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Abstract—Hardware non-idealities are among the main per-
formance restrictions for upcoming wireless communication
systems. Asymmetric hardware distortions (HWD) happen
when the impairments of the I/Q branches are correlated or
imbalanced, which in turn generate improper additive interfer-
ence at the receiver side. When the interference is improper,
as well as in other interference-limited scenarios, improper
Gaussian signaling (IGS) has been shown to provide rate and/or
power efficiency benefits. In this paper, we investigate the
rate benefits of IGS in a two-user interference channel (IC)
with additive asymmetric HWD when interference is treated
as noise. We propose two iterative algorithms to optimize the
parameters of the improper transmit signals. We first rewrite
the rate region as an pseudo-signal-to-interference-plus-noise-
ratio (PSINR) region and employ majorization minimization
and fractional programming to find a suboptimal solution
for the achievable user rates. Then, we propose a simplified
algorithm based on a separate optimization of the powers and
complementary variances of the users, which exhibits lower
computational complexity. We show that IGS can improve
the performance of the two-user IC with additive HWD. Our
proposed algorithms outperform proper Gaussian signaling and
competing IGS algorithms in the literature that do not consider
asymmetric HWD.

Index Terms—Achievable rate region, asymmetric hardware
distortions, difference of convex programming, generalized
Dinkelbach algorithm, improper Gaussian signaling, interfer-
ence channel.

I. INTRODUCTION

One of the targets of 5G is reaching a data rate more
than 1000 times greater than the data rate of current cellular
systems [1]. However, reaching this goal entails many chal-
lenges. Among them is to overcome the non-idealities, i.e.,
hardware distortions (HWD), of devices which can result
in a substantial performance degradation [2]–[4]. HWD are
due to various imperfections in transceivers, including I/Q
imbalance, non-linear power amplifiers, imperfect and/or low
resolution analog-to-digital and digital-to-analog converters,
frequency/phase offset and so on [3]–[10]. Another main
challenge for data-rate enhancement is to handle interference
from other users, and hence interference management tech-
niques play a key role in 5G [1]. Recently, it has been shown
that improper Gaussian signaling (IGS) can improve the
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performance of various interference-limited systems [11]–
[26]. In IGS schemes, the real and imaginary parts of the
signal are correlated and/or have unequal powers [27], [28].
While proper Gaussian signaling (PGS) achieves channel
capacity for point-to-point communications in the presence
of proper Gaussian noise [29], this is not the case under
improper Gaussian noise that arises as a result of asymmetric
HWD [4], [11], [30], [31].

A. Related work

The effect of HWD is studied in [5]–[10] for various
scenarios. In [5], the secrecy performance of downlink
massive multiple-input multiple-output (MIMO) systems
was considered with HWD and a passive multiple-antenna
eavesdropper. The paper [6] analyzed the achievable rate of
massive MIMO systems with Rician channels and HWD.
In [7], the authors considered a full-duplex massive MIMO
relay with HWD and proposed a scheme to mitigate the
distortion by exploiting statistical knowledge of the channels.
In [8], the authors studied a massive MIMO system with
a new system model for HWD at the transceivers. The
paper [10] studied the performance of dual-hop relaying with
different protocols in the presence of HWD.

In the aforementioned papers, symmetric HWD are con-
sidered. Nevertheless, HWD can, in general, provoke asym-
metric or improper distortion in both the transmitted and
received signal [4], [11], [30]–[32]. The paper [4] considered
IGS in a single-input, multiple-output (SIMO) system with
additive asymmetric HWD and showed that IGS improved
the performance of the system. In [11], the authors inves-
tigated the effect of IGS in a relay network with additive
asymmetric HWD. They maximized the achievable rate of
the relay network by optimizing the complementary variance
of the transmitted signal in the source and relay nodes.

Improper signaling schemes have also been proposed
to improve different performance metrics in interference-
limited networks with ideal devices [12]–[23], [26]. In [12],
IGS was considered as an interference management tool for
the first time in the literature, where the authors considered
a three-user interference channel (IC) and showed that IGS
can improve the degrees-of-freedom (DoF) in this scenario.
The paper [13] showed that IGS can increase the DoF of
MIMO X channels. In [14]–[23], [25], the authors studied
the performance of IGS when Treating Interference as Noise
(TIN) was the strategy used for decoding. The paper [14]
showed that IGS can improve the performance of the two-
user interference channel, while in [15] IGS was used to
optimize the rate of the K-user MIMO interference channel.
Moreover, the authors in [15] derived the rate region of
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the two-user single-input, single-output (SISO) IC with TIN
by solving a semidefinite programming (SDP) problem,
showing that IGS can enlarge the rate region and improve
the performance of the system. The paper [16] showed that
IGS can reduce the symbol error rate of the K-user IC.
In [17]–[19], benefits of IGS were studied in different Z-
IC scenarios. In [20], [21], the authors showed that IGS
improves the performance of underlay and overlay cognitive
radio systems, respectively. Finally, [26] showed that IGS
can improve the performance of full-duplex relaying systems
with fading channels.

B. Contribution
In this paper, we study the performance of IGS in a

two-user IC with additive asymmetric HWD with TIN. To
the best of our knowledge, it is the first work address-
ing the SISO IC with asymmetric HWD. We assume that
the transceivers of both users produce additive asymmetric
HWD noise, and model the HWD as an additive improper
Gaussian noise, similar to [4], [11], [30], [31]. We devise
two iterative algorithms to derive suboptimal solutions for
the achievable rate region of the two-user IC. To this end,
we rewrite the rate region as a pseudo-signal-to-interference-
plus-noise-ratio (PSINR) region and employ sequential op-
timization approaches to solve the resulting problems.

In our first proposed algorithm, we employ majorization
minimization (MM) as well as fractional programming (FP)
and the well-known generalized Dinkelbach algorithm. MM
is an iterative algorithm and consists of two steps in every
iteration: i) majorization, and ii) minimization [33]. In the
majorization step, the objective function is approximated by
a surrogate function. Then, the approximated problem is
solved in the minimization step. In other words, MM solves
a non-convex optimization problem by solving a sequence
of surrogate optimization problems, which can be solved
easier than the original problem [33]. In our algorithm,
to solve each surrogate problem, we apply the generalized
Dinkelbach algorithm, which is a powerful tool to solve mul-
tiple ratio maximin problems [34], [35]. In Dinkelbach-based
algorithms, an iterative optimization is performed, in which
the fractional functions are replaced by surrogate functions at
each iteration. The generalized Dinkelbach algorithm permits
solving fractional programming efficiently and results in the
global optimal solution of the original optimization problem
if the optimization problem at each iteration is perfectly
solved, i.e., its global optimum is obtained [34]–[37].

