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a b s t r a c t

The separation of a complex mixture based solely on second-order statistics can be
achieved using the Strong Uncorrelating Transform (SUT) if and only if all sources have
distinct circularity coefficients. However, in most problems we do not know the circularity
coefficients, and they must be estimated from observed data. In this work, we propose a
detector, based on the generalized likelihood ratio test (GLRT), to test the separability of a
complex Gaussian mixture using the SUT. For the separable case (distinct circularity
coefficients), the maximum likelihood (ML) estimates are straightforward. On the other
hand, for the non-separable case (at least one circularity coefficient has multiplicity
greater than one), the ML estimates are much more difficult to obtain. To set the thres-
hold, we exploit Wilks' theorem, which gives the asymptotic distribution of the GLRT
under the null hypothesis. Finally, numerical simulations show the good performance of
the proposed detector and the accuracy of Wilks' approximation.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The blind separation of a linear mixture of complex
independent sources is an important problemwith a range
of applications, e.g. in biomedical image analysis. See
[1–3], and references therein. The Strong Uncorrelating
Transform (SUT) allows blind separation based solely
on second-order statistics [4–6], provided that these
sources correlate with their complex conjugates and that
the strengths of these correlations differ from source to
source. A complex random variable x that correlates with
its complex conjugate xn has a nonzero complementary
covariance E½x2� and is called improper or noncircular.

The circularity coefficient k¼ jE½x2�j=E½jxj2� takes values
between 0 and 1 and measures how noncircular or
improper a random variable is. This may be illustrated by
All rights reserved.

amírez).
the density contours of a univariate complex Gaussian
random variable. These contours are ellipses, and the
shape of these ellipses is controlled by the circularity
coefficients [7]. If a Gaussian random variable has circu-
larity coefficient k¼0, then its probability density contours
are circular [8–10]; if it has circularity coefficient k¼1,
then its probability density contours degenerate into a line
in the complex plane.

The circularity coefficients are invariant to linear trans-
formations. Thus, a linear mixture of complex sources has
the same set of circularity coefficients as the original
sources. This invariance property is exploited by the SUT
for blind separation. A necessary and sufficient condition
for separability using the SUT is that all circularity coeffi-
cients of the sources are distinct. It thus makes intuitive
sense that separation of the mixture should be easier if the
circularity coefficients are more clearly separated, and
it should become more difficult if the circularity coeffi-
cients are more clustered. This intuition is supported
theoretically by [11].

In practice, the circularity coefficients are not known a
priori and must be estimated from the observed data.
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We are thus confronted with the question whether or not a
mixture is separable, based on a given set of observations.
This paper deals with this problem by deriving a general-
ized likelihood ratio test (GLRT) to decide whether a
mixture of complex-valued improper signals is separable
or not. The test boils down to testing whether all circular-
ity coefficients are distinct or whether there are circularity
coefficients with multiplicity greater than one. This paper
extends preliminary results reported at a conference [12],
where we did not include any details of the rather lengthy
proofs.

The structure of our paper is as follows. In Section 2,
we review how the SUT enables ICA of complex sources.
In Section 3, we formally define our hypothesis testing
problem, and in Section 4, we derive the GLRT. Finally,
Section 5 presents simulation results that illustrate the
performance of our detector.

1.1. Notation

In this paper we use bold-face upper-case letters to
denote matrices, with elements xk;l or ½X�k;l; bold-face
lower-case letters for column vectors, and light-face lower
case letters for scalar quantities. The superscripts ð�ÞT and
ð�ÞH denote transpose and Hermitian transpose, respec-
tively. The determinant and trace of a matrix A will be
denoted, respectively, as detðAÞ and trðAÞ. The notation
AACM�N ðAARM�NÞ will be used to denote that A is a
complex (real) matrix of dimension M � N. For vectors, the
notation xACM ðxARMÞ denotes that x is a complex (real)
vector of dimension M, and x� CN ðμ;RÞ indicates that x is
a complex circular Gaussian random vector of mean μ and
covariance matrix R. The expectation operator will be
denoted as E½��. The notation IL is used to denote the
identity matrix of size L� L, whereas IL�P is a L� P matrix
with ones in the main diagonal and zeros elsewhere. The
matrix 0L�P denotes the zero matrix of size L� P. We use
A1=2 to denote the positive semidefinite square root matrix
of the positive semidefinite matrix A. Finally, diagðAÞ is a
diagonal matrix formed by the main diagonal of A and
diagðaÞ is a diagonal matrix formed by the vector a.

