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Abstract

In the last decade, kernel methods have become established techniques to perform
nonlinear signal processing. Thanks to their foundation in the solid mathematical
framework of reproducing kernel Hilbert spaces (RKHS), kernel methods yield con-
vex optimization problems. In addition, they are universal nonlinear approximators
and require only moderate computational complexity. These properties make them
an attractive alternative to traditional nonlinear techniques such as Volterra series,
polynomial filters and neural networks. Kernel methods also exhibit certain draw-
backs that must be addressed properly in every application, including complexity
issues for large data sets and overfitting problems.

In this work we propose a set of kernel-based algorithms to solve a number of
related, nonlinear problems in signal processing and communications. In particu-
lar, we deal with the identification and equalization of nonlinear systems, and with
nonlinear blind source separation (BSS).

First, the identification of nonlinear systems is addressed. After discussing super-
vised kernel-based techniques for identifying black-box nonlinear systems, we focus
on the family of online kernel algorithms, which are usually posed as adaptive filter-
ing algorithms in the kernel feature space. Nevertheless, most online kernel methods
show difficulties that are not encountered in classical adaptive filtering and have not
been satisfactorily solved yet. Specifically, they require a growing memory and are
unable to track time-varying nonlinear systems. As a first contribution we present a
set of kernel recursive least-squares (KRLS) algorithms that deal with both problems
by fixing the memory size and adjusting the stored data adequately. These algorithms
are also used as building blocks in later chapters.

In order to limit the complexity of the nonlinear mapping we then study the block-
based nonlinear Wiener and Hammerstein systems. Despite their limited modeling
capability, these systems are sufficient to represent many nonlinearities that appear
in practice. By applying a suitable restriction in the chosen identification diagram,
we show how a kernel canonical correlation analysis (KCCA) solution emerges. Ad-
ditionally, by including the previously proposed KRLS techniques in this framework,
we obtain a set of adaptive KCCA algorithms suitable for online identification and
equalization of Wiener and Hammerstein systems.

After a further analysis of block-based systems, we demonstrate how oversam-
pling allows blind identification and blind equalization of Wiener systems by apply-
ing a KCCA-based technique. The proposed technique is inspired by a linear blind
identification method which we extend into feature space, and it can be applied to
any scenario where multiple Wiener systems are excited by the same input signal.
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In the second part of this thesis we treat blind source separation problems that al-
low for clustering approaches. This is the case when the source signals either belong
to a finite alphabet or show a high degree of sparseness. However, when the mixture
process is time-varying or nonlinear, the algorithms based on classical clustering do
not hold. We study two such problems and we show that they can be tackled by de-
signing specific versions of spectral clustering, which has an interpretation as kernel
principal component analysis.

The first scenario is found in the blind decoding problem of fast time-varying
multiple-input multiple-output (MIMO) systems. While the scatter plot data form
overlapping clusters here, which prohibits the application of conventional clustering
algorithms, we observe that they can be untangled by including temporal informa-
tion. For the resulting problem we present a spectral clustering algorithm whose
kernel is designed to favor the expected cluster shape and to exploit the constella-
tion geometry. The second scenario is a nonlinear blind source separation problem
in which the sources are sparse. We deal with the very restrictive underdetermined
case, in which the number of available mixtures is less than the number of sources,
and we develop a clustering algorithm capable of identifying the nonlinear mixture
process, which allows to recover the original source signals.

In summary, this dissertation presents several techniques for related applications
in nonlinear signal processing and communications. The proposed methods con-
tribute to the state of the art in nonlinear system identification and equalization, and
in nonlinear blind source separation.



Resumen

En la última década, los métodos kernel (métodos núcleo) han demostrado ser técni-
cas muy eficaces en la resolución de problemas no lineales. Parte de su éxito puede
atribuirse a su sólida base matemática dentro de los espacios de Hilbert generados
por funciones kernel (“reproducing kernel Hilbert spaces”, RKHS); y al hecho de
que resultan en problemas convexos de optimización. Además, son aproximadores
no lineales universales y la complejidad computacional que requieren es moderada.
Gracias a estas características, los métodos kernel constituyen una alternativa atrac-
tiva a las técnicas tradicionales no lineales, como las series de Volterra, los filtros de
polinómicos y las redes neuronales. Los métodos kernel también presentan ciertos in-
convenientes que deben ser abordados adecuadamente en las distintas aplicaciones,
por ejemplo, las dificultades asociadas al manejo de grandes conjuntos de datos y
los problemas de sobreajuste ocasionados al trabajar en espacios de dimensionalidad
infinita.

En este trabajo se desarrolla un conjunto de algoritmos basados en métodos ker-
nel para resolver una serie de problemas no lineales, dentro del ámbito del procesado
de señal y las comunicaciones. En particular, se tratan problemas de identificación
e igualación de sistemas no lineales, y problemas de separación ciega de fuentes no
lineal (“blind source separation”, BSS). La motivación de este trabajo se basa en la
observación de que los métodos kernel son capaces de resolver problemas no lineales
de manera eficiente y precisa con un gasto computational razonable, lo cual posibilita
su implementación en tiempo real.