In our second proposed algorithm, we employ a separate
optimization of powers and complementary variances. We
first optimize the powers transmitted by the users by em-
ploying the well-known bisection method, which transforms
the original problem into a sequence of feasibility problems,
and derive a closed-form solution for the feasibility problem.
In order to obtain the complementary variances, we employ
difference of convex programming (DCP), which is a special
case of sequential convex programming (SCP) and falls
into MM [33], [38]. In DCP, the objective function and/or
constraints are difference of two convex/concave functions.
DCP solves a non-convex problem by solving a sequence of
convex optimization problems and converges to a stationary
point1 of the original problem [38].

1A stationary point of a constrained optimization problem satisfies the
corresponding Karush-Kuhn-Tucker (KKT) conditions [38].

Fig. 1: The channel model for the SISO two-user IC.

The main contributions of this paper are as in the follow-
ing:
• We first propose an iterative algorithm based on a

sequential optimization method, in which we solve a
sequence of fractional optimization problems [33], [39].
We derive the global optimal solution of each surrogate
problem by FP and the generalized Dinkelbach algo-
rithm. Our first proposed algorithm obtains a stationary
point of the PSINR region.

• We also propose a simplified algorithm that is compu-
tationally less expensive than our proposed algorithm
with FP. This simplified algorithm is based on a separate
optimization of powers and complementary variances
of users. We employ a bisection method to obtain the
powers and derive a closed-form solution for powers
in each iteration. Then, we employ DCP to find the
complementary variances.

• Our results show that IGS enlarges the achievable rate
of the two-user IC in the presence of additive asymmet-
ric HWD, and that there is a significant performance im-
provement by IGS for highly asymmetric HWD noise.
Moreover, both of our proposed algorithms outperform
existing PGS and other existing IGS algorithms.

C. Paper outline

The rest of this paper is organized as follows. Section II
describes the scenario and formulates the achievable-rate-
region problem. In Section III, we propose our algorithm
based on MM and FP, and in Section IV, we develop
a simplified version of this algorithm. Finally, Section V
presents some numerical results.

II. SYSTEM MODEL

A. Preliminaries of IGS

Let us consider a zero-mean complex Gaussian random
variable x with variance px = E{|x|2} and complementary
variance qx = E{x2} [27], [28]. Note that the comple-
mentary variance is complex and |qx| ≤ px. We denote
the probability distribution of x by x ∼ CN (mx, px, qx),
where mx = 0 is the mean of x. We define the complex
correlation coefficient of x as κ̃x = qx

px
, where |κ̃x| ∈ [0, 1]

is the so-called circularity coefficient. If κ̃x = 0, x is proper;
otherwise, it is improper [27], [28]. We call x maximally
improper if |κ̃x| = 1.

B. Hardware distortion model

In this paper, we employ the distortion model in [4], [11],
[30], [31] and model the aggregated effect of HWD on
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the transceiver of a communication link with an improper
Gaussian additive noise as

y =
√
Ph(x+ η) + n, (1)

where y, x, P , h, η, and n are the received signal, transmitted
symbol, transmission power, channel coefficient, aggregated
HWD noise and additive complex proper Gaussian noise,
respectively. The aggregated HWD noise is modeled as an
improper complex Gaussian random variable with probabil-
ity distribution η ∼ CN (0, σ2

η, σ̃
2
η), where σ2

η = σ2
ηTX

+ σ2
ηRX

and σ̃2
η = σ̃2

ηTX
+ σ̃2

ηRX
are the variance and complementary

variance of η, respectively, both of which are composed of
contributions at the transmitter side (denoted TX) and the
receiver side (denoted RX). Please refer to [30, Lemma 1]
for more details about this model.

It is worth mentioning that this model is an extension
of the model in [5]–[10], where the HWD is modeled as
additive proper Gaussian noise. However, as indicated in
e.g., [4], [11], [30]–[32], [40]–[42], the aggregated HWD
is, in general, improper due to I/Q imbalance. Note that
the variances and complementary variances of HWD noise
are not only a function of device parameters, but also a
linear function of the transmission power and channel gain,
meaning that higher transmission power results in higher
HWD noise [4], [30]. Moreover, even if the channel noise
is proper, the aggregated distortion is improper due to the
asymmetric HWD.

C. Network scenario and signal model

We consider a two-user IC with additive asymmetric
HWD at the transmitters and receivers of both users, as
depicted in Fig. 1.2 We assume that users are allowed to
employ IGS and treat the interference as noise. Using the
proposed HWD model, the received signals at receiver k is

yk=
√
p1h1k(x1 + η1k) +

√
p2h2k(x2 + η2k) + nk, (2)

respectively, where xk, hjk, nk, and ηjk for j, k ∈ {1, 2} are
the transmit signal of user k, channel between transmitter
j and receiver k, independent zero-mean proper complex
Gaussian noise with variance σ2, and the aggregated HWD
noise of the link between transmitter j and receiver k,
respectively. Since the transmitted signals x1 and x2 are
improper complex Gaussian, the achievable rate of user
k ∈ {1, 2} is [11], [15], [19] given by (3), shown at the
top of the next page, where pk, qk, σ2

ηjk
, and σ̃2

ηjk
for

i, j ∈ {1, 2} are, respectively, the transmission power of
user k,the complementary variance of the transmitted signal
of user k, the aggregated variance and the complementary
variance of the HWD noise in the link between user j and
user k. The rate of user k ∈ {1, 2} can be written using
vector notation as

Rk =
1

2
log2

(
(σ2 + aTk p)2 − |fHk q + f̃Hk p|2

(σ2 + bTk p)2 − |gHk q + f̃Hk p|2

)
, (4)

where the corresponding parameters are defined in (5)-(9),
shown at the top of the next page. We also define Ω =
{pk, qk : 0 ≤ pk ≤ Pk, |qk| ≤ pk, k = 1, 2} as the feasible
set of the design parameters, where Pk is the power budget of

2It is worth mentioning that our algorithms can easily be extended to
the K-user IC. However, we consider only the 2-user IC for the ease of
illustration.

user k. Note that since qk for k = 1, 2 is the complementary
variance of user k, its absolute value has to be not greater
than the transmission power of user k, i.e., |qk| ≤ pk.

It is to be noted that, in practice, discrete rather than
Gaussian signaling is employed (see, e.g., [16], [42], [43]),
which will lead to performance degradation with respect
to IGS. The significance of studying improper Gaussian
signals is that it shows us whether improper signaling may
in principle achieve performance improvements over proper
signaling. In this paper, we focus on IGS and leave the
analysis and design of improper discrete constellations for
future work.

D. Problem Statement

In this paper, we aim at obtaining the boundary of the
achievable rate region for the described two-user IC. To
this end, we employ the following definition of the Pareto
boundary for the achievable rate region.

Definition 1 ( [19], [44]). The rate pair (R1, R2) is called
Pareto-optimal if (R′1, R2) and (R1, R

′
2), with R′1 > R1 and

R′2 > R2 , are not achievable.