2. ICA from second-order statistics

In this section, we present a review of independent
component analysis (ICA) of complex sources based solely
on second-order statistics (SOS). This technique is based
on the SUT [4–6]. Let us consider the instantaneous
noiseless linear complex ICA model

x¼As; ð1Þ
where xACP are the measurements, AACP�P is the
unknown mixing matrix, assumed to have full rank, and
sACP are zero-mean sources, which are assumed to be
independent. Note that there is the same number of
sources and measurements. This is a safe assumption for
overdetermined problems since we can always apply a
dimensionality reduction technique based on principal
component analysis (PCA). On the other hand, the case of
fewer measurements than sources can be ignored since
there exists no solution using only SOS.
The idea behind ICA is to recover s without knowledge
of A, utilizing only the linearity of the model and the
independence of the sources. For the linear model (1), the
sources are recovered as

ŝ ¼ Bx; ð2Þ
where B is the separating matrix. Since the technique
is based only on the independence of the sources, there
exist some ambiguities. Any scaling of s, i.e., multiplication
with a diagonal matrix, and any reordering of the compo-
nents of s, i.e., multiplication with a permutation matrix,
preserves independence. Hence, we can obtain B only up
to a multiplication with a monomial matrix, which is the
product of a permutation and a diagonal matrix.

Typically, ICA for real sources is based on higher-order
statistics, and if there is more than one Gaussian source, it
is only possible to recover s if the sources have some
temporal (sample-to-sample) correlation with different
autocorrelation functions [13]. Temporally uncorrelated
complex sources, on the other hand, may be separated
based on SOS, provided that these satisfy certain condi-
tions. For complex random vectors, all the SOS information
is contained in two matrices: the covariance matrix
Rss ¼ E½ssH� and the complementary covariance matrix
~R ss ¼ E½ssT � [6]. The assumption of independent sources
implies a diagonal structure for both the covariance matrix
Rss and the complementary covariance matrix ~R ss. More-
over, taking into account the ambiguities of the ICA
problem, we may even make the stronger assumptions
that Rss ¼ I and ~R ss ¼K, where K¼ diagðk1;…; kPÞ and
1Zk1Z⋯Z kPZ0. The diagonal elements ki are the so-
called circularity coefficients [5], which we will derive
momentarily. Under these assumptions, the covariance
matrix of the measurements is

Rxx ¼ E½xxH � ¼ ARssA
H ¼AAH ; ð3Þ

and the complementary covariance matrix is

~Rxx ¼ E½xxT � ¼ A ~R ssA
T ¼AKAT : ð4Þ

To recover s, the separating matrix B must simultane-
ously diagonalize Rxx and ~Rxx, i.e., both BRxxBH and B ~RxxBT

must be diagonal. To this end, we first compute the
coherence matrix

C¼ R�1=2
xx

~RxxðRn

xxÞ�H=2 ¼ R�1=2
xx

~RxxR�T=2
xx ; ð5Þ

which appears in the canonical correlation analysis (CCA)
[14] of the vectors x and xn [6]. Then we obtain the Takagi
factorization [15] of C, which is a special singular value
decomposition for complex and symmetric (not Hermitian
symmetric) matrices C¼ CT :

C¼ FKFT ; ð6Þ
where FACP�P is a unitary matrix and K¼ diagðk1;…; kPÞ
is a diagonal matrix that contains the circularity coeffi-
cients. These circularity coefficients are the canonical
correlations between x and xn. The separating matrix is
now given by the SUT

B¼ FHR�1=2
xx : ð7Þ

The complex ICA model is separable if and only if all circu-
larity coefficients are distinct [4,5]. Hence, it is possible to



1 For the sake of notational simplicity, we will omit additive and
multiplicative constants that do not depend on the data.
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separate more than one complex Gaussian source pro-
vided that they all have distinct circularity coefficients.
Sources corresponding to identical circularity coefficients
will end up in a unitary residual mixture that cannot be
separated.

3. Problem formulation

In practice, we typically do not know the true circular-
ity coefficients and have to work with their estimates,
which are affected by estimation errors. Hence, even if
some of the true circularity coefficients are identical, it is
very likely that their estimates are not. This raises the
question of how to decide whether a complex mixture can
be separated using the SUT, based on estimated circularity
coefficients. This question may be cast as a hypothesis
test, assuming Gaussian signals. This assumption leads
to a tractable analysis and useful detectors. Moreover, a
Gaussian can also be seen as a worst case [16] or least
informative (maximum entropy) [17] distribution.

