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ABSTRACT

Improper signaling, where real and imaginary parts of the transmit
signal are correlated and/or have unequal power, has received a lot
of attention lately because it has been shown to increase achiev-
able rates in many interference-limited communication systems.
In this paper, we study whether improper signaling can also benefit
an orthogonal frequency-division multiplexing (OFDM) underlay
cognitive radio (UCR) system. We assume that the primary user
(PU) transmits proper signals, while the secondary user (SU) is
allowed to employ improper signaling. We consider two different
rate constraints for the rate of the PU: i) the total rate of the PU, and
ii) the rate of the PU in each subband. We propose an algorithm to
implement improper signaling for each constraint. In both cases,
we show that the benefits of improper signaling are relatively small
and decrease rapidly with increasing number of subbands. This
rather negative result shows that the use of improper signaling in
interference scenarios needs to be justified on a case-by-case basis.

Index Terms— Improper signaling, underlay cognitive radio,
OFDM systems, interference channels

1. INTRODUCTION

The performance of modern wireless communication systems is
mainly limited by interference from other users. Therefore, inter-
ference management techniques have become critical for efficient
spectrum usage. One way of enhancing the spectral efficiency is
to employ cognitive radio (CR) systems [1]. In CR systems, li-
censed or primary users (PU) share the spectrum with unlicensed
or secondary users (SU) provided that the PU’s communications
are not disturbed too much by the SU’s transmission. In under-
lay CR (UCR) systems, the SU can transmit on the channel of the
PU only if the rate of the PU is ensured to be greater than a thresh-
old. Another approach for improving efficient spectrum usage is to
employ improper signals, whose real and imaginary parts have un-
equal powers and/or are correlated [2]. It has been shown that im-
proper signaling can increase the achievable rates in interference-
limited systems [3–15]. In this paper, we study whether improper
signaling also pays off in an UCR OFDM scenario.

Several works have investigated employing improper signal-
ing in wireless communications. While proper signals achieve ca-
pacity in traditional communication systems [16], including point-
to-point communications, the broadcast channel, and the multiple-
access-channel (MAC), [3] and [4] established that, in interference
channels, employing improper signals increases the degrees-of-
freedom (DoF) in some cases and thus the achievable rates. In [5],
the effect of improper signaling on the rate region of single-input
single-output (SISO) Z-interference channels (Z-IC) was consid-
ered. The authors derived a necessary and sufficient condition
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for optimality of improper signaling. In [6], the authors showed
that improper signaling increases the achievable rate region of the
multi-antenna Z-IC. In [7], the effect of improper signaling in an
UCR system has been studied. The authors proved that improper
signaling can be beneficial in UCR systems, especially when the
load of the primary network is relatively low. Moreover, a con-
dition, based on channel state information (CSI), was derived for
improper signaling to be superior to proper signaling. In [8], the
authors applied improper Gaussian signaling to a relay scenario
and showed this signaling increased the average rate. In [9,10], the
authors showed that improper Gaussian signaling improved outage
probabilities in underlay and overlay CR, respectively, when there
are different CSI assumptions at the transmitter side.

In this paper, we consider a UCR OFDM system with improper
signaling. We consider two different thresholds on the rate of the
PU: i) a threshold on the total rate and ii) a threshold on the rate
of each subband.1 The reason why improper signaling can be ben-
eficial is discussed in [7]: On the one hand, improper signaling
decreases the rate of the SU. On the other hand, it allows the SU
to increase its transmission power without violating the PU’s rate
constraint. Improper signaling is only useful if this possible power
increase more than compensates for the rate loss.