Esta tesis se divide en tres partes. La primera parte consiste en un estudio de
la literatura sobre los métodos kernel y sus aplicaciones al procesado de señal. Las
contribuciones de esta tesis al estado de arte se detallan en la segunda y tercera
partes. Puesto que los problemas tratados están muy relacionados, se dividen las
contribuciones basándose en las técnicas aplicadas. Específicamente, en la parte II
se aplican técnicas de regresión con kernels y en la parte III se desarrollan métodos
basados en el agrupamiento espectral.

I. Métodos Kernel y el Espacio de Características

El análisis de la estructura de un conjunto de datos es un problema central en el
aprendizaje máquina. Por ejemplo, en problemas de regresión se dispone de una
serie de datos de entrenamiento que representan las entradas y las correspondientes
salidas de un sistema lineal o no lineal. El objetivo de la regresión es descubrir la
relación funcional entre la entrada y la salida de este sistema, para poder así predecir
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(a) Espacio de entrada

φ−→

(b) Espacio de características

Figura 1: La idea básica de los métodos kernel. El mapeoφ transforma los puntos de
entrada (puntos negros) a un espacio de características de alta dimensión, donde cor-
responden a un modelo aproximadamente lineal (linea recta continua). Este modelo
en el espacio de características corresponde a un modelo no lineal en el espacio de
entrada (linea curvada continua).

la salida del sistema cuando se le presenta un dato de entrada nuevo. Una idea
clave aquí es que las salidas correspondientes a entradas similares también deben
ser similares. Para ello, se hace uso de la noción de kernels (núcleos). Un kernel
representa una medida de similitud entre dos datos de entrada. Es una función
simétrica que tiene como entrada dos datos (que pueden ser vectoriales) y produce
un número real que mide la similitud entre estos datos. Estos métodos no se limitan
sólo a los datos numéricos, dado que se pueden aplicar siempre y cuando la similitud
entre los diferentes objetos se pueda medir como un escalar.

Los métodos kernel se basan en el marco matemático de los espacios de Hilbert
generados por kernels (RKHS). Como consecuencia práctica, permiten calcular los
productos escalares en un espacio de dimensión alta, posiblemente infinita, llamado
espacio de características (“feature space”), como una función kernel en el espacio
de entrada. Esta propiedad sencilla y elegante, conocida como “kernel trick”, per-
mite transformar cualquier algoritmo basado en productos escalares a un espacio
de dimensión mucho mayor mediante la sustitución de los productos escalares en
funciones kernel. La ventaja de moverse a un espacio de dimensión mucho mayor
supone que, cuando el conjunto de datos observados muestra una cierta estructura
no lineal, es más probable que los datos transformados a este espacio de caracterís-
tica correspondan a un modelo lineal (ver Fig. 1) gracias a la alta dimensionalidad
de este espacio. Además, aunque la dimensionalidad de este espacio impide resolver
el problema transformado de manera explícita, el kernel trick permite calcular la
solución de manera implícita, es decir, en función de los datos disponibles.

Recientemente se han propuesto un gran número de técnicas basadas en métodos
kernel para resolver problemas en clasificación, regresión no lineal, agrupamiento
(“clustering”) y predicción de series temporales no lineales. Estas técnicas incluyen
las máquinas de vectores de soporte (“support vector machines”, SVM), los proce-
sos Gaussianos (“Gaussian processes”, GP), el análisis discriminante mediante ker-
nels (“kernel discriminant analysis”, KDA), la regresión kernel regularizada (“kernel
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ridge regression”, KRR), el análisis de componentes principales mediante kernels
(“kernel principal component analysis”, KPCA), el análisis de correlaciones canóni-
cas mediante kernels (“kernel canonical component analysis”, KCCA) y métodos de
agrupamiento espectral (“spectral clustering”). Las técnicas elaboradas en esta tesis
están relacionadas sobre todo con regresión kernel, KPCA, KCCA y agrupamiento
espectral.

Mientras que los métodos kernel permiten obtener resultados sorprendentes en
problemas no lineales usando sólo operaciones algebraicas sencillas, también conlle-
van algunos inconvenientes. En primer lugar, puesto que los métodos kernel son
aproximadores universales, corren el peligro de sobreajustarse a un conjunto de
datos de entrenamiento. La capacidad de generalización se puede mejorar entre
otro mediante la técnica de regularización. En segundo lugar, el mapeo no lineal
basado en kernels se construye en general como una expansión ponderada de ker-
nels de un conjunto de vectores de soporte. Gracias al Teorema de Representación
(“Representer Theorem”) estos vectores de soporte se pueden elegir como los datos
de entrenamiento. Sin embargo, cuando el conjunto de entrenamiento es grande,
esta representación puede ser problemática, dado que muchos métodos kernel tienen
complejidades cuadráticas o cúbicas en el número de datos usado. Como solución
se suele recurrir a técnicas que reducen el número de vectores soporte, las cuales
permiten una representación dispersa de la solución. Otros problemas de interés a la
hora de aplicar métodos kernel son la elección de una función kernel adecuada (que
debe representar la información a priori sobre el problema), y la determinación de
los parámetros de esta función kernel.