We formulate the test as follows. Given a finite set of
observations fxngN�1

n ¼ 0,

H1 : The model is separable using the SUT;

H0 : The model is not separable using the SUT: ð8Þ

Let us now formally express this test. We know the model
is not separable if two or more circularity coefficients are
equal, that is, two or more elements of ~R ss are equal.
Let Dþ be the set of P � P diagonal matrices with elements
in ½0;1�, and define D2þ as that subset of Dþ where at
least two of the diagonal entries are identical. Then, the
hypothesis test can be written as

H1 : ~R ssADþ ;

H0 : ~R ssAD2þ : ð9Þ

Under the alternative hypothesis, the complementary cov-
ariance matrix is constrained to be diagonal with elements
in ½0;1�. Under the null hypothesis, the complementary
covariance matrix satisfies the same constraints, but it has
at least two repeated entries. Both hypotheses are compo-
site since the circularity coefficients are unknown, and
they remain composite even after applying invariance
techniques to reduce the number of unknown parameters
[18–20]. Using the Gaussianity assumption, the hypothesis
test (9) becomes

H1 : x� CN ð0;R ð1Þ
xx Þ;

H0 : x� CN ð0;R ð0Þ
xx Þ; ð10Þ

where the augmented covariance matrices [6] are

R ðiÞ
xx ¼ E½xxH� ¼

RðiÞ
xx

~R
ðiÞ
xx

~R
ðiÞn
xx RðiÞn

xx

2
4

3
5; i¼ f0;1g; ð11Þ

and x ¼ ½xT xH�T is an augmented vector constructed from
placing x on top of its complex conjugate xn. Recalling the
results from the previous section, the covariance and
complementary covariance matrices are

RðiÞ
xx ¼AAH ; ~R

ðiÞ
xx ¼AKiA

T ; ð12Þ
with diagonal

K1ADþ ; K0AD2þ : ð13Þ
We are therefore testing the covariance structure of the
augmented vector x .

4. Derivation of the GLRT

To solve the hypothesis test (10), we propose a general-
ized likelihood ratio test (GLRT), which usually results in
a simple detector with good performance [21]. The gen-
eralized likelihood ratio is [21]

G¼maxA;K0 AD2þ pðX;A;K0Þ
maxA;K1 ADþ pðX;A;K1Þ

; ð14Þ

where the data matrix is X¼ ½x0;…; xN�1�; and pð�Þ denotes
the probability density function of the observations. The
first step in the derivation is to find the maximum like-
lihood (ML) estimates of the unknown parameters under
each hypothesis. In order to do that, let us introduce the
log-likelihood1

log pðX;R ðiÞ
xxÞ ¼�log detðR ðiÞ

xxÞ�trððR ðiÞ
xxÞ�1R̂ Þ; ð15Þ

where the augmented sample covariance matrix is

R̂ ¼ 1
N
XXH ¼ R̂ ~̂R

~̂R
n

R̂
n

2
4

3
5AR:

Here, we have introduced the augmented data matrix
X ¼ ½XT ;XH�T , and R denotes the set of augmented covar-
iance matrices without further structure. In the next
subsections we find the ML estimates for the unknown
parameters and derive a closed-form GLRT.

4.1. ML estimates under the alternative hypothesis

We are only interested in the maximum value of the
likelihood, attained by substituting the unknown para-
meters with their maximum likelihood estimates, rather
than the estimates themselves. We also note that the
augmented covariance matrix under the alternative hypo-
thesis does not have further structure beyond being an
augmented covariance matrix. This means that

max
A;K1 ADþ

pðX;A;K1Þ ¼ max
R ð1Þ

xx AR
pðX;R ð1Þ

xx Þ: ð16Þ

For this, we only need to obtain the ML estimate of an
augmented covariance matrix, which is presented next.

Lemma 1. The ML estimate of R ð1Þ
xx is

R̂
ð1Þ
xx ¼ R̂ : ð17Þ

Proof. The proof can be found, for instance, in [6]. □

Inserting this ML estimate into (15), the compressed
log-likelihood becomes

log pðX; R̂ ð1Þ
xx Þ ¼�log detðR̂ Þ; ð18Þ
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which can be rewritten as

log pðX; R̂ ð1Þ
xx Þ ¼ �log detðR̂Þ�1

2
∑
P

i ¼ 1
log ð1�k̂

2
i Þ: ð19Þ

In this expression, k̂i are the estimated circularity coeffi-
cients, which are given by the singular values of the
estimated coherence matrix

Ĉ ¼ R̂
�1=2 ~̂R R̂

�T=2
: ð20Þ

4.2. ML estimates under the null hypothesis

The ML estimates under the null hypothesis are much
more difficult to obtain. This is because we do not know
the number of circularity coefficients with multiplicity
greater than one, and we do not know their multiplicities,
either. Nevertheless, it is well known that fewer con-
straints lead to greater likelihood, so we can write

max
A;K0 AD2þ

pðX;A;K0Þ ¼ max
A;K0 A [ iD

i
2

pðX;A;K0Þ; ð21Þ

where Di
2; i¼ 1;…; P�1; denotes the subset of D2þ where

the ith and ðiþ1Þ th entries are identical, and [ iD
i
2

denotes the union of those sets. That is, the maximum is
achieved when exactly two circularity coefficients are
identical, while the others may vary. This is the worst case
forH0, because it is closest toH1. The test would obviously
perform better if we knew in advance the multiplicity for
each repeated circularity coefficient. We may simplify the
above equation to obtain