The rate region is the union of all these achievable rate
tuples, i.e., R =

⋃
{p,q}∈Ω

(R1, R2), and its boundary can

be derived by the rate profile technique as in the following
optimization problem [15]

maximize
R,p,q

R (10a)

s.t. Rk ≥ λkR, k = 1, 2, (10b)
0 ≤ pk ≤ Pk, k = 1, 2, (10c)
|qk| ≤ pk, k = 1, 2, (10d)

where λ1, λ2 ≥ 0 are fixed and λ1 + λ2 = 1. We can
obtain the boundary of the rate region by solving (10)
for different rate-profile parameters, i.e., λ1 and λ2. Note
there are efficient algorithms to derive the global optimal
solution of convex optimization problems [39], [45], [46].
However, we are unable to apply these algorithms to (10)
due to the fact that the rates are not concave functions of
the optimization variables, which makes (10) non-convex
[39], [45], [46]. Hence, in this paper we propose numerical
algorithms to derive suboptimal solutions to (10).

The paper [30] proposed an algorithm based on DCP to
maximize the achievable rate of a multihop relay system with
additive asymmetric HWD, in which all nodes transmit with
maximum power, by optimizing over the complementary
variances. Such algorithms cannot be applied for a joint
optimization of powers and complementary variances since,
in this case, the rates are not a difference of two jointly
concave/convex functions in p and q. Hence, we solve
(10) by MM and FP. In MM, the objective function and
constraints of an optimization problem are not required to
follow a very specific structure such as being a difference
of two convex/concave functions, which makes it more
powerful than DCP.

To solve (10), we rewrite it such that it is more suitable
to be solved with MM and FP. To this end, we employ the
PSINR profile technique in [47], [48] to write an optimiza-
tion problem that results in the solution of (10). We define
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Rk=
1

2
log2


(
σ2 +

∑2
j=1 pj |hjk|2(1+σ2

ηjk
)
)2
−
∣∣∣∑2

j=1(qj+pj σ̃
2
ηjk

)h2jk

∣∣∣2(
σ2 +

∑2
j=1 pj |hjk|2(1+σ2

ηjk
)−pk|hkk|2

)2
−
∣∣∣∑2

j=1(qj+pj σ̃2
ηjk

)h2jk − qkh2kk
∣∣∣2
, (3)

ak =
[
|h1k|2(1+σ2

η1k
) |h2k|2(1+σ2

η2k
)
]T
, fk =

[
h21k h22k

]H
, (5)

f̃k =
[
h21kσ̃

2
η1k

h22kσ̃
2
η2k

]H
, (6)

b1 =
[
|h11|2σ2

η11 |h21|2(1+σ2
η21)

]T
, g1 = [ 0 h221 ]H , (7)

b2 =
[
|h12|2(1+σ2

η12) |h22|2σ2
η22

]T
, g2 = [ h212 0 ]H , (8)

q = [ q1 q2 ]T , p = [ p1 p2 ]T . (9)

the PSINR profile as

maximize
E,p,q

E (11a)

s.t. Ek(p,q) ≥ 1 + αkE, k = 1, 2, (11b)
0 ≤ pk ≤ Pk, k = 1, 2, (11c)
|qk| ≤ pk, k = 1, 2, (11d)

where α1 ≥ 0 and α2 ≥ 0 are constants, α1 + α2 = 1, and

Ek(p,q) ,
(σ2 + aTk p)2 − |fHk q + f̃Hk p|2

(σ2 + bTk p)2 − |gHk q + f̃Hk p|2
=
uk(p,q)

vk(p,q)
.

(12)
We can derive the boundary of the PSINR region by varying
α1 ∈ [0, 1]. Note that Ek(p,q) ≥ 1 for k = 1, 2 since
the rates are non-negative. Moreover, the numerator and
denominator of Ek(p,q) are strictly positive because the
rates are bounded and non-negative. In the following lemma,
we show that this technique results in the boundary of the
rate region in (10).

Lemma 1 ( [47], [48]). Every point in the boundary of the
rate region corresponds to a point in the boundary of the
PSINR region, and vice versa.

Proof: Assume there exists a pair (R1, R2) on the
boundary of the achievable rate region that is not on the
boundary of the PSINR region. In other words, the pair
(E1 = 2R1 , E2 = 2R2), which is a feasible PSINR pair, is
not on the boundary of the PSINR region, and hence there
exist E′1 and/or E′2 such that the pairs (E′1 > E1, E2) and/or
(E1, E

′
2 > E2) are feasible. Since the logarithm functions

are monotonically increasing, the rate pairs (0.5 log2(E′1) >
R1, R2) or (R1, 0.5 log2(E′2) > R2) are achievable, which
implies that (R1, R2) is not on the boundary of the rate
region. Similarly, it can be shown that every point in the
boundary of the PSINR region associates with a point in the
boundary of the rate region.

Note that we can rewrite (11) as the following maximin
optimization problem by removing the variable E

maximize
0≤pk≤Pk,|qk|≤pk

min
k=1,2

{
Ek(p,q)− 1

αk

}
. (13)

III. BOUNDARY OF THE RATE REGION BY FRACTIONAL
PROGRAMMING

In this section, we solve the PSINR profile problem
in (11) by MM, which results in solving a sequence of
fractional optimization problems. We solve each fractional
optimization problem by FP and the generalized Dinkelbach

algorithm [35]–[37]. Our proposed algorithm converges to
a stationary point of (11). We first provide preliminaries on
generalized Dinkelbach’s algorithm in Section III-A and then
propose our algorithm in III-B.

A. Preliminaries of generalized Dinkelbach’s algorithm

Dinkelbach’s algorithm is a powerful tool that solves
FP problems, which was proposed to handle single-ratio
functions. The generalized Dinkelbach algorithm is a mod-
ified Dinkelbach algorithm to solve maximin multiple-ratio
problems [34]. The generalized Dinkelbach algorithm is an
iterative approach, in which the fractional functions are
approximated by surrogate functions at each iteration. In the
following lemma, we present some conditions that are used
in the generalized Dinkelbach algorithm.

Lemma 2 ( [34], [35]). Consider the fractional functions
ui(x)
vi(x)

, where ui(x) and vi(x) are continuous in x, vi(x) is
strictly positive in x, and x is a vector with dimension n
that belongs to a compact set X . Let us define

V (µ) = max
x

min
i

(ui(x)− µvi(x)) , (14)

µ̄ = max
x

min
i

(
ui(x)

vi(x)

)
, (15)

where V (µ), µ̄, and µ are real and scalar, and have the
following properties.

1) V (µ) is continuous and strictly decreasing in µ.
2) The optimization problems (14) and (15) always have

optimal solutions.
3) µ̄ is finite and V (µ̄) = 0.
4) V (µ) has a unique root, and V (µ) = 0 implies µ = µ̄.