Because improper signaling has been so successful at increas-
ing the achievable rates in many interference-limited scenarios,
one might expect the same in a UCR OFDM system. However,
the parallel channels in OFDM allow the SU to allocate its power
more flexibly compared to the single carrier case. Moreover, in rel-
atively low load traffic, when the constraint is on the total rate of
the PU, the PU can neglect some subcarriers without violating the
rate constraint. This allows the SU to transmit proper signals with
maximum power on those subbands. This is why our results show
that the benefit of improper signaling is fairly small and decreases
further with increasing number of subbands. Our study therefore
reveals that the use of improper signaling in interference channels
needs to be justified for each individual case.

The rest of the paper is organized as follows. In Section 2, we
describe the system model and optimization problems. In Section
3, we propose algorithms for solving the optimization problems.
We present numerical simulation results in Section 4.

2. SYSTEM MODEL AND PROBLEM DEFINITION

We call a zero-mean and complex random variable x proper if its
complementary-variance, E{x2}, is zero. Otherwise, we call it
improper. The circularity coefficient of x measures the degree of
impropriety of x and is defined as kx = |E{x2}|

E{|x|2} , 0 ≤ kx ≤ 1.
If kx = 1, we call x maximally improper [2]. The augmented
covariance matrix of signal x, which is the covariance matrix of

1The second constraint is more stringent and can be used when there is an inter-
ference power limit for each subband [17]. Moreover, it is more suitable for imple-
menting orthogonal frequency-division multiple access (OFDMA).



Fig. 1. The channel model for the UCR system in subband i
[x, x∗], is [2]

Cxx =

[
px kxpxe

−jφx

kxpxe
jφx px

]
, (1)

where px and φx are the variance of x and the phase of E{x2},
respectively.

We consider a UCR system, in which both primary and sec-
ondary users employ OFDM with N subbands. It is assumed that
the PU transmits proper Gaussian signals, while the SU is allowed
to employ improper Gaussian signaling. Since only the SU trans-
mits improper signals, the phase can be chosen as φx = 0 without
loss of generality. Thus, the augmented covariance matrices of the
signal transmitted by the PU and SU in subband i are Pi = piI
and

Qi =

[
qi kiqi
kiqi qi

]
,

respectively, where pi, qi, and ki denote the transmission power of
the PU, transmission power of the SU, and circularity coefficient
of the SU in subband i, respectively. Hence, the rates of the PU
and SU in subband i are [18]

Rp,i =
1

2
log2 |I+ (σ2I+GiQiG

H
i )−1HiPiH

H
i |,

Rs,i =
1

2
log2 |I+ (σ2I+DiPiD

H
i )−1FiQiF

H
i |, (2)

respectively, where σ2, Hi, Gi, Fi, and Di are the variance of
the additive noise, PU-PU, SU-PU, SU-SU and PU-SU channels,
respectively (see Fig. 1). Note that the channel matrices are diag-
onal and can be written as a product of the channel coefficient and
the identity matrix (e.g., Hi = hiI).

In this paper, our goal is to find a transmission strategy,
{Qi}Ni=1, for the SU that maximizes its rate, Rs, under the con-
straint that the rate of the PU, Rp, is ensured to be above a
threshold, R. It is assumed that the transmission power of the PU
is given, and the power budget of the SU isQmax. The optimization
problem can be formulated as

maximize
{Qi}Ni=1

Rs =

N∑
i=1

Rs,i (3a)

s.t. Rp > R, (3b)
N∑
i=1

Tr(Qi) 6 2Qmax, (3c)

Qi � 0, for i = 1, 2, ..., N, (3d)

[Qi]11 = [Qi]22, for i = 1, 2, ..., N, (3e)

where [Qi]kk is the kth element in the kth row of Qi. We consider
two different scenarios, in which the rate constraints are different.
In the first scenario, the total rate is greater than a threshold, and
thus, (3b) is equivalent to

∑N
i=1Rp,i > R. In the second, the

rate in each subband is greater than a threshold, and thus, (3b) is
replaced by the N constraints Rp,i > Ri, for i = 1, 2, ..., N .

