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ABSTRACT
In this paper, a new blind channel estimation technique for multiple-
input multiple-output (MIMO) space-time block coded (STBC) sys-
tems is proposed. The technique is solely based on second-order
statistics (SOS), and it consists on the extraction of the main eigen-
vector of a modified correlation matrix. Furthermore, it can be in-
terpreted as a deterministic technique, i.e., in the absence of noise it
is able to exactly recover the channel, up to a real scalar, within a fi-
nite number of observations. Unfortunately, in many practical cases
there exist ambiguities associated to the problem of blind channel
estimation from SOS. In order to resolve these problems we propose
a new transmission technique, which is based on the combination
of different STBCs (code diversity). In the simplest case, this tech-
nique reduces to a rotation or permutation of the transmit antennas
(non-redundant precoding). Finally, the performance of the propo-
sed method is demonstrated by means of some simulation examples.

1. INTRODUCTION

In the last ten years, space-time block coding (STBC) [1–4] has
emerged as one of the most promising techniques to exploit spatial
diversity in multiple-input multiple-output (MIMO) systems. This
has motivated the development of different families of STBCs, inclu-
ding the orthogonal (OSTBCs) [1, 2], quasi-orthogonal (QSTBCs)
[3, 4], and trace-orthogonal (TOSTBCs) [5, 6] space-time block co-
des. A common assumption for most of the STBCs is that perfect
channel state information (CSI) is available at the receiver. Ob-
viously, this is not true in practice, where the channel is usually esti-
mated by means of training approaches, which implies a reduction in
the bandwidth efficiency. On the other hand, the differential techni-
ques [7, 8], which do not require channel knowledge at the receiver,
incur a penalty in performance of at least 3-dB as compared to the
coherent maximum likelihood (ML) receiver. These shortcomings
suggest the use of blind or semi-blind methods [9–12].

Blind techniques can be divided into two groups depending on
whether they exploit the higher-order statistics (HOS) or the second-
order statistics (SOS) of the signals. The HOS-based methods in-
clude the optimal blind ML decoder, as well as several suboptimal
methods [10], and in general, the computational complexity of HOS-
based techniques remains relatively high. In order to overcome this
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problem several SOS-based methods have been proposed [11, 12].
Specifically, in [11] the authors have proposed a subspace method
for OSTBCs [2], and in [12] a more general blind decoding techni-
que has been proposed.

In this paper we consider a general class of STBCs and propose
a new blind channel estimation algorithm. The proposed technique
is only based on SOS, and it can be seen as a deterministic approach,
i.e., in the absence of noise it is able to recover the channel, up to
a real scalar, within a finite number of observations. Furthermore,
the proposed method generalizes the results in [11] and, unlike the
technique in [12], it is not affected by more ambiguities than those
associated to the problem of blind channel estimation from SOS. In
order to avoid these remaining indeterminacy problems we propose
a new transmission technique based on the idea of code diversity,
which consists on the use of different STBCs in different blocks of
data. Interestingly, this technique can be reduced to a non-redundant
precoding consisting on a single rotation or permutation of the trans-
mit antennas, which comes at virtually no computational expense at
the transmitter. Finally, the performance of the proposed technique
is evaluated by means of some numerical examples.

2. DATA MODEL FOR SPACE-TIME BLOCK CODES

In this paper, we will use bold-faced upper case letters to denote
matrices, e.g., X, with elements xi,j ; bold-faced lower case letters
for column vector, e.g., x, and light-faced lower case letters for sca-
lar quantities. The superscripts (·)T and (·)H will denote transpose
and Hermitian, respectively. The real and imaginary parts will be
denoted as �(·) and �(·), and superscript (̂·) will denote estimated
matrices, vectors or scalars. The trace, range (or column space) and
Frobenius norm of matrix A will be denoted as Tr(A), range(A)
and ‖A‖, respectively. Finally, the identity and zero matrices of the
required dimensions will be denoted as I and 0, and En[·] will de-
note the expectation operator with respect to n.

A flat fading multiple-input multiple-output (MIMO) system with
nT transmit and nR receive antennas is assumed. The nT × nR

complex channel matrix is H = [h1 · · ·hnR ], where hi,j denotes
the channel response between the i-th transmit and the j-th receive
antennas, and hj = [hi,j , . . . , hnT ,j ]

T . The complex noise at the
receive antennas is considered both spatially and temporally white
with variance σ2.