II. Identificación e Igualación de Sistemas no Lineales

En la primera de las líneas de trabajo dentro de esta tesis se han desarrollado métodos
kernel para la identificación supervisada y ciega de sistemas no lineales. En entornos
en que se conocen todos los datos del problema de antemano, se pueden aplicar las
técnicas de regresión en bloque (“batch”) basadas en kernels que se estudian en el
capítulo 2. Las contribuciones de esta parte de la tesis se centran por un lado en
el desarrollo de nuevos algoritmos kenel online, y por otro lado en su aplicación a
la identificación de sistemas de Wiener y Hammerstein, en entornos batch y online.
Finalmente, también se trata el problema de la identificación ciega de estos sistemas.

Identificación Supervisada y Adaptativa de Sistemas no Lineales

En el capítulo 3 se estudia el estado del arte de las técnicas adaptativas basadas en
kernels que permiten mejorar o actualizar su solución a medida que se van recibiendo
más datos. Estos métodos adaptativos se obtienen en base a las técnicas lineales de
filtrado adaptativo a las cuales se aplica el kernel trick.

El mayor problema al desarrollar métodos kernel online es el tamaño del soporte
de la solución, que crece linealmente con el número de datos procesados. Puesto que
el Teorema de Representación dicta que la solución exacta de los problemas tratados
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H(z)
r[n]

f(·)x[n] y[n]

Figura 2: Diagrama de bloques de un sistema de Wiener. H(z) representa el filtro
lineal, y f (·) representa la no linealidad estática.

se puede expresar como una expansión kernel en todos los puntos del conjunto de
datos de entrenamiento, un método kernel online requiere una memoria y una com-
plejidad computacional que crecen en cada iteración. Por esta razón se suele limitar
el crecimiento del soporte, añadiendo sólo los datos más significativos.

En la literatura se han sugerido algunas estrategias para construir una memoria
dispersa de vectores soporte en métodos online, incluyendo el método de asignación
de recursos en redes de funciones de base radial (“resource allocating networks”,
RAN) [Platt, 1991] y el criterio de dependencia lineal aproximada (“approximate
linear dependency”, ALD) [Engel et al., 2004]. En el capítulo 4 se presenta un en-
foque distinto, que añade un dato en cada iteración a la memoria, pero también
descarta un dato, para mantener así el tamaño de la memoria fijo. La primera téc-
nica propuesta basada en esta filosofía es una versión kernel del algoritmo recursivo
de mínimos cuadrados (“recursive least-squares”, RLS) que limita la memoria sólo a
los datos más recientes mediante una ventana deslizante (“sliding window”). Este
método, llamado “sliding-window kernel recursive least-squares” (SW-KRLS) es ca-
paz de ajustar su solución satisfactoriamente en entornos dinámicos gracias a que
olvida los datos más antiguos. Por otra parte, este método no tiene en cuenta la
importancia de cada dato descartado. Por lo tanto, cada vez que se desprende de
un dato importante el rendimiento de este método empeora bruscamente. El se-
gundo método propuesto parte de la misma idea de una memoria de tamaño fijo,
pero en vez de descartar en cada iteración el dato más antiguo, es capaz de deter-
minar cuál de los datos en su memoria es el menos importante para la regresión, y
a continuación eliminarlo. Este método, denominado “fixed-budget kernel recursive
least-squares” (FB-KRLS) obtiene un mejor rendimiento para identificar sistemas no
lineales tanto estacionarios como variantes en el tiempo.

En conclusión, las técnicas estudiadas y propuestas en los capítulos 3 y 4 son
sistemas de aprendizaje que pueden “sorprenderse” al ver datos nuevos que les apor-
tan información, y pueden “olvidar” datos antiguos o menos relevantes. Gracias al
marco de los métodos kernel estas técnicas presentan una complejidad moderada y
su solución se obtiene mediante problemas de optimización convexa.

Identificación Supervisada de Sistemas no Lineales de Wiener o Hammerstein

En muchas aplicaciones prácticas, las no linealidades observadas pueden ser modela-
das como modelos más restrictivos basados en bloques, como los sistemas de Wiener
(un filtro lineal seguido por una no linealidad estática, ver Fig. 2) y Hammerstein
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(una no linealidad estática seguida por un filtro lineal). A continuación el estudio se
centra en la identificación e igualación de este tipo de sistemas no lineales.