The generalized Dinkelbach algorithm employs the surro-
gate function V (µ) in (14) and tries to iteratively find the
unique root of V (µ), i.e., µ̄. The algorithm starts with an
initial point, e.g., µ(0) = 0, then it updates µ to obtain
µ̄. Assuming ui(x) ≥ 0, which is the case we consider
in this paper, V (0) = max

x
min
i

(ui(x)) > 0. Since V (µ)

is continuous and strictly decreasing in µ, µ is chosen
monotonically increasing at each iteration (µ(l) > µ(l−1))
until V (µ) approaches 0. At the lth iteration, µ(l) is

µ(l) = min

(
u1(x(l−1))

v1(x(l−1))
,
u2(x(l−1))

v2(x(l−1))

)
> 0, (16)

where x(l−1) is

x(l−1) = arg max
x

min
i

(
ui(x)− µ(l−1)vi(x)

)
. (17)
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The generalized Dinkelbach algorithm updates µ(l) and
x(l−1) based on (16) and (17), respectively, until a conver-
gence metric is met, e.g., V (µ(l)) < ε, where ε > 0. This
algorithm converges linearly to the optimal solution [34].

Note that in order to apply the generalized Dinkelbach
algorithm, it is not required that ui(x) and vi(x) fulfill any
other condition (except those in the lemma), which makes
this algorithm a powerful tool to solve different types of
fractional problems. If ui(x) and vi(x) are concave and
convex functions, respectively, the optimization problem at
each iteration is convex and can easily be solved. However,
in the general case, it might be difficult to efficiently solve
the optimization problem at each iteration.

B. Proposed algorithm

We can apply the generalized Dinkelbach algorithm to
derive the boundary of the PSINR region since the optimiza-
tion problem can be written as a maximin weighted problem
as indicated in (13). However, since uk(p,q) and vk(p,q)
are not, respectively, concave and convex in optimization
variables, the corresponding optimization problem in each
iteration of the generalized Dinkelbach algorithm is not
convex. Indeed, uk(p,q) and vk(p,q) are a difference of
two convex/concave functions:

uk(p,q) = −|fHk q + f̃Hk p|2︸ ︷︷ ︸
concave part

+ (σ2 + aTk p)2︸ ︷︷ ︸
convex part

, (18)

vk(p,q) = −|gHk q + f̃Hk p|2︸ ︷︷ ︸
concave part

+ (σ2 + bTk p)2︸ ︷︷ ︸
convex part

. (19)

Hence, to solve (13), we employ a sequential optimization
approach by approximating Ek(p,q) with a lower bound
Ẽk(p,q, µ) in each iteration [33], [39]. Then, we obtain
the global optimal solution of each surrogate optimization
problem by the generalized Dinkelbach algorithm. To this
end, in each iteration, we first approximate uk(p,q) by a
lower bound concave function ũk(p,q) and vk(p,q) by an
upper bound convex function ṽk(p,q) as in the following
lemma.

Lemma 3. A concave lower bound for uk(p,q) in the mth
iteration is

ũ
(m)
k (p,q) =− |fHk q + f̃Hk p|2 + (σ2 + aTk p

(m))2

+ 2(σ2 + aTk p
(m))aTk (p− p(m)), (20)

Moreover, a convex upper bound for vk(p,q) in the mth
iteration is

ṽ
(m)
k (p,q) =(σ2 + bTk p)2 − |gHk q(m) + f̃Hk p(m)|2

− 2R
[
f̃Hk (gHk q(m) + f̃Hk p(m))∗

]
(p− p(m))

− 2R
[
(gHk q(m) + f̃Hk p(m))∗gHk (q− q(m))

]
,

(21)

where p(m) and q(m) are the power and complementary
variances at the mth iteration, which are the solution of the
previous iteration. Furthermore, R [x] takes the real part of
x.

Proof: Please refer to Appendix A.

Algorithm I Proposed sequential optimization algorithm.
Initialization
Set ε, M , p(0) = 0, q(0) = 0, m = 1, convergence=0
While convergence=0 and m ≤M do

Construct Ẽ(m)
k (p,q) = ũ

(m)
k (p,q)/ṽ

(m)
k (p,q) for k = 1, 2

using Lemma 3
Obtain p(m+1) and q(m+1) by solving (22), i.e.,

run algorithm II
If ‖p(m) − p(m+1)‖/‖p(m)‖ < ε
and ‖q(m) − q(m+1)‖/‖q(m)‖ < ε

convergence=1
p? = p(m+1) and q? = q(m+1)

End (If)
m = m+ 1

End (While)
Return p? and q?.

Now, we are able to write the surrogate optimization
problem in mth iteration as

maximize
E′,p,q

E (22a)

s.t. Ẽ
(m)
k (p,q) ≥ 1 + αkE

′, k = 1, 2, (22b)
0 ≤ pk ≤ Pk, k = 1, 2, (22c)
|qk| ≤ pk, k = 1, 2, (22d)

where Ẽ
(m)
k (p,q) =

ũ
(m)
k (p,q)

ṽ
(m)
k (p,q)

and Ek(p,q) fulfill the
following conditions:

1) Ẽ(m)
k (p,q) ≤ Ek(p,q) for all feasible p,q and k =

1, 2.
2) Ẽ(m)

k (p(m),q(m)) = Ek(p(m),q(m)) for k = 1, 2.

3) ∂Ẽ
(m)
k (p(m),q(m))

∂p = ∂Ek(p
(m),q(m))
∂p and

∂Ẽ
(m)
k (p(m),q(m))

∂q = ∂Ek(p
(m),q(m))
∂q for k = 1, 2.

These properties guarantee that the algorithm converges to a
stationary point of (11) [39, Section II.B]. To solve (22)
and obtain p(m+1) and q(m+1), we employ the general-
ized Dinkelbach algorithm, which gives the global optimal
solution of (22), as in the following. We summarize this
procedure in Algorithm I.