3. PROPOSED TRANSMISSION STRATEGIES

3.1. Constraint on the total rate

We now solve the optimization problem in (3) with the rate con-
straint

∑N
i=1Rp,i > R. This problem is not convex since the

rate of the PU is a convex function of {Qi}Ni=1 rather than con-
cave. In order to solve the problem, we use the general inner
approximation approach [19]. In this approach, the optimization
problem is approximated by a convex optimization problem, and
solved iteratively. At each iteration, the non-concave constraint is
approximated by a concave function. It is known that this approach
converges to to a point satisfying the Karush-Kuhn-Tucker (KKT)
conditions [20]. Note that the initial point should be in the feasi-
ble set of the original problem. Since the channel and PU’s power
matrices are scaled identity matrices, we will show that (3e) is au-
tomatically satisfied in each iteration if the initial point satisfies
(3e). Thus, we can safely drop (3e) and consider only (3a)-(3d) in
each iteration.

In order to solve the described optimization problem, at each
iteration we approximate the rate of the PU by an affine function,
which is the closest concave function. We use the first-order term
in the Taylor series expansion of the rate of the PU with respect to
Qi at point Ql−1

i , which is given by the previous iteration. That is

Rp,i(Qi)'Rp,i(Ql−1
i )+Tr

[
∇QiRp,i(Q

l−1
i )
(
Qi−Ql−1

i

)]
, (4)

where ∇QiRp,i(Q
l−1
i ) is the derivative of the PU rate with re-

spect to Qi, which is

∇QiRp,i = −GH
i (σ2I+GiQiG

H
i )−1HiPHH

i

×
(
I+ (σ2I+GiQiG

H
i )−1HiPHH

i

)−1

×(σ2I+GiQiG
H
i )−1Gi.

(5)
By this approximation, the optimization problem at each iteration
turns into:

maximize
{Qi}Ni=1

Rs =

N∑
i=1

Rs,i (6a)

s.t.
N∑
i=1

Tr
(
Al−1
i Qi

)
6 Bl−1, (6b)

N∑
i=1

Tr(Qi) 6 2Qmax, (6c)

Qi � 0, for i = 1, 2, ..., N. (6d)

In (6), the coefficients Al−1
i and Bl−1 can be obtained as

Al−1
i =−∇QiRp,i(Q

l−1
i ), (7a)

Bl−1=

N∑
i=1

Rp,i(Q
l−1
i )−R−

N∑
i=1

Tr
(
∇QiRp,i(Q

l−1
i )Ql−1

i

)
.

(7b)

The solution of (6) can be derived by using the dual function and
KKT approach. The Lagrangian for the optimization problem (6)
can be written as

L({Ui}Ni=1, λ, µ) = µ(
∑N
i=1 Tr(Qi)− 2Qmax)

−
∑N
i=1

1
2
log2 |I+ (σ2I+DiPiD

H
i )−1FiQiF

H
i |

−
∑N
i=1Tr(UiQi)+λ(

∑N
i=1Tr(Al−1

i Qi)−Bl−1),
(8)

where λ, µ, and {Ui}Ni=1 are the Lagrangian multipliers of the
constraints (6b), (6c), and (6d), respectively [21]. Equating the
derivative of the Lagrangian to zero we obtain

∂L
∂Qi

=0⇒−FHi
[
I+ (σ2I+DiPiD

H
i )−1FiQiF

H
i

]−1
Fi

×(σ2I+DiPiD
H
i )−1 −Ui + λAl−1

i + µI = 0.
(9)

Since the coefficient matrices are scaled identity matrices, we can
simplify (9) as

− |fi|2

σ2 + |di|2pi

[
I+

|fi|2

σ2 + |di|2pi
Qi

]−1

−Ui+ λAl−1
i + µI= 0.