Let us consider a linear space-time block code (STBC) transmit-
ting M symbols during L time slots and using nT antennas at the
transmitter side. The transmission rate is defined as R = M/L, and
the number of real symbols transmitted in each block is M ′ = 2M
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for general complex codes and M ′ = M for real codes.
For a STBC, the n-th block of data can be expressed as

S(s[n]) =
M′∑
k=1

Cksk[n],

where s[n] = [s1[n], . . . , sM′ [n]]T contains the M ′ real informa-
tion symbols transmitted in the n-th block, and Ck ∈ C

L×nT ,
k = 1, . . . , M ′, are the STBC code matrices. In the case of real
STBCs, the transmitted matrix S(s[n]) and the code matrices Ck

are real.
The combined effect of the STBC and the j-th channel can be

represented by the L × 1 complex vectors

wk(hj) = Ckhj , k = 1, . . . , M ′,

and defining w̃k(hj) =
[�(wk(hj))

T ,�(wk(hj))
T
]T

we can

write w̃k(hj) = C̃kh̃j , where h̃j =
[�(hj)

T ,�(hj)
T
]T

, and

C̃k =

[�(Ck) −�(Ck)
�(Ck) �(Ck)

]
.

The signal at the j-th receive antenna is

yj [n] = S(s[n])hj + nj [n] =
M′∑
k=1

wk(hj)sk[n] + nj [n],

where nj [n] is the white complex noise with variance σ2.
Defining now the vectors ỹj [n] = [�(yj [n])T ,�(yj [n])T ]T

and ñj [n] = [�(nj [n])T ,�(nj [n])T ]T , the above equation can be
rewritten as

ỹj [n] =
M′∑
k=1

w̃k(hj)sk[n] + ñj [n] = W̃(hj)s[n] + ñj [n],

where W̃(hj) = [w̃1(hj) · · · w̃M′(hj)]. Finally, stacking all the

received signals into ỹ[n] =
[
ỹT

1 [n], . . . , ỹT
nR

[n]
]T

, we can write

ỹ[n] = W̃(H)s[n] + ñ[n],

where W̃(H) =
[
W̃T (h1) · · ·W̃T (hnR)

]T

, and ñ[n] is defined

analogously to ỹ[n].
If H is known at the receiver, and assuming a Gaussian noise

distribution, the information symbols can be optimally recovered by
means of the maximum likelihood (ML) decoder, whose computatio-
nal complexity depends on the specific STBC properties. In general,
an alternative solution with a reduced computational complexity is
given by the direct application of the linear minimum mean square
error (LMMSE) criterion.

3. PROPOSED BLIND CHANNEL ESTIMATION METHOD

In this section we propose a new blind channel estimation technique
based on the relaxed blind ML receiver. Although derived from a
stochastic framework, the proposed method can be seen as a deter-
ministic technique, i.e., in the absence of noise it is able to exactly
recover, up to a real scalar, the MIMO channel. The method is ba-
sed on a prewhitening of the observations and the extraction of the
main eigenvector of a modified correlation matrix, and therefore, its
computational complexity is relatively low. Let us start this section
by introducing the main conditions of the proposed technique.

3.1. Main Assumptions

The proposed algorithm is based on the following mild assumptions:

Condition 1 (Number of available blocks) The MIMO channel is
flat fading and constant during a period of N ≥ M ′ transmission
blocks.

Condition 2 (Input signals) The correlation matrix of the informa-
tion symbols Rs = En

[
s[n]sT [n]

]
is full rank.

Condition 3 (Code properties) For some constant c, the code ma-

trices satisfy
∑M′

k=1 CH
k Ck = c2I, which constitutes the necessary

and sufficient condition for

‖W̃(H)‖ = c‖H‖, ∀H.

Condition 4 (Rate and number of receive antennas) The equiva-
lent channel matrix W̃(H) is full column rank, which implies that
the number of receive antennas satisfy

nR ≥
{

R for complex codes,
R/2 for real codes.

Conditions 1 and 2 establish mild assumptions on the coherence
time of the channel and the correlation properties of the inputs. The
energy constraint in Condition 3 is directly related with the aim of
reducing the effect of the channel fading, and therefore, it is satis-
fied by most of the practical STBCs. Finally, we must note that if
W̃(H) is not full column rank, any information vector s[n] + z[n],
with z[n] belonging to the null subspace of W̃(H), will provide the
same observations ỹ[n] as s[n]. Therefore, Condition 4 is a common
assumption for most of the practical STBCs.