Now we solve (22) and obtain its global optimal solution
by FP, which is also an iterative algorithm as explained
in Section III-A. To this end, we introduce the following
functions, which are the corresponding surrogate functions

of Ẽ
(m)
k −1
αk

for k = 1, 2:

Êk(p,q, µ(l)) , u
(m)
k (p,q)−(µ(l)αk+1)v

(m)
k (p,q), (23)

where µ(l) ∈ R is fixed and given by

µ(l) = min
k=1,2

(
Ẽk(p(l−1),q(l−1))− 1

αk

)
. (24)

It is worth mentioning that the generalized Dinkelbach algo-
rithm requires an initial point µ(0), which can be obtained
by substituting p(m) and q(m) in (24). By substituting (23)
in (22), the optimization problem at each iteration of the
generalized Dinkelbach algorithm is

maximize
E′,p,q

E′ (25a)

s.t. Êk(p,q, µ(l)) ≥ E′, k = 1, 2, (25b)
(22c), (22d). (25c)

We solve (25) for the given µ(l), which results in p(l) and
q(l). Then, we update µ(l) by (24) and repeat the procedure
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Algorithm II Generalized Dinkelbach algorithm.
Initialization
Set ε, L, l = 0, µ(l) = mink=1,2

(
Ẽk(p

(m),q(m))−1
αk

)
Compute Êk(p,q, µ(l)) for k = 1, 2 by (23)
While min

k=1,2
{Êk(p,q, µ(l))} ≥ ε and l ≤ L do

l = l + 1
Obtain p(l) and q(l) by solving (25)
If min
k=1,2

{Ẽk(p,q, µ(l))} < ε

p? = p(l) and q? = q(l)

Else
Update µ(l) by (24)

End (If)
End (While)
Return p? and q?.

until a convergence metric is met. As indicated in Section
III-A, the convergence rate of the generalized Dinkelbach
algorithm is linear. The optimization problem (25) is convex,
and its global optimal solution can be efficiently obtained
[45]. We summarize this procedure in Algorithm II.

To sum up, the proposed algorithm works as follows.
We solve the PSINR profile in (11) by solving a sequence
of fractional optimization problems. Indeed, we employ
a sequential optimization approach and approximate the
PSINR term of each user by a lower bound. In order to derive
the global optimal solution of each fractional optimization
problem, we perform another iterative algorithm, i.e., the
generalized Dinkelbach algorithm. It is worth mentioning
that this algorithm does not converge to the Pareto-optimal
solution; however, it obtains a stationary point of (11).

IV. SIMPLIFIED ALGORITHM

In this section, we propose a simplified version of the
algorithm from Section III, which exhibits a lower com-
putational complexity. In the simplified algorithm, we first
optimize the transmission power p for PGS, i.e., for q = 0.
This problem is addressed in Section IV-A. Then, in Section
IV.B, we optimize the complementary variances for the
resulting transmit power p such that the rates of all users is
simultaneously increased.

A. Power optimization

In this subsection, we optimize the transmission power
vector p for PGS, i.e., when q = 0. In this case, deriving
the boundary of the PSINR region can be cast as the
optimization problem

maximize
E,p

E (26a)

s.t.
(σ2 + aTi p)2 − |f̃Hi p|2

(σ2 + bTi p)2 − |f̃Hi p|2
≥ 1 + αkE, k = 1, 2,

(26b)
0 ≤ pk ≤ Pk, k = 1, 2,

(26c)

for α1, α2 ≥ 0 and α1 + α2 = 1. Unfortunately, the
optimization problem in (26) is not convex due to (26b).
In the following lemma, we derive a lower bound for (26b),
which allows us to simplify (26) and derive a low-complexity
algorithm.

Lemma 4. A lower bound for the left-hand side of (26b) is

(σ2 + aTi p)2 − |f̃Hi p|2

(σ2 + bTi p)2 − |f̃Hi p|2
≥ (σ2 + aTi p)2

(σ2 + bTi p)2
, (27)

where the equality in (27) holds if and only if the HWD noise
is proper, i.e., f̃i = 0.

Proof: It is easy to verify that 0 ≤ |f̃Hi p|2 < (σ2 +
bTi p)2 < (σ2 + aTi p)2. Let us define

f(t) =
β1 − t
β2 − t

, (28)

where 0 ≤ t < β2 < β1. The lower bound in (27) is then
satisfied if f(t) is increasing in t. This function is strictly
increasing in t ∈ [0, β2) since

∂f(t)

∂t
=

β1 − β2
(β2 − t)2

> 0, (29)

Thus, we have
β1 − t
β2 − t

≥ β1
β2
, (30)

with equality if and only if t = 0.
For each point characterized by α1 and α2, we solve (26)

for the lower bound in (27) as the optimization problem

maximize
E,p

E (31a)

s.t.
σ2 + aTk p

σ2 + bTk p
≥
√

1 + αkE, k = 1, 2, (31b)

0 ≤ pk ≤ Pk, k = 1, 2. (31c)

It is worth mentioning that the lower bound in Lemma 4
is employed to simplify (26) and obtain the powers, and
the actual rates are derived by substituting the obtained
powers in (3). Note that the region achieved by solving
(26) includes the region achieved by solving (31). If the
additive HWD noise is proper, (31) is equivalent to (26)3.
The global optimum solution of (31) can be derived by
employing a bisection method and solving a sequence of
feasibility problems [39]. That is, we fix E as E′ and
consider the feasibility problem (32), shown at the top of
the next page. If (32) is feasible for a given E′, the optimal
solution of (31) is greater than or equal to E′, i.e., E? ≥ E′.
Otherwise, E? < E′. In order to find E?, we employ the
well-known bisection method over E′ solving (32) at each
iteration, which yields, upon convergence, the global optimal
solution of (31) [45]. Constraints (32b) and (32c) are linear
in p, which permits deriving a closed-form expression for
a feasible point, as presented in the following theorem. It
is worth mentioning that this algorithm does not attain the
global optimal solution of (26). There might be optimization
approaches to obtain its global optimal solution such as the
monotonic optimization framework [50]–[52], although the
computational complexity of these approaches is high.

Theorem 1. The optimization problem in (32) is feasible for
a given E′ if and only if 0 ≤ p′k ≤ Pk, for k = 1, 2, where[

p′1
p′2

]
= A−1

[
(
√

1 + α1E′ − 1)σ2

(
√

1 + α2E′ − 1)σ2

]
. (33)

Moreover, A is given by (34), shown at the top of the next
page.

3This is in line with [49], where it was shown that proper Gaussian noise
is the worst case in a K-user MIMO IC with ideal devices.
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find p ∈ R2, (32a)

s.t. (aTk −
√

1 + αkE′b
T
k )p ≥ (

√
1 + αkE′ − 1)σ2, k = 1, 2, (32b)

0 ≤ pk ≤ Pk, k = 1, 2. (32c)

A =

[
aT1 −

√
1 + α1E′b

T
1

aT2 −
√

1 + α2E′b
T
2

]
=

[
|h11|2

(
1− σ2

η11(
√

1 + α1E′ − 1)
)
−|h21|2(1 + σ2

η21)(
√

1 + α1E′ − 1)
−|h12|2(1 + σ2

η12)(
√

1 + α2E′ − 1) |h22|2
(
1− σ2

η22(
√

1 + α2E′ − 1)
) ]

. (34)

maximize
t,q

t (35a)

s.t.
(σ2 + aTk p

?)2 − |fHk q + f̃Hk p?|2

(σ2 + bTk p
?)2 − |gHk q + f̃Hk p?|2

≥ Ep,k + αkt, k = 1, 2, (35b)

|qk| ≤ p?k, k = 1, 2. (35c)

maximize
t1,t2,q

min(t1, t2) (38a)

s.t.
(σ2 + aTk p

?)2 − |fHk q + f̃Hk p?|2 − αktk
(σ2 + bTk p

?)2 − |gHk q + f̃Hk p?|2
≥ Ep,k, k = 1, 2, (38b)

|qk| ≤ p?k, k = 1, 2. (38c)

Proof: Please refer to Appendix B.
We note that this algorithm leads to the optimal PGS

only when HWD noise is proper. Note that PGS is sub-
optimal, in point-to-point communications, in the presence
of asymmetric HWD [4], [31]. Thus, the users may improve
the performance by employing IGS in additive asymmetric
HWD. It is worth noting that, in this paper, we aim at
proposing PGS and IGS schemes for the two-user IC with
additive asymmetric HWD, but we do not derive sufficient
and necessary conditions for the optimality of IGS or PGS
in the two-user IC with additive asymmetric HWD, which
remains an open problem.

