1. Exploiting the shift-invariance property of ULAs
2. Random sampling (bootstrapping)
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Shift invariance property




2/λ

L elements

subarray 2 

subarray 1

M antennas

K

1A ( )Kjj ee θ−θ−= ,,diag 1
12 AA{

KL >>
}

12 AA =

I Number of subarray S = M − L + 1
I For each L-dimensional subarray:

1. Estimate the sample covariance matrix R̂s , s = 1, . . . ,S
2. Extract a subspace of dimension kmax (K < kmax << L)
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Random sampling

More than one subspace per subarray? → Draw subspaces from an
appropriate distribution P ∼ D(U,α)
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Each random subspace is iteratively constructed as follows:

1. Initialize 〈V〉 = ∅
2. While rank(V) ≤ kmax do

2.1 Generate a random draw 〈G〉 ∼ D(U,α)
2.2 〈V〉 = 〈V〉⋃ 〈G〉
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SA algorithm

I Input: R̂, L, T and kmax

I Output: k̂SA
I For s = 1, . . . ,S do

1. Extract R̂s from R̂ and obtain R̂s = UsΣsUH
s

2. Generate T random subspaces from R̂s

3. Compute the projection matrices Pst = VstVH
st

I Compute

P =
1

ST

S∑
s=1

T∑
t=1

Pst

and its eigenvalues (k1, . . . , kL)

I Estimate k̂SA as the number of eigenvalues of P larger than
1/2
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Simulation parameters

I K narrowband incoherent unit-power signals, with DOAs
separated by ∆θ in electrical angle

I ULA with M antennas and half-wavelength element separation

I L = M − 5 =⇒ total number of subarrays S = 6

I For each subarray we generate T = 20 random subspaces of
dimension kmax = bM/5c

I 120 subspaces on G(kmax , L) to average

I SNR = 10 log10(1/σ2)

I Methods under comparison:

I LS-MDL criterion (Huang/So TSP 2013)
I NE criterion (Nadakuditi/Edelman TSP 2008)
I BIC method for large-scale arrays (Huang et. al. TVT 2016)
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Scenario 1
I K = 3 sources separated ∆θ = 2◦

I M = 100 antennas, N = 60 snapshots, L = bM − 5c
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Scenario 2
I K = 3 sources separated ∆θ = 10◦

I M = 100 antennas, SNR = −16 dB, L = bM − 5c,
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Conclusions

I An automatic order-fitting rule for extracting the dimension of
the average subspace that minimizes the extrinsic distance

I Quantization of the average projection matrix
I Free of penalty terms

I Scale-independent subspace modeling vs scale-dependent
covariance modeling

I Application to source enumeration in array processing

I Generation of a collection of subspaces:
I Exploiting the shift invariance property of ULAs
I Generating random draws from D(U,α)

I Competitive results in problems with large number of antennas
(high-dimensional ambient spaces) and relatively few snapshots
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Thank you for your attention!
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