En el capítulo 5 se propone un marco basado en el análisis de correlaciones
canónicas con kernels (“kernel canonical correlation analysis”, KCCA) que surge de
manera natural al resolver problemas de identificación con este tipo de modelos no
lineales en cascada. Para sistemas de Wiener, este método busca la proyección lineal
de la señal de entrada y la proyección no lineal de la señal de salida que maximicen la
correlación. La señal obtenida corresponde a una estima de la señal intermedia y de-
sconocida del sistema de Wiener. La técnica de KCCA se obtiene para este problema
al aplicar una restricción en la energía de la señal intermedia, en vez de la habit-
ual restricción sobre la energía de los coeficientes de los filtros estimados. Mediante
distintos experimentos se demuestra que esta restricción proporciona una mayor ro-
bustez ante ruido. Dada la similaridad entre los sistemas Wiener y Hammerstein, se
puede aplicar la misma técnica para identificar sistemas de Hammerstein. Finalmente
también se presentan extensiones de cada algoritmo que permiten igualar sistemas
de Wiener y Hammerstein.

A continuación se desarrolla una ampliación de las técnicas propuestas a entornos
adaptativos. Basándose en una solución adaptativa del problema del análisis de cor-
relaciones canónicas (CCA) que aplica dos algoritmos RLS acoplados, se presenta una
solución online del problema de KCCA. Esta nueva técnica se basa en el acoplo de
dos algoritmos KRLS, lo cual permite reutilizar todos los métodos KRLS estudiados
y propuestos en los capítulos 3 y 4. Al elegir un kernel lineal y otro no lineal en los
algoritmos KRLS se obtiene un algoritmo capaz de identificar de manera adaptativa
un sistema Wiener o Hammerstein.

Identificación Ciega de Sistemas de Wiener

En el capítulo 6 se considera el problema de identificación ciega de sistemas no linea-
les que se pueden modelar como sistemas de Wiener. Dentro de este problema, un
resultado de carácter científico destacable es que se demuestra que el sobremuestreo
permite la identificación ciega aplicando técnicas de KCCA. El algoritmo desarrollado
puede aplicarse para identificar de manera ciega sistemas no lineales con varias sali-
das, tales como redes de sensores no lineales o canales no lineales sobremuestrados,
siempre que sus relaciones de entrada-salida se pueden modelar como sistemas de
Wiener (ver Fig. 3). El algoritmo propuesto estima de manera alternada las partes
lineales y no lineales del sistema y, en contraste con otras técnicas, no impone res-
tricciones en la señal de entrada al sistema. Además, el número mínimo de salidas
necesarias para identificar el sistema es de 2, mientras que otras técnicas, que iden-
tifican sistemas Volterra de manera ciega, requieren un mayor número de salidas.
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s[n]

v1[n]

v2[n]

x1[n]

x2[n]

y1[n]

y2[n]

H1(z)

H2(z)

f1(·)

f2(·)

Figura 3: Un sistema no lineal con una entrada y dos salidas, en el cual cada relación
entrada-salida se puede modelar como un sistema de Wiener. Los componentes v1[n]
y v2[n] representan ruido aditivo.

III. Separación Ciega de Fuentes Mediante Técnicas de

Agrupamiento Espectral

En la tercera parte de esta tesis se estudian problemas de identificación ciega y de
separación ciega que permiten ser tratados con algoritmos de agrupamiento (“clus-
tering”). En particular, el tipo de problemas en los que las técnicas de clustering
ofrecen una alternativa interesante son aquellos en los que las señales fuente forman
parte de una alfabeto finito o cuando son dispersas. Después de una breve introduc-
ción a las técnicas de agrupamiento en el capítulo 7, se estudian dos de estos pro-
blemas para los que las técnicas tradicionales presentan deficiencias, y se proponen
algoritmos basados en agrupamiento espectral (“spectral clustering”) para resolver
estos problemos.

Decodificación Ciega de Sistemas MIMO Rápidamente Variantes en el Tiempo

En primer lugar se estudia un problema de notable complejidad en el campo de
las comunicaciones como es la decodificación ciega o semiciega (empleando única-
mente un número muy reducido de símbolos piloto) de canales de múltiples entradas
y múltiples salidas (“multiple-input multiple-output”, MIMO) rápidamente variantes
en el tiempo. Estos canales, que tienen una propagación Doppler (“Doppler spread”)
normalizada muy elevada, no permiten la aplicación de técnicas de decodificación
ciega convencionales, dado que varían demasiado durante la transmisión de una
trama de datos (ver Fig. 4, arriba). Este problema puede ocurrir cuando los trans-
misores o receptores de un sistema MIMO se mueven a gran velocidad o bien cuando
la tasa de transmisión es muy baja en un sistema que se mueve lentamente. Es en
estos dos casos cuando se puede producir solapamiento entre los conjuntos de puntos
o clusters (que corresponden a los distintos símbolos transmitidos) en el scatter plot.