3.2. Proposed Criterion

Let us now introduce the blind maximum likelihood (ML) receiver,
which is based on the minimization of the following cost function

L(Ĥ, ŝ[n]) = En

[∥∥∥ỹ[n] − W̃(Ĥ)ŝ[n]
∥∥∥2

]
, (1)

subject to the constraint that the estimated symbols ŝ[n] belong to
some finite alphabet. Unfortunately, this is a fairly difficult problem,
which is due to the fact that all the possible information symbol se-
quences have to be considered.

A direct simplification of the above problem is given by the re-
laxation of the finite alphabet constraint. Here, we must note that
this relaxation introduces a real scalar ambiguity in the channel and
signal estimates, which is a common ambiguity for all the SOS-
based blind techniques. Therefore, from now on we will consider
‖Ĥ‖ = ‖H‖ = 1.

Considering the signal estimates ŝ[n] minimizing (1), the cost
function can be rewritten as

L(Ĥ) = En

[‖ỹ[n]‖2] − En

[
ỹT [n]Ũ(Ĥ)ŨT (Ĥ)ỹ[n]

]
,

where Ũ(Ĥ) ∈ R
2LnR×M′

is an orthogonal basis for the subspace
spanned by the columns of W̃(Ĥ). Now, taking into account the
property Tr

(
AT B

)
= Tr

(
ABT

)
, with A,B ∈ R

p×q , the relaxed
blind ML decoder is reduced to the following maximization problem

argmax
Ĥ

Tr
(
ŨT (Ĥ)RỹŨ(Ĥ)

)
, (2)



nT P (nR = 1) P (nR = 2) P (nR = 3) P (nR = 4) P (nR = 5) P (nR = 6) P (nR = 7) · · · P (nR = 15)

2 4
3 6 4 2
4 8
5 10 4 2
6 12 8 4
7 14 12 10 8 6 4 2
8 16
9 18 4 2

10 20 8 4
11 22 12 2
12 24 16 8
13 26 20 14 8 2
14 28 24 20 16 12 8 4
15 30 28 26 24 22 20 18 32 − 2nR 2
16 32

Table 1. Identifiability characteristics for QSTBCs.

where Rỹ = En

[
ỹ[n]ỹT [n]

]
= W̃(H)RsW̃

T (H) + σ2

2
I is the

correlation matrix of the observations.
Unfortunately, the dependency of Ũ(Ĥ) with Ĥ is rather com-

plicated, which precludes the direct solution of (2). However, we
must note that the maximization problem in (2) is equivalent to

argmax
Ĥ

Tr
(
ŨT (Ĥ)ΦỹŨ(Ĥ)

)
,

where Φỹ = Ũ(H)ŨT (H) is the whitened and rank-reduced ver-
sion (with rank M ′) of the correlation matrix Rỹ. Finally, taking
Condition 3 into account, it can be proven in a straightforward man-
ner that the above problems can be rewritten as

argmax
Ĥ

Tr
(
W̃T (Ĥ)ΦỹW̃(Ĥ)

)
, (3)

which constitutes our final channel estimation criterion. Therefore,
taking into account that Φỹ = Ũ(H)ŨT (H) is a projection ma-
trix, we can state that the proposed criterion amounts to finding
the MIMO channel Ĥ maximizing the energy of the projection of
W̃(Ĥ) onto the subspace defined by the equivalent channel W̃(H).

3.3. Algorithm Implementation and Further Discussion

In practice, the theoretical correlation matrices Rỹ and Φỹ are not
exactly known, and they have to be replaced by their finite sample
estimates R̂ỹ and Φ̂ỹ. Assuming a set of N available blocks at the
receiver, the finite sample estimate of Rỹ is given by

R̂ỹ =
1

N

N−1∑
n=0

ỹ[n]ỹT [n],

and Φ̂ỹ is obtained from the main M ′ eigenvectors of R̂ỹ.

Let us now define the vectorized channel h̃ =
[
h̃T

1 , . . . , h̃T
nR

]T

,

and the M ′ block diagonal matrices D̃k ∈ R
2LnR×2nT nR ,

D̃k =



C̃k · · · 0

...
. . .

...
0 · · · C̃k


 , k = 1, . . . , M ′.