B. Complementary variance design

In this subsection, we optimize the complementary vari-
ances q for a given p?, which has been obtained by solving
(31). We obtain q such that the rates of both users exceed the
rates achieved by PGS, which are the rates achievable with
q = 0 and the power vector p? obtained by solving (31).
In other words, we want to solve the optimization problem
(35), shown at the top of this page, where p?k is the kth
element of p?. Moreover, Ep,k is fixed and given by

Ep,k =
(σ2 + aTk p

?)2 − |f̃Hk p?|2

(σ2 + bTk p
?)2 − |f̃Hk p?|2

. (36)

Unfortunately, (35) is not convex due to (35b). Hence, in
order to efficiently solve (35), we first rewrite (35b) as

(σ2 + aTk p
?)2 − |fHk q + f̃Hk p?|2 − αktk

(σ2 + bTk p
?)2 − |gHk q + f̃Hk p?|2

≥ Ep,k, (37)

where tk = t
[
(σ2 + bTk p

?)2 − |gHk q + f̃Hk p?|2
]
. We then

relax the relation between t1, t2, and q and treat t1 and t2 as
new optimization variables. In other words, we approximate
(35) as (38), shown at the top of this page. If min(t1, t2) >
0, the rates of both users are simultaneously increased by

employing IGS. Otherwise, we set q = 0 and employ PGS.
Note that the constraint (38b) can be rewritten as

Ep,k|gHk q + f̃Hk p?|2 − |fHk q + f̃Hk p?|2

+ (σ2 + aTk p
?)2 − Ep,k(σ2 + bTk p

?)2 ≥ αktk, (39)

which is a difference of two convex functions. Thus, (38) is
not a convex optimization problem, but it can be efficiently
solved by difference of convex programming and a convex-
concave procedure similar to (25) [33], [38], [53]–[55].
Hence, we employ difference of convex programming (DCP)
and solve (38) iteratively. At each iteration, we approximate
the left-hand side of (39) by a concave function. To this end,
we employ the first-order Taylor expansion and approximate
the convex part of (39) around the point q(l) by an affine
function as

|gHk q + f̃Hk p?|2 ' |gHk q(l) + f̃Hk p?|2

+ 2R
(

(gHk q(l) + f̃Hk p?)∗gHk (q− q(l))
)
, (40)

where q(l) contains the complementary variances of the users
in the lth iteration. It is worth mentioning that |gHi q+f̃Hi p?|2
is always greater than or equal to the right-hand side of
(40), and consequently, no trust region is required in DCP
[53]–[55]. Finally, in the lth each iteration, (39) can be
approximated by

− |fHk q + f̃Hk p?|2 + Ep,k|gHk q(l) + f̃Hk p?|2

+ 2Ep,kR
(

(gHk q(l) + f̃Hk p?)HgHk (q− q(l))
)

+ (σ2 + aTk p
?)2 − Ep,k(σ2 + bTk p

?)2 ≥ αktk. (41)

Finally, the convex optimization problem in the lth iteration
is

maximize
t1,t2,q

min(t1, t2) (42a)

s.t. (41), (38c). (42b)
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This problem can be easily solved by standard numerical
tools [45]. Moreover, the proposed DCP algorithm converges
to a stationary point of (38) [33], [38], [53]–[55]. It is worth
mentioning that a stationary point of (38) is not necessarily
a stationary point of (35).

The proposed simplified algorithm can be summarized
as follows. The joint optimization problem for p and q
is decoupled into two separate optimization problems. We
derive the transmission powers by employing the well-known
bisection method, which results, in each iteration, in a
feasibility problem that has a closed-form solution. Then,
we employ the DCP algorithm to derive the complementary
variances for the given transmission powers.

V. NUMERICAL RESULTS

In this section, we present some numerical results to
illustrate our findings. For all examples, we set σ2 = 1,
P1 = P2 = P , ε = 10−4, and L = M = 20, where ε,
L, and M are, respectively, the threshold for convergence,
and the maximum number of iterations for Algorithms I
and II. Moreover, the maximum number of iterations for the
algorithm in Section IV-B is 40. We also define the signal-
to-noise ratio (SNR) as the ratio of the power budget to
σ2, i.e., SNR= P

σ2 . We compare our proposed algorithms
with PGS and the joint variance and complementary variance
optimization algorithm in [15] for IGS, which is designed
for ideal devices. To the best of our knowledge, there exists
no PGS algorithm for additive asymmetric HWD in the
literature. Because of that, we optimize the PGS scheme by
using the first step of our simplified algorithm (see Section
IV-A). In the figures, we use the following labels:
• S-IGS: our proposed simplified design in Section IV,
• FP-IGS: our proposed design with FP in Section III,
• PGS: the proposed PGS design in Section IV-A,
• I-IGS: the joint variance and complementary variance

IGS design in [15] for ideal devices,
• S-TS: our proposed design in Section IV with time

sharing,
• F-TS: our proposed design in Section III with time

sharing,
• P-TS: the proposed PGS design in Section IV-A with

time sharing.

A. Ideal devices

In this subsection, we compare the performance of our
proposed algorithms with the joint variance and covariance
IGS algorithm in [15] when there is no HWD. In Fig. 2,
we show the average symmetric rate, i.e., the minimum rate
allocated to the users, which is the fairness point of the
rate region boundary and obtained by α1 = α2 = 0.5. We
average the results over 100 channel realizations, where each
channel realization is taken from a complex proper Gaussian
distribution with variance 1, i.e., CN (0, 1, 0). As can be
observed, our proposed algorithm based on FP outperforms
the proposed algorithm in [15], especially at high SNR.
Our simplified algorithm performs similarly to the proposed
algorithm in [15] for low SNR. However, the algorithm in
[15] performs better than the simplified algorithm in the
moderate SNR regime. The reason is that the benefit of
employing IGS increases with SNR. Thus, the performance
differences of the IGS algorithms are clearer at higher SNR.