La técnica propuesta en el capítulo 8 incorpora la información temporal al scat-
ter plot, lo cual convierte las nubes de puntos solapadas en hilos alargados que se
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Figura 4: Efecto de la propagación Doppler normalizada en los símbolos recibidos.
Arriba: Scatter plots de los datos recibidos por una antena de un sistema BPSK MIMO
con 2 antenas transmisoras, para distintas propagaciones Doppler normalizadas fdT.
Abajo: Los mismos scatter plots a los cuales se ha añadido un eje temporal. Como
resultado de los cambios en los canales durante la transmisión, se pueden observar
hilos curvados en estos diagramas.

entrelazan sin cruzarse (ver Fig. 4, abajo). Además, para evitar el agrupamiento
incorrecto que puede ocurrir cuando un cluster no contiene suficientes puntos, el
método propuesto aprovecha la estructura de la constelación M-PSK utilizada den-
tro del algoritmo de agrupamiento.

Las técnicas de agrupamiento espectral propuestas emplean un kernel Gaussiano
en el diseño de la matriz de afinidad. En una contribución adicional estudiamos alter-
nativas que permiten incorporar más información a priori sobre el problema. Especí-
ficamente, el empleo de un nuevo kernel basado en caminos entre cada dos puntos
(el denominado “connectivity kernel”) permite obtener soluciones mucho mejores
que las obtenidas con un kernel Gaussiano.

En conclusión, las técnicas propuestas requieren un número de pilotos mucho
más bajo comparado con técnicas adaptativas para la decodificación ciega. Dados el
mismo número de símbolos piloto, estas técnicas obtienen resultados notablemente
mejores en canales con Dopplers normalizados muy elevados.

Separación Ciega de Fuentes no Lineal en el Caso Indeterminado

En segundo lugar se estudian los problemas no lineales (“post-nonlinear”) de sepa-
ración ciega de fuentes (“blind source separation”, BSS), que consisten en recuperar
un número de fuentes que han sido mezcladas linealmente y después transformadas
por una no linealidad sin memoria. Mientras que en la literatura existe un gran
número de técnicas que tratan el problema post-nonlinear cuando el número de mez-
clas observadas es igual a, o mayor que el número de fuentes originales, en el capítulo
9 se trata el caso “indeterminado” de este problema, en el cual el número de mezclas
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es menor que el número de fuentes. Este problema se encuentra por ejemplo cuando
un número de sensores que exhiben una no linealidad (como una saturación) miden
un número más grande de indicadores.

La técnica propuesta requiere que exista un dominio en que las fuentes originales
son señales dispersas. En estos casos, se puede aplicar la técnica de agrupamiento
espectral al scatter plot para identificar instantes de tiempo en que sólo una fuente es
activa. A continuación se aplica este conocimiento para estimar las transformaciones
no lineales que se han aplicado en cada una de las mezclas no lineales. Una vez iden-
tificadas estas transformaciones no lineales, el problema se reduce a un problema
de separación ciega lineal, para el cual existe un gran número de técnicas conven-
cionales.

IV. Conclusiones

En esta tesis se han propuesto varias técnicas para aplicaciones de procesado de señal
no lineal y comunicaciones, planteando mejoras al estado del arte de la identificación
e igualación de sistemas no lineales, y de la separación ciega de fuentes no lineal.

Los resultados obtenidos en esta tesis han dado lugar a la publicación de un capí-
tulo de libro, siete publicaciones en revistas internacionales y seis artículos en congre-
sos internacionales, habiendo recibido en uno de ellos (European Signal Processing
Conference 2007) el premio al mejor artículo de estudiante (“Best Student Paper
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Chapter1
Introduction

Nonlinear phenomena are encountered in many engineering problems. Traditional
signal processing techniques are linear, which makes them unable to extract the
complex, nonlinear patterns that may lie in the data available in such scenarios.
Therefore, problems concerning nonlinear data analysis have traditionally been tack-
led by polynomial filters [Mathews and Sicuranza, 2000], which provide straight-
forward extensions of many linear methods, or by neural network approaches
[Haykin, 1999], which are able to learn nonlinear relationships.

In [Haykin, 1999], learning was defined as “the process by which the free pa-
rameters of a neural network are adapted through a process of stimulation by the
environment in which the network is embedded”. Hence, the goal of a learning pro-
cess is to make the network respond in a certain desired way to its environment. The
learning process itself ensures that the performance of the network improves with
experience.

This definition of learning applies to a broad class of machine learning systems.
In general, machine learning concerns learning processes that are not based on a
set of predefined rules, but learn relations from the data itself. There exist many
types of learning, including supervised learning, in which the desired responses for
all training data are given, unsupervised (or blind) learning, in which a data set is
provided without the corresponding desired responses, and reinforcement learning,
where only indirect feedback on the performance is available.

Two important concepts to keep in mind when designing a learning machine are
capacity and generalization [Vapnik, 1995]. The capacity of a learning machine refers
to the capability of this machine to represent complex and highly nonlinear func-
tions. The generalization capability allows a learning machine to generalize beyond
the training data to new, unseen data. Clearly, there exists a trade-off between the
capacity and the generalization capability of a learning machine, as a high capacity
will allow to represent the patterns in the training data very accurately, but it will
usually not generalize well to new data.