Thus, it is easy to see that the k-th column of W̃(H) is given by
D̃kh̃, and (3) can be rewritten as

argmax
ˆ̃
h

ˆ̃
hT Θ̂

ˆ̃
h, with Θ̂ =

M′∑
k=1

D̃T
k Φ̂ỹD̃k. (4)

Finally, taking into account the energy constraint ‖ˆ̃
h‖ = 1, the chan-

nel estimate ˆ̃
h is directly given by the eigenvector associated to the

largest eigenvalue of Θ̂.
Here we must point out that, in the case of orthogonal space-

time block codes (OSTBCs), the proposed method is equivalent to
the technique in [11], and the whitening step is not necessary, i.e.,
Φ̂ỹ can be replaced by R̂ỹ [11]. This is due to the fact that, for
OSTBCs, Ũ(Ĥ) = W̃(Ĥ)/‖Ĥ‖, which permits the direct solution
of the maximization problem in (2). Moreover, the reformulation of
the blind channel estimation problem as an eigenvalue problem ma-
kes the development of adaptive blind channel estimation algorithms
very easy. Specifically, including a prewhitening of the observations
ỹ[n], the principal component analysis (PCA) algorithm in [13, 14]
can be directly applied to obtain the solutions of (4).

4. SOLUTION TO THE IDENTIFIABILITY PROBLEMS

In this section, we analyze the identifiability conditions associated
to the blind channel estimation process, and propose a new trans-
mission technique to avoid the ambiguity problems. The proposed
technique is based on the idea of code diversity, which consists on
the use of different codes in different data blocks, but it can be redu-
ced to a non-redundant precoding consisting on a set of rotations or
permutations of the transmit antennas.

4.1. Identifiability Problems

Although some sufficient identifiability conditions have been obtai-
ned for the case of OSTBCs [15], the identifiability analysis for a
wide class of STBCs is far from trivial. In this subsection we for-
mulate the identifiability problem and derive some intuitive results,
which will be later exploited to avoid some of the ambiguities.

The indeterminacies associated to the blind channel estimation
from SOS are provoked by the existence of a MIMO channel Ĥ �=
cH and signal ŝ[n] �= c−1s[n], with c a real scalar, satisfying

W̃(Ĥ)ŝ[n] = W̃(H)s[n], n = 0, . . . , N − 1.

It is easy to prove that, for a sufficiently large N , the above equality
is equivalent to

range
(
W̃(Ĥ)

)
= range

(
W̃(H)

)
. (5)

Furthermore, we must point out that the solutions to (3) belong to the
subspace defined by (5), and therefore, the ambiguities are associa-
ted to the blind channel estimation problem and not to the proposed



criterion. Finally, from a practical point of view, the existence of
spurious solutions is translated into a multiplicity P > 1 of the lar-
gest eigenvalue of Θ̂. Therefore, the P principal eigenvectors of Θ̂
constitute a basis G ∈ R

2nT nR×P for the subspace containing all

the solutions ˆ̃
h to the proposed blind channel estimation criterion.

Let us illustrate this with an example. Table 1 shows the multi-
plicities of the largest eigenvalue for the rate one QSTBCs introdu-
ced in [3,4]. As can be seen, the multiplicity decreases with the num-
ber of receive antennas nR until some fixed value, which is repeated
(empty spaces in the table) for larger nR. Unfortunately, these re-
sults suggest that the channel can not be unambiguously recovered
from the SOS of the received signals.

4.2. Code Diversity Technique

From the identifiability discussion in the previous subsection we
know that the true channel h̃ belongs to the subspace defined by
the matrix G(H, C) ∈ R

2nT nR×P (C), where we have explicitly in-
cluded the dependency on the channel H and the code C.

Let us now consider K different codes Ck, k = 1, . . . , K, with
nT transmit antennas and transmitting M(Ck) information symbols
in L(Ck) uses of the channel. Then, it is obvious that

h̃ ∈ {range (G(H, C1)) ∩ · · · ∩ range (G(H, CK))} ,

i.e., the true channel belongs to the intersection of the K different
subspaces, of size P (Ck), defined by the matrices G(H, Ck). Ho-
wever, in a general case, there is no reason to think that the rank of
such intersection will be larger than 1, i.e., the spurious solutions to
the blind channel estimation problem for code Ck do not necessarily
maximize the criterion (3) when a different code Cl (l �= k) is used.

The proposed technique is based on the previous idea. Assuming
that the MIMO channel remains constant during a large enough in-
terval, the first M(C1) information symbols are transmitted during
the first L(C1) time slots using C1. In the following L(C2) channel
uses, M(C2) new information symbols are transmitted by means of
C2, and the same procedure is used with the K STBCs. Thus, the set
of K STBC blocks can be considered as a composite STBC, and the
proposed blind channel estimation technique can be directly applied.