4 6 8 10 12 14 16 18
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Fig. 2: Average symmetric rate for ideal devices versus the SNR.

In Fig. 3, we also provide rate region examples for ideal
devices and the channel realization

H1 =

[
1.4070ei0.2721 0.9288ei1.8320

0.9288ei1.8320 1.7367ei1.1136

]
, (43)

where [H1]ij = hij for i, j ∈ {1, 2}. As can be observed,
IGS can enlarge the achievable rate region for this channel
realization and P = 10. Since the benefits of IGS are minor
for low SNR, IGS does not provide any gain for P = 1.
This is also in line with the averaged results in Fig. 2, where
IGS has minor benefits at low SNR, while it improves the
performance of the system significantly at moderate SNR.
For this channel realization, our proposed algorithms and
the algorithm in [15] perform very closely to each other.
In Fig. 3b, we also consider the effect of time sharing4 on
the achievable rate region. As can be observed, IGS with
time sharing outperforms PGS with time sharing for this
example. Since the IGS designs perform similarly, for this
example, we provide only the time sharing for our proposed
IGS design in Section III.

The joint variance and covariance IGS algorithm in [15]
is an iterative algorithm, based on a bisection method over
the minimum weighted rates of users, and is proposed for
ideal devices. The algorithm employs semidefinite relaxation
(SDR) programming in order to solve the corresponding
feasibility problem at each iteration of the bisection method.
Since the solution of the SDR in [15] is not ensured to be
rank-one, it does not necessarily obtain a valid solution, and
a Gaussian randomization procedure is employed to obtain
a rank-one solution. The solution obtained by the random-
ization procedure is not ensured to fulfill any optimality
condition, which is in contrast with our proposed algorithm,
which converges to a stationary point of (11). That may
be the reason why our algorithm provides a better average
symmetric rate than SDR for high SNR in this scenario. It
is also worth mentioning that our proposed algorithms are
more general since they consider additive asymmetric HWD,
while the algorithm in [15] can only be applied for ideal
devices.

4We derive the achievable rate region with TS by taking the convex hull
operation over the corresponding achievable rate regions [15]. It is worth
mentioning that time sharing results in the convex hull operation when
power constraint is considered for each operational point. The achievable
rate region with time sharing might be enlarged if an average power
constraint over different operational point is considered [56]. However, this
analysis is outside of the scope of this paper.
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Fig. 3: Achievable rate region for ideal devices and channel realization H1 in (43).
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Fig. 4: Achievable rate region for |σ̃2
η| = σ2

η , P = 1, and channel realization H1 in (43).

B. Non-ideal devices

In this subsection, we consider the effect of HWD on the
performance of the two-user IC. Throughout this subsection,
we consider the same statistics for HWD in all devices. In
Fig. 4, we show the rate region for H1 and P = 1 under
maximally improper HWD5 noise. As shown in Fig. 3a,
IGS brings negligible gains when the transceivers are ideal,
but, as observed in Fig. 4, IGS can significantly enlarge the
rate region if there is additive asymmetric HWD. Note that
even in point-to-point communications, PGS is in general
suboptimal for asymmetric HWD, as it is shown in Fig. 4
for either R1 = 0 or R2 = 0.

In Fig. 5, we show the achievable rate region for σ̃2
η = 0,

P = 1 (SNR= 0 dB), and channel realization

H2 =

[
0.3764ei1.4381 0.4029ei0.9486

1.8542ei2.8153 0.6277ei2.3697

]
. (44)

We take σ̃2
η = 0, i.e., symmetric (proper) HWD. We can

observe that IGS enlarges the rate region even for proper
HWD with high noise variance, i.e., σ2

η = 0.5 and σ2
η =

1. It is worth mentioning that the PGS design is Pareto-
optimal in the presence of additive symmetric HWD. As can
be observed, our IGS design in Section III with time sharing

5Maximally improper HWD happens when the in-phase and quadrature-
phase noises are completely correlated [30].

outperforms the Pareto-optimal PGS with time sharing for
these examples.

In the following, we provide some averaged results for
different parameters to illustrate different aspects of employ-
ing IGS. Similar to Fig. 2, we average the results over 100
channel realizations, where each channel realization is taken
from a complex proper Gaussian distribution with variance
1, i.e., CN (0, 1, 0).

In Fig. 6, we consider the effect of the variance of
the HWD noise on the average symmetric rate of users
(α1 = α2 = 0.5) for P = 20. In this figure, we consider
proper (σ̃2

η = 0) and maximally improper (σ̃2
η = σ2

η) HWD
noise. We observe that our proposed algorithm with FP
outperforms the other algorithms for maximally improper
HWD noise. Moreover, in Fig. 6a, our proposed IGS algo-
rithms perform better than PGS for proper HWD noise with
different variances, which is Pareto-optimal PGS in this case.
Furthermore, our simplified algorithm outperforms the IGS
algorithm in [15] in the presence of HWD. However, the
performance improvement by our algorithms is minor for
proper HWD with high noise variance, where our algorithms
only provide 5% improvement over PGS when σ2

η = 1 for
this example.

Figure 7 shows the effect of the circularity coefficient of
the HWD noise on the symmetric rate for P = 20. As
can be observed, the benefits of employing IGS increase
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Fig. 5: Achievable rate region for σ̃2
η = 0, P = 1, and channel realization H2 in (44).

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

σ2
η

A
ve

ra
ge

Sy
m

m
et

ri
c

R
at

e(
b/

s/
ch

)

FP-IGS
S-IGS
PGS
I-IGS

(a) σ̃2
η = 0

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

σ2
η

A
ve

ra
ge

Sy
m

m
et

ri
c

R
at

e(
b/

s/
ch

)

FP-IGS
S-IGS
PGS
I-IGS

(b) σ̃2
η = σ2

η .

Fig. 6: Average symmetric rate versus the variance of the HWD noise for P = 20.
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Fig. 7: Average symmetric rates versus the circularity coefficient of HWD noise for P = 20.

with the circularity coefficient of the HWD noise, and
there is a considerable performance improvement by IGS in
maximally improper HWD noise. We emphasize that PGS
is suboptimal, even in interference-free communications,
under asymmetric HWD. Our proposed IGS design with
FP outperforms the other algorithms, especially in highly
asymmetric HWD noise. When the variance of the HWD
noise is small, the gain of employing IGS is larger. The
other interesting result in this figure is that our simplified
algorithm performs very similarly to our proposed algorithm
based on FP for proper HWD. Since the simplified algorithm

has less computational cost, it can be employed for proper
HWD noise when the variance of the HWD noise is high,
i.e., σ2

η ≥ 0.5. However, our proposed algorithm based on FP
outperforms the other algorithm in low-power HWD noise
and/or highly asymmetric HWD noise. Note that, since the
IGS algorithm in [15] is proposed for ideal devices and does
not consider HWD, it performs worse than the proposed
PGS, which considers additive symmetric HWD, from the
average symmetric rate point of view, even when the HWD
noise is maximally improper.