In contrast to linear techniques, which typically offer elegant formulations and
efficient algorithms, nonlinear learning machines such as neural networks require
more computation and often involve nonlinear optimization problems with multi-
ple local minima. An attractive alternative framework is offered by kernel methods
[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]. Kernel methods
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are powerful machine learning techniques that exhibit a less complex architecture
and provide a straightforward approach to transform nonlinear problems into convex
optimization problems. Common analysis tasks in kernel-based learning comprise
classification, regression and clustering. In this thesis, we will focus on the latter
two, and we will study the application of kernel methods to three basic problems
in signal processing, specifically nonlinear system identification, nonlinear system
equalization and nonlinear blind source separation.

1.1 Kernels as Similarity Measures

A central problem in machine learning is to discover structure in data. In regression,
for instance, we are given a series of training data pairs {(x1, y1), . . . , (xN , yN)} that
correspond to the input data xi of an observed, in general nonlinear system and its
corresponding output yi, for i = 1, . . . , N. The goal of regression is to discover the
underlying functional relationship between input and output of this system, with the
goal of being able to predict the system’s output when a new input data point is
presented.

A key idea here is that similar inputs need to lead to similar outputs. When a new
point is presented to the algorithm, it will compare this new point with all known
previous points in order to produce an output. To this end, we will make use of the
notion of kernels. A kernel can be thought of as a measure of input data similarity.
It is a symmetric function that takes as an input two data points and produces a
real number that measures the similarity between those points. Interestingly, kernel
methods are not restricted to numerical data alone, as they can be applied whenever
similarity between different objects can be measured as a scalar.

Kernel methods are based on the rigorous mathematical framework of reproduc-
ing kernel Hilbert spaces (RKHS), which will be discussed in the next chapter. The
practical consequence of using this framework is that it allows to compute inner prod-
ucts in a high, possibly infinite-dimensional feature space as kernel functions in the
input space. This property allows to transform linear inner product based techniques
into a high-dimensional space by simply changing their inner products into kernels.
When solving a kernel-based algorithm, one implicitly solves the linear algorithm in
feature space, where the transformed data is more likely to correspond to a linear
model (see Fig. 1.1).

1.2 Why use Kernel Methods?

Both neural networks and kernel methods are universal function approximators
(see for instance [Hornik et al., 1990] and [Micchelli et al., 2006], respectively),
which means that they can approximate a nonlinear mapping with any given ac-
curacy. However, neural networks usually require a high number of parameters,
and their optimal configuration is found by performing an iterative nonlinear opti-
mization process, often implemented through back-propagation. For a multitude of
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(a) Input space

φ−→

(b) Feature space

Figure 1.1: The basic idea of kernel methods. The mapping φ transforms the input
data points (black dots) into a high-dimensional feature space, where they can be
described by a linear model (straight solid line). The linear model found in feature
space corresponds to a nonlinear model in the input space (curved solid line).

problems, this training procedure is slow, and it does not guarantee convergence
to the optimal solution but rather encounters one of the multiple local minima
[Boyd and Vandenberghe, 2004].

Kernel methods, on the other hand, generally admit a more elegant solution
which stems from the framework of RKHS and the convexity of the resulting opti-
mization problem. Therefore, much kernel-based algorithms have a unique global
solution that can be found by solving a convex optimization problem. As a re-
sult, although kernel methods are only a decade old, they now represent an es-
tablished framework to solve machine learning problems and they are backed by
an extensive list of experimental accomplishments. Some of the best known ker-
nel methods are support vector machines (SVM) [Vapnik, 1995], kernel principal
component analysis (kernel PCA) [Schölkopf et al., 1998], kernel-based regression
techniques [Schölkopf and Smola, 2002], kernel canonical correlation analysis (ker-
nel CCA) [Bach and Jordan, 2002, Hardoon et al., 2003], kernel Fisher discriminant
analysis (KFD) [Mika et al., 1999] and spectral clustering [Ng et al., 2001]. Success-
ful applications of these algorithms have been reported in many fields, such as image
processing, computational biology, bioinformatics, communications and medicine.

1.3 Goal of the Thesis

The aim of this thesis is to design a set of kernel-based algorithms to solve a number
of related nonlinear problems in signal processing and communications. The mo-
tivation for this work lies in the fact that kernel methods are capable of efficiently
and accurately solving nonlinear problems at the cost of only moderate computa-
tional and memory complexities, which makes them suitable for possible real-time
implementations.

First, the problem of kernel-based nonlinear adaptive filtering will be treated.
Although the concept of performing adaptive filtering in RKHS is promising, several



6 Introduction

difficulties need to be addressed, including overfitting problems that arise from the
high dimensionality of the RKHS, and the growing support of online kernel methods.

In many practical applications, the observed nonlinearities can be modeled as
more restricted block-based models, such as Wiener and Hammerstein systems.
Therefore, the second problem in this thesis will consist in developing kernel-based
supervised identification and equalization algorithms for these model-based nonlin-
ear systems. The obtained algorithms will be extended to online scenarios by incor-
porating the developed kernel adaptive filtering techniques.