Furthermore, it is easy to prove [16] that the solutions ˆ̃
h to the chan-

nel estimation criterion belong to the intersection of the subspaces
spanned by G(H, Ck), for k = 1, . . . , K.

4.3. A Particular Solution: Non-Redundant Precoding

Here we propose a particularly single code combination strategy,
which is based on only one STBC which is modified by means of
a non-redundant precoding consisting on the rotation of the transmit
antennas. Specifically, considering K different unitary matrices Qk

(k = 1, . . . , K), and assuming a code C with transmission matrix
S(s[n], C), we define the following transmission matrices

S(s[n], Ck) = S(s[n], C)Qk, k = 1, . . . , K,

which are associated to K different codes Ck. Thus, the code di-
versity is obtained by rotating the transmission matrix of one STBC
and, since the effect of the rotations can be considered as part of
the channel, the code properties are preserved. Finally, we must
point out that the matrices Qk can be chosen as permutation matri-
ces, which does not increase the complexity of the transmitter and
preserves the power properties associated to each transmit antenna.

nT P (nR = 1) P (nR = 2)

2 4 4
3 6 1
4 8 1
5 10 1
6 12 1
7 14 1
8 16 1
9 18 1

10 20 1
11 22 1
12 24 1
13 26 1
14 28 1
15 30 1
16 32 1

Table 2. Application of the non-redundant precoding technique.
QSTBC codes and K = 4 random rotations.

5. SIMULATION RESULTS

In this section the performance of the proposed techniques is evalua-
ted by means of some numerical examples. All the results are based
on 5000 independent experiments. The MIMO channel is generated
as a Rayleigh channel with unit variance elements, and the signal to
noise ratio (SNR) is defined as the ratio between the averaged trans-
mitted energy per symbol period and the noise variance. Finally, the
i.i.d information symbols belong to a quadrature phase shift keying
(QPSK) constellation, and the receivers have been designed based
on the LMMSE criterion and a hard decision decoder.

In the first set of examples the non-redundant precoding techni-
que, with K = 4 precoding matrices, is evaluated. The precoding
matrices have been randomly generated for each independent expe-
riment. Table 2 shows the multiplicities1 of the largest eigenvalue
of Θ̂ for the rate one QSTBCs introduced in [3, 4]. As can be seen,
most of the ambiguities in Table 1 have been resolved, with the only
exceptions of the MISO cases (nR = 1) and the Alamouti code
(nT = 2) [1]. Interestingly, these results are analogous to those
obtained in [11] for the case of OSTBCs.

In the second example, the QSTBC design for nT = M = L =
8 and nR = 4 has been evaluated. We have used K = 4 permutation
precoding matrices given by

Q1(8) =

[
Q1(4) 0

0 Q2(4)

]
, Q2(8) =

[
Q3(4) 0

0 Q4(4)

]
,

Q3(8) =

[
Q1(4) 0

0 Q3(4)

]
, Q4(8) =

[
Q2(4) 0

0 Q4(4)

]
,

where

Q1(4) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Q2(4) =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 ,

Q3(4) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , Q4(4) =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 .

Figs. 1 and 2 show the MSE in the channel estimate and the bit
error rate (BER) after decoding for different numbers N of availa-
ble blocks at the receiver. As can be seen, for a sufficiently large

1Excluding degenerated channels such as H = 0, the multiplicities are
independent of the specific channel realization.
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Fig. 1. Channel estimate MSE of the proposed method with K = 4
code permutations. QSTBC with nT = M = L = 8 and nR = 4.

N , the performance degradation with respect to the coherent recei-
ver is lower than the minimal loss (3-dB) associated to the QSTBC
differential technique proposed in [8].

6. CONCLUSIONS

In this paper, a new blind channel estimation technique for multiple-
input multiple-output (MIMO) space-time block coded (STBC) sys-
tems has been proposed. The technique is solely based on second
order statistics (SOS), and therefore independent of the specific sig-
nal constellation. Furthermore, it does not require any assumption
about the correlation matrix of the sources, which is translated in
the fact that the technique can be seen as a deterministic approach,
i.e., in the absence of noise it is able to exactly recover the channel,
up to a real scalar, within a finite number of observations. Additio-
nally, the channel identifiability conditions have been analyzed, and
a general method to avoid the ambiguity problems has been propo-
sed. The technique is based on the idea of code diversity, but it can
be reduced to a non-redundant precoding consisting on the rotation
or permutation of the transmit antennas. Finally, the performance
of the proposed techniques has been illustrated by means of some
numerical examples.
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