(10)



Algorithm I Proposed solution for constraint on the total rate
Initialize Q0

i in the feasible set of the problem (3)
Compute A0

i and B0 using (7)
Set l = 1

While ||Ql
i −Ql−1

i ||2 ≥ ε for at least one subband do

Ql
i =

[
(λAl−1

i + µI)−1 −
σ2 + |di|2pi
|fi|2

I

]+
where Tr(Al−1

i Qi) = Bl−1 and
∑N
i=1 Tr(Qi) = 2Qmax

Update Al
i and Bl using (7)

Set l = l + 1

End (While)

Note that if a constraint is not active, its corresponding Lagrangian
multiplier is zero. Thus, if the solution of (10), Qi, is positive
semidefinite for Ui = 0, (6d) is not active, and consequently, its
corresponding Lagrangian multiplier, Ui, is zero. Otherwise, Ui

should be determine in a way that the eigenvalues of Qi are non-
negative. The eigenvectors of Qi affect only constraint (6b), which
implies that the eigenvectors of Qi are equal to the eigenvectors of
Al−1
i (see [19, Lemma 2]). Hence, the optimal solution can be

obtained by solving (10) for Ui = 0 and replacing the negative
eigenvalues of Qi, if there are any, by zero. Finally, the closed-
form solution for Qi is

Qi =

[
(λAl−1

i + µI)−1 − σ2 + |di|2pi
|fi|2

I

]+
, (11)

where Q = [X]+ denotes an operator that replaces negative
eigenvalues of X with zeros. The Lagrangian multipliers µ
and λ can be derived by solving

∑N
i=1 Tr(Qi) = 2Qmax and∑N

i=1 Tr
(
Al−1
i Qi

)
= Bl−1. Through (11), it can be easily ob-

served that Qi follows the feasibility structure (3e) if Al−1
i , and

consequently the initial point, satisfies (3e). This solution is iter-
ated until convergence. We summarize the solution in Algorithm
I.

When the power constraint is the only active constraint, the
optimal solution is proper signaling, which can be obtained by the
well-known water-filling approach. As a result, improper signaling
can only be beneficial if the rate constraint is active. This is due to
the fact that the rate of the SU is a decreasing function of the circu-
larity coefficients; hence, a proper signal maximizes the rate when
there is only a power budget constraint. However, when the trans-
mitted power is restricted by interference, the allowed transmission
power can be increased by using improper signaling, which may
result in a higher achievable rate [7]. But even in this case, the
optimal solution may still turn out to be proper, depending on the
channel coefficients.

3.2. Constraint on the rate of each subband

We now solve problem (3) assuming a constraint on the rate of the
PU in each subband. We employ the analytical results in [7] to
implement an algorithm for this optimization problem. In [7], a
similar optimization problem for a single-carrier scenario is con-
sidered. Here, we extend the results to the OFDM scenario.

Lemma 1. The signal transmitted on subband i is improper if and
only if the following two conditions are met:

1. The corresponding channel coefficients satisfy
|gi|2(σ2+pi|di|2)

|fi|2σ2 > 1− pi|hi|2

σ2(22Ri−1)
.

2. The power allocated to subband i is greater than a given
threshold qthr

i,0, which we derive further below.

Proof. According to Theorem 1 in [7], improper signaling in sub-
band i is only beneficial if |gi|

2(σ2+pi|di|2)
|fi|2σ2 is greater than a thresh-

Algorithm II Proposed solution for the rate constraint
on each subband
Obtain Ci and Di, for i = 1, ..., N, by (13),
For i = 1, . . . , N

If Di > 0

Improper is beneficial in this subband, and thus
Rs,i =

1
2
log2(Ci +Diqi),

qi = qthr
i,l =

1
|gi|2

(
pi|hi|2

2Ri−1
− σ2

)
, and

qthr
i,u = 1

2|gi|2

(
pi|hi|2

2
2Ri−Rmax

p,i −1
− σ2

)
Else

Proper is beneficial in this subband, and thus

Rs,i = log2(1 +
|fi|2

σ2+|di|2pi
qi), qi = qthr

i,l = 0, and

qthr
i,u = 1

|gi|2

(
pi|hi|2

2Ri−1
− σ2

)
End (If)