In Fig. 8, we consider the effect of the power budget on
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Fig. 8: Average symmetric rate versus SNR for σ̃2
η = 0.9σ2

η .

the symmetric rate of users. There is an almost constant
performance gap between our proposed algorithms and the
other algorithms. Similar to the other figures, our proposed
IGS with FP outperforms our simplified algorithm.

VI. CONCLUSION

In this paper, we considered a two-user IC with additive
asymmetric HWD at the transceivers. Treating interference
as noise, we addressed the problem of obtaining the achiev-
able rate region for IGS and proposed two suboptimal
algorithms. The first algorithm, which is based on MM and
the generalized Dinkelbach algorithm, obtains a stationary
point of the PSINR region. In this algorithm, we jointly
optimize the powers and complementary variances. We also
proposed a simplified algorithm that has lower computa-
tional complexity. This simplified algorithm is based on
the separate optimization of the powers and complementary
variances. Through numerical examples, we showed that the
proposed approaches enlarge the achievable rate region and
outperform PGS and existing IGS algorithms, especially as
the HWD becomes more asymmetric.

APPENDIX A
PROOF OF LEMMA 3

In order to approximate uk(p,q) and vk(p,q), we employ
convex-concave (or concave-convex) procedure (CCP), in
which the convex (concave) part is approximated as an
affine function by the first-order approximation of the Taylor
expansion. Note that we take the first-order term and employ
an affine approximation since an affine function is the nearest
concave approximation to a convex function. The first-order
approximation of a real function u(x) around the point x0

is obtained through its Taylor expansion as [27], [57]

Γ (x) ≈ Γ (x0) + 2R

[
(
∂Γ (x)

∂x

∣∣∣
x=x0

)T (x− x0)

]
, (45)

where x is a complex vector. In order to apply the CCP to
uk(p,q), we have to differentiate the convex part in (18)
with respect to p, which is straightforward since it is a real
function on a real domain and consequently, analytic in p.
The derivative of (σ2 + aTk p)2 with respect to p is

∂(σ2 + aTk p)2

∂p
= 2ak(σ2 + aTk p), (46)

and the resulting first-order approximation around the power
vector in the mth iteration, p(m), is given by

(σ2 + aTk p)2 ' (σ2 + aTk p
(m))2

+ 2(σ2 + aTk p
(m))aTk (p− p(m)). (47)

By substituting (47) in (18), we can derive ũk(p,q).
In order to convexify vk(p,q), we have to differentiate the

concave part in (19) with respect to p and q. The derivative
of |gHk q + f̃Hk p|2 with respect to p is also straightforward
since it is analytic in p:

∂|gHk q + f̃Hk p|2

∂p
= 2R

[
f̃k(gHk q + f̃Hk p)

]
. (48)

The term |gHk q+ f̃Hk p|2, on the other hand, is not analytic in
q since it is a real-valued function while q is a complex vec-
tor [27], [57]. Thus, we have to employ Wirtinger calculus to
obtain the derivative of |gHk q+ f̃Hk p|2 with respect to q. By
Wirtinger calculus, we treat q and q∗ as two independent
complex variables [27], [57]. Thus, we take the derivative
of |gHk q + f̃Hk p|2 with respect to q while treating q∗ as a
constant, which results in

∂|gHk q + f̃Hk p|2

∂q
= g∗k(gHk q + f̃Hk p)∗. (49)

Now by (45), we can approximate |gHk q+ f̃Hk p|2 as an affine
function as

|gHk q + f̃Hk p|2 ' |gHk q(m) + f̃Hk p(m)|2

+ 2R
(
f̃Hk (gHk q(m) + f̃Hk p(m))∗

)
(p− p(m))

+ 2R
(

(gHk q(m) + f̃Hk p(m))∗gHk (q− q(m))
)
. (50)

By substituting (50) in (19), we can obtain ṽk(p,q).

APPENDIX B
PROOF OF THEOREM 1

A given E′ is feasible if and only if there exists at least
a pair (p1, p2) that satisfies all the constraints in (32). Let
us first consider the two linear constraints in (32b), which
can be written as (51) and (52), shown at the top of the
next page. We can construct A in (34) by the coefficients of
p1 and p2 in (51) and (52). It is worth mentioning that the
non-diagonal elements of A in (34) are non-positive since√

1 + α1E′ ≥ 1 and
√

1 + α2E′ ≥ 1. Thus, if the diagonal
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(a) Feasible E′ (b) Infeasible E′

Fig. 9: The constraints of (32) in the power plane.

|h11|2
(
1−σ2

η11(
√

1+α1E′−1)
)
p1−|h21|2(1+σ2

η21)(
√

1+α1E′− 1)p2≥(
√

1+α1E′−1)σ2, (51)

−|h12|2(1+σ2
η12)(

√
1+α2E′−1)p1 + |h22|2

(
1−σ2

η22(
√

1+α2E′−1)
)
p2≥(

√
1+α2E′−1)σ2. (52)

elements of A are not positive, there is no positive power
pair that satisfies (51) and (52) simultaneously. Hence, in
the following, we assume without loss of generality that A
has strictly positive diagonal elements and strictly negative
non-diagonal elements.

We can rewrite (51) and (52) as

[A]11p1 ≥ −[A]12p2 + y1, (53)
[A]22p2 ≥ −[A]21p1 + y2, (54)

where y =
[

(
√

1 + α1E′ − 1)σ2 (
√

1 + α2E′ − 1)σ2
]T

.
Moreover, [A]ij , and yi for i, j ∈ {1, 2} are the ijth element
of A, and the ith element of y, respectively. If we decouple
the inequalities, we end up with

det(A)p1 ≥ [A]22y1 − [A]12y2, (55)
det(A)p2 ≥ −[A]21y1 + [A]11y2. (56)

The right-hand sides (RHS) in (55) and (56) are positive for
a feasible E′ as mentioned before. Note that if det(A) <
0, there are no positive power pairs that satisfy (55) and
(56) for the given structure of A in (34). Thus, we consider
det(A) > 0, which yields

p1 ≥ p′1 =
[A]22y1 − [A]12y2

det(A)
, (57)

p2 ≥ p′2 =
−[A]21y1 + [A]11y2

det(A)
, (58)

or equivalently p = [ p1 p2 ]T ≥ A−1y, where p′1
and p′2 are the intersecting point given in (33). Hence,
the intersecting point provides the minimum positive power
pairs that satisfy (51) and (52). If p′1 and p′2 satisfy the
power constraint, E′ is feasible (Fig. 9.a). Otherwise, E′

is infeasible (Fig. 9.b).
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