Next, a number of blind problems will be treated that cannot be solved by tradi-
tional linear algorithms, including blind identification of nonlinear systems and non-
linear blind source separation. Techniques will be proposed for blind identification
of Wiener systems and blind decoding of fast time-varying multiple-input multiple-
output channels, which stem from the area of communications. Lastly, the problem
of underdetermined post-nonlinear blind source separation will be dealt with, which
emerges when a certain number of signals is measured by a smaller number of sen-
sors that show some nonlinear behavior.

1.4 Outline and Contributions

While there is a close relationship between most of the problems dealt with, this
thesis will be divided into different parts that correspond to the different techniques
used to construct the proposed algorithms.

The first part presents the required background on kernel methods and a literature
survey of the most relevant previous work. More specifically, it contains the following
chapters.

• In chapter 1 we present a motivation for this work.

• Chapter 2 explains the theoretical framework on which kernel methods are
based. We describe the concept of regularization and present two examples
of kernel algorithms that will be fundamental for the development of other
algorithms in this thesis.

• In chapter 3 we give an overview of state-of-the-art online kernel methods.
We show how they are derived as kernel-based versions of classical adaptive
filtering methods, and we provide the outline of each algorithm.

In the rest of this thesis we present our own contributions to the field. First, we
treat the problems of nonlinear regression and nonlinear system identification with
kernels, in part II.

• Chapter 4 starts with a general discussion of nonlinear system identification.
We choose the class of Wiener and Hammerstein systems to work with in the
following chapters, which are block-based nonlinear systems that provide a
trade-off between simplicity and modeling capacity. As a first contribution, we
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introduce a family of online kernel learning algorithms that implement a re-
cursive least-squares (RLS) algorithm with fixed memory size in feature space.
Unlike most online algorithms presented in chapter 3, these algorithms are
capable of forgetting older or irrelevant data, which allows them to track time-
varying systems.

• In chapter 5 we propose a supervised method to identify Wiener and Ham-
merstein systems. We demonstrate how a kernel canonical correlation analysis
(kernel CCA) solution emerges for a properly chosen cost function and mini-
mization criterion. We derive batch and online versions, with different regu-
larization options and show how they can be used for supervised identification
and equalization of both systems.

• In chapter 6 we present an algorithm for blind equalization of single-input
multiple-output (SIMO) nonlinear systems, in which each nonlinear channel is
a Wiener system. The proposed method combines ideas from blind linear SIMO
identification with kernel canonical correlation analysis (kernel CCA) to iden-
tify the nonlinearities. It is shown that the blind identification problem can be
solved in an iterative manner, alternating between a CCA problem (to estimate
the linear filters) and a kernel CCA problem (to estimate the memoryless non-
linearities). The resulting technique can be applied to nonlinear SIMO systems
with two or more outputs.

Part III of this thesis focusses on problems of blind decoding and nonlinear blind
source separation that can be treated with spectral clustering based techniques.

• In chapter 7 we introduce the problem of data clustering. In particular, we
discuss the technique of spectral clustering, which will be used as the core
technique of the clustering problems in the following two chapters.

• Chapter 8 deals with clustering techniques for mixtures of signals that belong
to a finite alphabet, such as communication symbols. When the mixture process
changes in time, the clusters form complex shapes that cannot be recovered
by classical clustering algorithms. Therefore, such time-varying problems are
usually treated with adaptive algorithms that require a training sequence. We
propose a spectral clustering algorithm that is capable of performing this task
in a semi-blind fashion. Specifically, the only training data it needs consist of
the minimal number of bits to remove ambiguity. We also present extensions
that increase the algorithm’s robustness by optimizing the kernel function.

• In chapter 9 we consider underdetermined mixture problems in which the
source signals are sparse. For linear mixtures a number of techniques exist that
exploit the sparseness to identify the mixing process and recover the sources.
We show how spectral clustering can be applied in nonlinear scenarios to re-
trieve the nonlinear directions in the measurement scatter plot, thereby identi-
fying the mixing process.
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Part IV summarizes the main conclusions of this thesis, in chapter 10, along with
a number of future directions for the proposed techniques. We include a number of
appendices and bibliographic references.

The relationship between the different chapters and parts of this thesis is summa-
rized in the diagram of Fig. 1.2.

Figure 1.2: The structure of this thesis. Each circle represents a chapter, and the
arrows represent direct relationships between the different chapters. Starting from
chapter 1, various paths can be followed to read this thesis.

The contributions of this thesis are summarized at the end of each correspond-
ing chapter. Additionally, a full listing of the resulting publications is included in
appendix G. The obtained results have lead to the publication of one book chapter,
seven papers in international journals and six papers presented at international con-
ferences. One of these publications was awarded a Best Student Paper Award at the
2007 European Signal Processing Conference.

During the development of this thesis, the author has paid a scholarly visit of
three months between September 2008 and December 2008 to the Computational
NeuroEngineering Laboratory (CNEL) of the University of Florida, under supervision
of Professor Dr. José C. Principe. A number of collaborations have also been estab-
lished on the subject of machine learning techniques with other researchers including
Dr. Paolo Emilio Barbano of Yale University, Dr. Umut Ozertem of Yahoo! Research,
Professor Dr. Deniz Erdogmus of Northeastern University and Dr. Weifeng Liu of
Amazon.com.