End (For)
While qi = qthr

i,l for at least one improper subband do

qi=


[
1
µ
− Ci
Di

]qthr
i,u

qthr
i,l

if subband is improper[
1
µ
− σ2+|di|2pi

|fi|2

]qthr
i,u

0
if subband is proper

for i=1, . . . , N, where µ is such that
∑N
i=1 qi = Qmax

For i = 1, . . . , N

If subband is improper and qi = qthr
i,l

Make subband proper, and thus

Rs,i = log2(1 +
|fi|2

σ2+|di|2pi
qi)

qthr
i,l = 0, and qthr

i,u = 1
|gi|2

(
pi|hi|2

2Ri−1
− σ2

)
End (If)

End (For)
End (While)

old that does not depend on the channel coefficients. When im-
proper signaling is rate-maximizing on a subband, this is due to
the fact the maximum allowed power on that subband can be in-
creased by using improper signaling. If the power allocated to this
subband is greater than a threshold, which depends on the channel
coefficients, the optimal transmission is improper. According to
(11) in [7], the maximum allowed power qmax

i is a function of the
circularity coefficient, hence we can write qmax

i (ki). If the power
allocated to the subband is greater than qthr

i,0 = qmax
i (0), improper

signaling is optimal.

According to Lemma 1, improper signaling may be beneficial
on a subband depending on the channel coefficients. However, the
power allocated to a subband plays an important role as well. Since
the SU can allocate power to different subbands, proper transmis-
sions may be the optimal solution even in subbands where im-
proper signaling is potentially beneficial.

We propose an iterative algorithm to solve this problem. In
general, if subband i is potentially beneficial for improper signal-
ing, the rate of the SU in this subband can be written as [7]

Rs,i=

{
log2

(
1 + |fi|2qi

σ2+|di|2pi

)
if 0 6qi6 qthr

i,0,
1
2
log2 (Ci +Diqi) if qthr

i,0 6qi6 qthr
i,1,

(12)

where Ci and Di are constant coefficients, which can be obtained
from [7]:

Ci =1 +
|fi|4

|gi|4 (pi|di|2 + σ2)

(
p2i |hi|4

22Ri − 1
− σ4

)
, (13a)

Di=
2|fi|2

pi|di|2+σ2
+

2|fi|4

|gi|2(pi|di|2+σ2)2

(
pi|hi|2

22Ri−1
−σ2

)
. (13b)
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Fig. 2. Improvement by employing improper signaling versus the
number of subbands for α=70%. The results are for the constraint
on total rate.

Note that the first condition in Lemma 1 is equal to Di > 0. Fi-
nally, the thresholds in (12) are

qthr
i,0 =

1

|gi|2

(
pi|hi|2

2Ri − 1
− σ2

)
, (14a)

qthr
i,1 =

1

2|gi|2

(
pi|hi|2

22Ri−Rmax
p,i − 1

− σ2

)
, (14b)

where Rmax
p,i = Rp,i(qi = 0) refers to the maximum achievable

rate of the PU on subband i. The thresholds in (14a) and (14b)
are the maximum allowed power of the SU in proper, ki = 0, and
maximally improper, ki = 1, cases, respectively.

In our proposed iterative algorithm, it is assumed in the first
iteration that an improper signal is transmitted on a subband if an
improper signal is potentially beneficial on that subband, i.e., the
first condition in Lemma 1 is fulfilled. As a result, the allocated
power is constrained to be in the interval [qthr

i,0, q
thr
i,1]. The rate of the

SU is computed based on (12). The solution of this optimization
problem is the well-known water-filling approach [16]. If, after
solving the optimization in (3), the power allocated to an improper
subband is equal to qthr

i,0, proper signaling is the optimal solution
for this subband. Thus, we update the set of proper and improper
subbands and solve again the problem in (3). This procedure is
iterated until all the powers allocated to all improper subbands are
greater than qthr

i,0. The proposed algorithm is summarized in Al-
gorithm II. Note that qthr

i,l and qthr
i,u are lower and upper bounds of

the power allocated to each subband in Algorithm II, respectively.
Moreover, [X]ba = max (min(X, b), a).