max
A;K0 AD2þ

pðX;A;K0Þ ¼max
i

max
A;K0 ADi

2

pðX;A;K0Þ: ð22Þ

The unknown parameters in this equation are the circu-
larity coefficients and the mixing matrix. We will proceed
as follows. We will establish the perhaps unsurprising
result that the ML estimates of the circularity coefficients
are the sample circularity coefficients with the exception
of the repeated coefficient, whose ML estimate is given
by the average of the two corresponding estimated coeffi-
cients. Furthermore, rather than estimating the mixing
matrix itself, we will estimate a linear transformation of it,
which simplifies the derivations. To be specific, we esti-
mate the product of the mixing matrix and the SUT, which
results in an ML estimate of the inverse mixing matrix
given by the SUT, with the ith and ðiþ1Þ th row scaled by
some constants depending on the sample circularity
coefficients. In (22), we first obtain the ML estimates for
a fixed i, and then vary i from 1 to P�1.

We shall start with the augmented covariance matrix,
given by

R ð0Þ
xx ¼

A 0P

0P An

" #
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A

I K0

K0 I

" #
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

K0

AH 0P

0P AT

" #
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

AH

;

where K0 ¼ diagðk1;…; ki; ki;…; kPÞ. This allows us to
rewrite the log-likelihood as

log pðX;A;K0Þ ¼ log detðA�1A�HÞ�log detðK0Þ�trðK�1
0 SÞ; ð23Þ
where

S ¼ S ~S
~S
n

Sn

" #
¼ A�1R̂A�H A�1 ~̂RA�T

A�n ~̂R
n

A�H A�nR̂
n

A�T

2
4

3
5

is the augmented covariance matrix of A�1x. We use
Takagi's factorization of the sample coherence matrix

Ĉ ¼ R̂
�1=2 ~̂R R̂

�T=2 ¼ F̂K̂F̂
T
; ð24Þ

where K̂ is a diagonal matrix containing the sample
circularity coefficients. We also introduce the matrix

W�1 ¼ B̂A¼ F̂
H
R̂

�1=2
A�1, which may be seen as the resi-

dual matrix, i.e., the combined effect of mixing and
separating matrices. In case of perfect separation, it should
be a monomial matrix. Then, (23) may be rewritten as

log pðX;W;K0Þ ¼�log detðR̂Þþ log detðWWHÞ

�1
2
log detðK0Þ�

1
2
trðK�1

0 SÞ: ð25Þ

We now need to maximize (25) with respect to the
transformed parameters W and K0.

First, we find the ML estimate of K0, for which the
repeated entry occurs in K0 at positions i and iþ1. Taking
into account the problem invariances, we may relax the
restrictions that K0 must have 1s on the main diagonal and
that the diagonal elements of K0 must be in ½0;1�, since
these can also be imposed when estimating A (or W). The
ML estimate is presented in the following lemma.

Lemma 2. The ML estimate of K0 is given by

K̂ 0 ¼
Î K̂0

K̂
n

0 Î
n

2
4

3
5; ð26Þ

where Î and K̂0 are diagonal matrices composed by the
diagonal elements of S and ~S, respectively, with the exception
of the ith and ðiþ1Þth entries of either matrix, which are
replaced by their respective averages. That is,

Î ¼ diagðs11;…; γ; γ;…; sP;PÞ; K̂0 ¼ diagð~s11;…; ~γ ; ~γ ;…; ~sP;PÞ;
ð27Þ

with the averages given by

γ ¼ 1
2
ðsi;iþsiþ1;iþ1Þ; ~γ ¼ 1

2
ð~si;iþ ~siþ1;iþ1Þ: ð28Þ

Proof. Let us introduce a simple permutation of the
elements of x (which does not modify the value of the
likelihood), such that

K ¼ PKPT ¼

K1;1 02 ⋯ 02

02 K2;2 ⋯ 02

⋮ ⋮ ⋱ ⋮
02 02 ⋯ KP;P

2
66664

3
77775 ð29Þ

where

K ii ¼ E
si
sni

" #
½sni si�

2
4

3
5; ð30Þ



Fig. 1. Plot of the contours of G (in linear scale) as a function of αi and
αiþ1. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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and, consequently,

S ¼

S1;1 S1;2 ⋯ S1;P

S2;1 S2;2 ⋯ S2;P

⋮ ⋮ ⋱ ⋮
SP;1 SP;2 ⋯ SP;P

2
66664

3
77775¼ P S PT : ð31Þ

Therefore, (25) becomes

log pðX;A;K0Þ ¼�log detðR̂Þþ log detðWWHÞ
�1
2
log detðK0Þ�

1
2
trðK�1

0 SÞ: ð32Þ

The likelihood in (32) is maximized with respect to K under
the constraint K i;i ¼K iþ1;iþ1 by the block-diagonal matrix

K̂ ¼ diagðS1;1;…;Γ;Γ;…; SP;PÞ; ð33Þ
where

Γ¼ 1
2
ðSi;iþSiþ1;iþ1Þ ð34Þ

The proof is concluded after inverting the permutation. □

Using (26) the compressed likelihood is

log pðX;W; K̂0Þ ¼�log detðR̂Þþ log detðWWHÞ
�1
2
log detðK̂0Þ; ð35Þ

which has to be maximized with respect to W. Here, we
only give the result and relegate the proof to an appendix.

Lemma 3. The ML estimate of W is given by

Ŵ ¼ diag 1;…;1|fflfflffl{zfflfflffl}
i�1ones

;
ffiffiffiffiffiffiffiffiffiffi
1þχ

p
;
ffiffiffiffiffiffiffiffiffi
1�χ

p
; 1;…;1|fflfflffl{zfflfflffl}
P�i�1ones

0
BB@

1
CCA ð36Þ

where

χ ¼ 2�ðk̂2
i þ k̂

2
iþ1Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�k̂

2
i Þð1�k̂

2
iþ1Þ

q
ðk̂2

i �k̂
2
iþ1Þ

: ð37Þ

Proof. See Appendix A. □

Using the ML estimate Ŵ , it is easy to show that the ML
estimate of the inverse mixing matrix—the separation
matrix—is

Â
�1 ¼ ŴF̂

H
R̂

�1=2
: ð38Þ

Hence, the ML estimate of the inverse mixing matrix is just
the estimated SUT, but with its ith and ðiþ1Þ th rows scaled.

Finally, let ĥ
2
l ¼ 1�k̂

2
l and insert the ML estimates into

the likelihood. Then, after some tedious but straightfor-
ward algebra, the compressed likelihood becomes

log pðX; Ŵ ; K̂0Þ ¼max
i

�log detðR̂Þ� ∑
P

l ¼ 1
la i;iþ 1

log ĥl

8<
:

þ log
2

ĥiĥiþ1�k̂ik̂iþ1þ1

 !9=
;: ð39Þ
4.3. A closed-form GLRT

Using the transformed circularity coefficients ĥi, the
compressed likelihood under H1, given by (19), may be
rewritten as

log pðX; R̂ ð1Þ
xx Þ ¼�log detðR̂Þ� ∑

P

i ¼ 1
log ĥi: ð40Þ

The GLRT is finally obtained by inserting the expressions
for the compressed likelihoods, given by (39) and (40), into
(14). This yields the GLRT

G¼max
i

ff ðk̂�1
i ; k̂

�1
iþ1Þ�f ðk̂i; k̂iþ1Þg ≷

H0

H1

η; ð41Þ

where

f ða;bÞ ¼ ½ð1�a2Þð1�b2Þ��1=2: ð42Þ
An alternative form of the GLRT may be derived as follows.

Because k̂i, which is the canonical correlation between ŝi and
ŝni , is bounded between 0 and 1, it may also be expressed
as k̂i ¼ cos ðαiÞ. The angle αi is the estimated principal angle
[22], i.e., the angle between ŝ i and ŝni . The GLRT may be
alternatively expressed in terms of the principal angles as

G¼max
i

cos ðαi�αiþ1Þþ cos ðαiþαiþ1Þ�2
cos ðαi�αiþ1Þ� cos ðαiþαiþ1Þ

� �
≷
H0

H1

η: ð43Þ

This shows that the GLR is only a function of the sum and
difference of principal angles.

The GLR is depicted in Fig. 1, which shows a plot
of G as a function of αi and αiþ1 for some fixed i. Different
colors denote the critical regions for different values of the
threshold. As can be seen in the figure, large values of G are
obtained for αi � αiþ1, which agrees with the fact that H0

is selected for large values of G. The largest value of the
GLR is G¼�1 for αi ¼ αiþ1.

4.4. Asymptotic distribution of the GLR

In order to set the threshold η for the GLRT, we need to
determine the probability of false alarm pfa. For a



Fig. 2. ROC curves for five different examples with P¼4 sources and
N¼250 samples.

Fig. 3. Probability of missed detection vs. number of samples in the first
four examples. The number of sources is P¼4, and we consider a fixed
probability of false alarm pfa ¼ 0:01.
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hypothesis test with composite hypotheses, the probability
of false alarm is determined by the worst-case selection of
the unknown parameters [18]. In our case this happens
when exactly two circularity coefficients are different.
Hence,

pfa ¼ sup
K0 AD2þ

pfaðK0Þ; ð44Þ

where pfaðK0Þ denotes the probability of false alarm for a
fixed matrix K0. As one might expect, deriving the exact
distribution of the GLR is very difficult. Instead, we
employ Wilks' Theorem [23], which states that, under
some regularity conditions, the log-GLR under H0 has an
asymptotic χ2ρ distribution with ρ degrees of freedom,
where ρ is the difference between the number of unknown
parameters under H1 and H0.