4. NUMERICAL RESULTS

In this section, we provide some numerical results. We consider
Rayleigh fading channels, in which the real and imaginary parts
of the channel coefficients are independent Gaussian random vari-
ablesN (0, 1). For the sake of simplicity, it is assumed that the PU
transmits with a fixed power P on each subband. The transmitted
power of the PU on each subband, P , and variance of the addi-
tive Gaussian noise, σ2 are equal to 1. The results are obtained by
averaging over 100 independent channel realizations.

Let us first consider the problem where there is a constraint
on the total PU rate. In Fig. 2, the improvement in rate obtained
by employing improper signaling is shown for α = 70%, where
α= R

Rp(q=0)
is the loading factor. In order to consider the effect

of identical parallel channels, we assumed that Qmax = PN . In
other words, the power budget of the SU is increased at the same
rate as the transmission power of the PU. The rate improvement by
employing improper signaling decreases rapidly with increasing
number of subbands, from 30% for N = 1 to less than 1% for
N = 10. This is due to the fact that the SU can allocate power
more flexibly when there are more subbands.
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Fig. 3. Improvement by employing improper signaling versus the
number of subbands for α = 70%. The results are for the rate
constraint on each subband.
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Fig. 4. Improvement by employing improper signals versus α for
Qmax = 20 and N = 10. The results are for the rate constraint on
each subband.

Let us now consider the problem where there is a rate con-
straint on each subband. Figure 3 shows the improvement obtained
by employing improper signaling versus the number of subbands
for α = 70% and Qmax = PN . As before, the improvements
rapidly decrease with an increasing number of subbands.

In Fig. 4, the improvements of improper signaling over proper
signaling are shown as a function of α. The improvement is a de-
creasing function of α. When N = 10, which is a relatively low
number, the improvement is less than 10% for α > 65%. More-
over, as shown in Fig. 3, this gain decreases with increasing num-
ber of subbands.

We notice that improper signaling is more beneficial in the sce-
nario where the rate threshold is on each subband. The reason is
that, for example, when α = 80% it is possible for the PU to ne-
glect one subband out of five without violating the rate constraint.
Thus, the SU can transmit proper signals with maximum power
on that subband. As we observe in Fig. 3, even though improper
signaling is more effective in the second scenario, the benefits also
rapidly decrease with increasing number of subbands N .

5. CONCLUSION

Improper signaling has received quite a bit of attention lately as a
means to improve achievable rates in interference channels. In this
paper, we investigated whether improper signaling is also bene-
ficial in an UCR OFDM system. While there are indeed some
benefits, these are minor and mainly apply to scenarios with small
number of OFDM subbands. Such a rather negative result may be
surprising, but it shows that improper signaling is not a magic tool
that works in every case. Rather, its use needs to be justified on a
case-by-case basis.



6. REFERENCES

[1] S. Haykin, “Cognitive radio: brain-empowered wireless
communications,” IEEE J. Sel. Areas Commun., vol. 23,
no. 2, pp. 201–220, 2005.

[2] P. J. Schreier and L. L. Scharf, Statistical Signal Processing
of Complex-Valued Data: the Theory of Improper and Non-
circular Signals. Cambridge University Press, 2010.

[3] V. R. Cadambe, S. A. Jafar, and C. Wang, “Interference
alignment with asymmetric complex signaling–Settling the
Høst-Madsen-Nosratinia conjecture,” IEEE Trans. Inf. The-
ory, vol. 56, no. 9, pp. 4552–4565, 2010.