The number of free parameters under H1 is 2P2þP,
accounting for 2P2 real elements in A, and P circularity
coefficients. Under H0, there is one repeated circularity
coefficient, so there are only P�1 degrees of freedom for
choosing the circularity coefficients. Moreover, there is a
unitary residual mixture of the two sources that have the
same circularity coefficient, which takes away one further
degree of freedom. In total, there are 2P2þP�2 degrees of
freedom under H0. Wilks' Theorem now says that, as the
number of observations tends to infinity, N-1, the log-
GLR is distributed as2

�2 log G¼ 2N log 2
ĥiĥiþ1�k̂ik̂iþ1þ1

ĥiĥiþ1

 !
�a χ22: ð45Þ

We can use this asymptotic distribution to determine the
threshold for a given probability of false alarm.

One final comment is in order. Other works, e.g.,
[24,25], obtain the threshold through simulations. At first,
this might seem useless, but in problems where the
distribution of the statistic under H0 does not depend on
unknown parameters, it does, in fact, make sense. Never-
theless, for our particular problem, the distribution under
the null hypothesis depends on unknown parameters, so
we may not use this approach.
5. Numerical results

In this section, we evaluate the performance of the
proposed GLRT using Monte Carlo simulations. First, we
present receiver operating characteristic (ROC) curves and
probability of missed detection. Second, we evaluate the
accuracy of Wilks' approximation of the null distribution
for a finite number of samples.
5.1. Performance of the GLRT

We consider P¼4 complex Gaussian sources. In the first
four examples, the circularity coefficients underH1 are 0.9,
0.6, 0.35 and 0.1. Under H0, we consider different numbers
and orders of repeated circularity coefficients:
2 We now have to take into account the previously ignored additive
and multiplicative constant terms.
1.
 0.9, 0.35, 0.35 and 0.1 (two identical circularity
coefficients).
2.
 0.6, 0.6, 0.35 and 0.35 (two pairs of circularity
coefficients).
3.
 0.9, 0.35, 0.35 and 0.35 (three identical circularity
coefficients).
4.
 0.35, 0.35, 0.35 and 0.35 (four identical circularity
coefficients).
Finally, in the fifth example, the circularity coefficients
under H1 are 0.9, 0.6, 0.35 and 0.25 and 0.9, 0.6, 0.35 and
0.35 underH0. That is, underH1 the circularity coefficients
are fairly close.

Fig. 2 shows the receiver operating characteristic (ROC)
curves for N¼250 samples. As there is no other existing
test for this problem, we cannot compare our results with
any competitor. We notice that Example 4 performs best
since all circularity coefficients are equal and, therefore,
the two hypotheses are most separated. We also notice
that three identical circularity coefficients are easier to
detect than two pairs of identical circularity coefficients.
Moreover, the case with fairly close circularity coefficients



Fig. 4. Empirical cumulative distribution function (ECDF) and χ2 approx-
imation for an example with P¼4 sources with circularity coefficients
f0:9;0:35;0:35;0:1g, and N¼1000 samples.
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performs the worst. Of course, these statements only
hold for this particular setup, and the results will change
depending on the specific values of the circularity coeffi-
cients, in particular, how much separated they are. Fig. 3
shows the probability of missed detection pm vs. number
of samples for a fixed probability of false alarm pfa ¼ 0:01,
where similar conclusions can be drawn. Most notably,
the slope or error exponent [17] differs among the four
examples. This supports our intuition about the sepa-
ration between the hypotheses, since the error exponent
is given by the Kullback–Leibler divergence [17], which
can be considered a “distance” between probability den-
sity functions.

5.2. Distribution of the GLR under the null hypothesis

In this section, we analyze Wilks' χ2 approximation of
the GLR distribution under H0. We consider P¼4 signals
with circularity coefficients 0.9, 0.35, 0.35 and 0.1. In
this example, exactly two circularity coefficients are iden-
tical, which is the worst case in terms of probability of
false alarm. First, we consider a large number of samples,
N¼1000, and obtain the empirical cumulative distribution
function (ECDF) and the χ22 approximation. As can be seen
in Fig. 4, the approximation is very good.