[4] C. Lameiro and I. Santamaría, “Degrees-of-freedom for the
4-user SISO interference channel with improper signaling,”
in Proc. IEEE Int. Conf. Commun. (ICC), 2013, pp. 3053–
3057.

[5] C. Lameiro, I. Santamaría, and P. J. Schreier, “Rate region
boundary of the SISO Z-interference channel with improper
signaling,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1022–
1034, 2017.

[6] S. Lagen, A. Agustin, and J. Vidal, “On the superiority of
improper Gaussian signaling in wireless interference MIMO
scenarios,” IEEE Trans. Commun., vol. 64, no. 8, pp. 3350–
3368, 2016.

[7] C. Lameiro, I. Santamaría, and P. J. Schreier, “Benefits of im-
proper signaling for underlay cognitive radio,” IEEE Wireless
Commun. Lett., vol. 4, no. 1, pp. 22–25, 2015.

[8] S. Javed, O. Amin, and M.-S. Alouini, “Full-duplex relaying
under I/Q imbalance using improper Gaussian signaling,” in
Proc. IEEE Int. Conf. on Acoust., Speech and Signal Process-
ing (ICASSP), 2017, pp. 6538–6542.

[9] O. Amin, W. Abediseid, and M.-S. Alouini, “Underlay cog-
nitive radio systems with improper Gaussian signaling: Out-
age performance analysis,” IEEE Trans. Wireless Commun.,
vol. 15, no. 7, pp. 4875–4887, 2016.

[10] ——, “Overlay spectrum sharing using improper Gaussian
signaling,” IEEE J. Sel. Areas Commun., vol. 35, no. 1, pp.
50–62, 2017.

[11] H. D. Nguyen, R. Zhang, and S. Sun, “Improper signaling
for symbol error rate minimization in K-user interference
channel,” IEEE Trans. Commun., vol. 63, no. 3, pp. 857–869,
2015.

[12] Y. Zeng, R. Zhang, E. Gunawan, and Y. L. Guan, “Opti-
mized transmission with improper Gaussian signaling in the
K-user MISO interference channel,” IEEE Trans. Wireless
Commun., vol. 12, no. 12, pp. 6303–6313, 2013.

[13] L. Yang and W. Zhang, “Interference alignment with asym-
metric complex signaling on MIMO X channels,” IEEE
Trans. Commun., vol. 62, no. 10, pp. 3560–3570, 2014.

[14] H.-Y. Shin, S.-H. Park, H. Park, and I. Lee, “A new approach
of interference alignment through asymmetric complex sig-
naling and multiuser diversity,” IEEE Trans. Wireless Com-
mun., vol. 11, no. 3, pp. 880–884, 2012.

[15] Z. K. Ho and E. Jorswieck, “Improper Gaussian signaling on
the two-user SISO interference channel,” IEEE Trans. Wire-
less Commun., vol. 11, no. 9, pp. 3194–3203, 2012.

[16] T. M. Cover and J. A. Thomas, Elements of Information The-
ory. John Wiley & Sons, 2012.

[17] R. Zhang and Y.-C. Liang, “Exploiting multi-antennas for
opportunistic spectrum sharing in cognitive radio networks,”
IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 88–102,
2008.

[18] Y. Zeng, C. M. Yetis, E. Gunawan, Y. L. Guan, and R. Zhang,
“Transmit optimization with improper Gaussian signaling for
interference channels,” IEEE Trans. Signal Process., vol. 61,
no. 11, pp. 2899–2913, 2013.

[19] C. Lameiro, W. Utschick, and I. Santamaría, “Spatial in-
terference shaping for underlay MIMO cognitive networks,”
Signal Processing, vol. 134, pp. 174–184, 2017.

[20] B. R. Marks and G. P. Wright, “A general inner approxima-
tion algorithm for nonconvex mathematical programs,” Op-
erations Research, vol. 26, no. 4, pp. 681–683, 1978.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.