While the χ2 approximation is an asymptotic result,
it works reasonably well even in the cases of small to
moderate number of samples. This can be seen in Fig. 5a,
which compares the empirically determined threshold
required to achieve pfa ¼ 0:1 with the threshold obtained
using Wilks' theorem, for different sample sizes N. Never-
theless, one might be concerned that errors in the selec-
tion of the threshold may lead to larger than desired
probabilities of false alarm. This concern is unfounded,
though, as can be verified in Fig. 5b: The actual value of the
probability of false alarm is smaller than the asymptotic
value, yet obviously at the expense of a smaller probability
of detection, as can be seen in Fig. 5c.

6. Conclusions

ICA of complex sources based on second-order statistics
can be achieved using the strong uncorrelating transform
if and only if all sources have distinct circularity coeffi-
cients. However, in most practical applications, we do not
know the circularity coefficients. We have developed a
generalized likelihood ratio test (GLRT) for separability.
The maximum likelihood estimates under the alternative
hypothesis “all circularity coefficients are distinct” are
straightforward, but under the null hypothesis, their deri-
vation is rather involved. The threshold selection for the
proposed GLRT is a difficult problem since (1) we cannot
obtain the theoretical distributions and (2) even after
applying invariance techniques H0 remains composite,
which prevents the use of simulations to select the thresh-
old. Hence, we have used Wilks' theorem to derive the
asymptotic distribution of the statistic under the null
hypothesis. Finally, simulation results show the good
performance of the detector and the accuracy of the
approximation of the distribution under H0, even for small
and moderate number of samples.
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Appendix A. Proof of lemma 3

One of the indeterminacies of the ICA problem is the
energy of the sources. In the problem statement we
included a unit-energy constraint for the sources. How-
ever, in the ML estimation of the covariance matrices we
drop that constraint since it is easier to constrain the norm
of the columns of the mixing matrix. After some manip-
ulations, these constraints are equivalent to

sl;l ¼ ‖wl‖2 ¼ 1; ~sl;l ¼ ∑
P

m ¼ 1
k̂mw2

l;mA ½0;1�; ðA:1Þ

for la i; iþ1, and

γ ¼ 1
2
ð‖wi‖2þ‖wiþ1‖2Þ ¼ 1; ~γ ¼ 1

2
∑
iþ1

l ¼ i
∑
P

m ¼ 1
k̂mw2

l;mA ½0;1�;

ðA:2Þ
where wl denotes the lth row of the matrix W. Without
loss of generality, we introduce a permutation such that
W¼ ½WT

A WT
B�T with

WA ¼

w1

⋮
wi�1

wiþ2

⋮
wP

2
6666666664

3
7777777775
; WB ¼

wi

wiþ1

" #
: ðA:3Þ

That is, we group together all rows ofW that correspond to
sources with distinct circularity coefficients. With this



Fig. 5. Comparison between empirical results and Wilks' approximation.
(a) Threshold required to achieve pfa ¼ 0:1 for different number of
samples using the χ2 approximation and the empirically determined
value. (b) Probability of false alarm for different number of samples using
the χ2 approximation and the empirically determined value. (c) Prob-
ability of detection for different number of samples using the threshold
obtained through the χ2 approximation and the empirically determined
value.
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permutation the constraints become

diagðWAW
H
A Þ ¼ IP�2; ½WAK̂WT

A�l;lA ½0;1�; ðA:4Þ

1
2
trðWBWH

B Þ ¼ 1;
1
2
trðWBK̂WT

BÞA ½0;1�; ðA:5Þ

where l¼ 1;…; P�2. Now we may write the compressed
likelihood in (35) as

log pðX;WA;WB; K̂0Þ ¼�log detðR̂Þþ log detðWWHÞ

�1
2
log det½IP�2�diagðWAK̂WT

AÞ��log 1�1
4
tr2ðWBK̂WT

BÞ
� �

:

ðA:6Þ

Lemma 4. The likelihood given by (A.6) subject to the
constraints (A.(4) and A.5) is maximized for WBW

H
A ¼ 02�P .

Proof. The expression for the determinant of a block
matrix allows us to write

detðWWHÞ ¼ detðWAW
H
A ÞdetðWBWH

B ÞdetðIP�Q Þ; ðA:7Þ
where

Q ¼ ðWBWH
B Þ�1=2WBWH

A ðWAW
H
A Þ�1WAW

H
B ðWBWH

B Þ�1=2:

ðA:8Þ
The likelihood in (A.6) is maximized when this deter-
minant is maximized. Because Q is positive definite,
any solution that does not satisfy WBWH

A ¼ 02�P would
decrease the determinant. The proof now follows since the
remaining terms do not depend on the inner products of
the rows of W. □

Using Lemma 4, the ML estimation problem aims at
maximizing

log pðX;WA;WB; K̂0Þ ¼�log detðR̂Þþ log detðWAW
H
A Þ

þ log detðWBWH
B Þ�

1
2
log det½IP�2�diagðWAK̂WT

AÞ�

�log 1�1
4
tr2ðWBK̂WT

BÞ
� �

; ðA:9Þ

subject to

diagðWAW
H
A Þ ¼ IP�2; ½WAK̂WT

A�l;lA ½0;1�; ðA:10Þ

trðWBW
H
B Þ ¼ 2; trðWBK̂WT

BÞA ½0;2�; ðA:11Þ

WBW
H
A ¼ 02�P ; ðA:12Þ

where l¼ 1;…; P�2. It is clear that the above optimization
problem is separable except for the constraint WBWH

A ¼
02�P . Thus, we will first ignore that constraint and opti-
mize with respect to WA, but then enforce it in the
optimization with respect to WB.

Lemma 5. The ML estimate of WA is ŴA ¼ IP�2�P .

Proof. We have to maximize

log pðX;WA;WB; K̂0Þ ¼ log detðWAW
H
A Þ

�1
2
log det½IP�2�diagðWAK̂WT

AÞ�; ðA:13Þ

subject to

diagðWAW
H
A Þ ¼ IP�2; ½WAK̂pWT

A�l;lA ½0;1�: ðA:14Þ

We begin by noting thatWA must be real since ½WAK̂WT
A�l;lA

½0;1�. Because of this and k̂lA ½0;1�, any solution that satisfies

diagðWAW
H
A Þ ¼ IP�2 also fulfils ½WAK̂pWT

A�l;lA ½0;1�. The sec-
ond constraint in (A.14) can therefore be dropped. We
now consider the two terms in (A.13) separately. First
observe that, by Hadamard's inequality [26], the determinant
is maximized when WAW

T
A is diagonal, and using the first

constraint in (A.14) yields ŴA ¼ IP�2�P . On the other hand,
the second term in (A.13) is Schur-convex [26], and it is

maximized when WAK̂pWT
A is diagonal [26]. Now we use

both the constraint (A.14) and the fact that K̂p is diagonal

to conclude ŴA ¼ IP�2�P . Since both terms in (A.13) are
maximized for the same WA, we have the solution to the
optimization problem. □

So far, the compressed likelihood is

log pðX; ŴA;WB; K̂0Þ ¼ �log detðR̂Þþ log detðWBWH
B Þ
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�1
2

∑
P

l ¼ 1
la i;iþ 1

log ð1�k̂
2
l Þ�log 1�1

4
tr2ðWBK̂WT

BÞ
� �

: ðA:15Þ

The next lemma presents the ML estimate of WB.

Lemma 6. The ML estimate of WB is given by

ŴB ¼
0 ⋯ 0

ffiffiffiffiffiffiffiffiffiffi
1þχ

p
0

0 ⋯ 0 0
ffiffiffiffiffiffiffiffiffi
1�χ

p" #
; ðA:16Þ

where

χ ¼ 2�ðk̂2
i þ k̂

2
iþ1Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�k̂

2
i Þð1�k̂

2
iþ1Þ

q
ðk̂2

i �k̂
2
iþ1Þ

: ðA:17Þ

Proof. The ML estimate of WB is the solution to the opti-
mization problem

maximize
WB

log detðWBW
H
B Þ�log 1�1

4
tr2ðWBK̂WT

BÞ
� �

;

subject to trðWBWH
B Þ ¼ 2;

trðWBK̂pWT
BÞA ½0;2�;

WBŴ
H
A ¼ 02�P : ðA:18Þ

The last constraint directly implies WB ¼ ½02�P�2 WB�,
which yields the simplified optimization problem

maximize
WB

log detðWBW
H
B Þ�log 1�1

4
tr2ðWBK̂rW

T
BÞ

� �
;

subject to trðWBW
H
B Þ ¼ 2;

trðWBK̂rW
T
BÞA ½0;2�; ðA:19Þ

where K̂r ¼ diagðk̂i; k̂iþ1Þ is a (reduced) diagonal matrix
containing the estimated circularity coefficients of the
identically distributed sources. Following arguments simi-
lar to those in the previous proof, WB must be a real
matrix and we can drop the last constraint in (A.19). Using

the eigenvalue decomposition (EVD) of W
H
BWB ¼W

T
BWB

and the results in [27], it is easy to show that W
T
BWB

must be diagonal to maximize the likelihood. Hence,

letting W
T
BWB ¼ diagð1þχ;1�χÞ, the ML estimation pro-

blem reduces to

maximize
χ

log ð1�χ2Þ�log 1�1
4
ðk̂iþ k̂iþ1þðk̂i�k̂iþ1ÞχÞ2

� �
;

subject to 0rχr1: ðA:20Þ

Ignoring the constraint and taking the derivative of the
objective function with respect to χ, the solution is one of
the two roots of a second-degree polynomial. Finally, it is
easy to check that only one of these roots fulfils the
constraint and it is indeed a maximum. □
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