Chapter2
Kernel Methods

This chapter is an introduction to the theoretical framework on which kernel meth-
ods are built. We discuss the mathematical concepts of reproducing kernel Hilbert
spaces, the nonlinear mapping of data into feature space, its associated kernel func-
tion and regularization. We also illustrate the introduced concepts with two basic
kernel algorithms that will be at the core of many techniques proposed in this thesis.

2.1 Kernels and Feature Spaces

We start by introducing some definitions and the used terminology. In general lines,
we will follow the exposition given in [Schölkopf and Smola, 2002].

2.1.1 Basic definitions

Definition 2.1 ((Positive Definite) Kernel). A kernel [Aronszajn, 1950] is a continu-
ous, symmetric function κ : X × X → R that operates on data in an input space X .
A kernel is called positive definite if for any set of input data points {xi}N

i=1 ∈ X it
satisfies the condition

N

∑
i, j=1

αiα jκ(xi , x j) ≥ 0, ∀αi ∈ R. (2.1)

A number of common kernels, such as the Gaussian kernel κ(x, x′) =
exp

(

−‖x− x′‖2/2σ2
)

are listed in section 2.1.5.

Definition 2.2 (Kernel Matrix). For a given set of N data points {x1, . . . , xN}, the
N × N matrix K with elements Ki j = κ(xi, x j) is called the kernel matrix (or Gram
matrix) of κ with respect to the data, for i, j = 1, . . . , N.

A positive definite kernel matrix is obtained by constructing a kernel matrix using
a positive definite kernel 1.

1Some authors prefer to call the corresponding matrices positive semi-definite, and reserve the term
positive definiteness only for matrices that are constructed using a strictly positive definite kernel, i.e.
a kernel for which (2.1) is strictly positive.
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Definition 2.3 (Positive Definite Matrix). A square real-valued matrix K satisfying

N

∑
i, j=1

αiα jKi j ≥ 0, ∀αi ∈ R, (2.2)

is called a positive definite matrix.

This condition is equivalent to requiring thatαTKα ≥ 0, ∀α ∈ RN. For the kernel
matrix this translates into all of its eigenvalues being nonnegative.

2.1.2 Reproducing kernels and Hilbert spaces

It can be shown that a feature space can be found that is associated with a positive
definite kernel such that the kernel is an inner product in that feature space. With the
aim of constructing such a feature space, let us start by defining a feature mapping
from X into the space of functions H, for a given positive definite kernel κ,

φ : X → H
x 7→ κ(x, ·). (2.3)

The function φ(x)(·) assigns the value κ(x, x′) to the input point x′. By interpreting
the kernel function as a similarity function, this mapping represents every input point
x by its similarity κ(x, ·) to all other points on the domain X .

In order to construct a feature space associated with φ, the image of
φ must be turned into a vector space and endowed with an inner product
[Schölkopf and Smola, 2002]. A possible vector space can be defined by taking linear
combinations of the form

f (·) =
m

∑
i=1

αiκ(xi, ·), (2.4)

where m, αi and xi are chosen arbitrarily, and i = 1, . . . , m. The inner product
between f and another function g(·) = ∑m′

j=1β jκ(x
′
j, ·) in this space is defined as

〈 f , g〉 :=
m

∑
i=1

m′

∑
j=1

αiβ jκ(xi , x′j). (2.5)

An interesting property that follows directly from the definition of φ is that all func-
tions of the form (2.4) satisfy

〈κ(x, ·), f 〉 = f (x). (2.6)

In other words, κ is the representer of the evaluation of f . In particular, the kernel κ
possesses the reproducing property [Aronszajn, 1950],

〈κ(x, ·),κ(x′ , ·)〉 = κ(x, x′). (2.7)

Therefore, positive definite kernels are also called reproducing kernels.
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The previous description shows that any positive definite kernel has an associated
feature space where it can be thought of as a inner product,

κ(x, x′) = 〈φ(x),φ(x′)〉. (2.8)

However, notice that this mapping only defines one possible way of constructing a
feature space, and we will later discuss a different, explicit feature mapping that
leads to another feature space.

Kernel trick

Up till this point we showed how a feature map can be constructed from a kernel.
Interestingly, the converse also holds. For every mapping φ from the input space
X to an inner product space, a positive definite kernel is obtained from (2.8) (see
[Schölkopf and Smola, 2002] for the proof). This duality between positive definite
kernels and feature spaces gives rise to the property that is commonly called the
“kernel trick”: “Given an algorithm that is formulated in terms of a positive definite
kernel κ, one can construct an alternative algorithm by replacing κ by another positive
definite kernel κ′.”

The best known application of the kernel trick, and also the main idea behind
many techniques used in this thesis, follows directly from the case where one kernel
is chosen as the inner product in the input space. In this situation, the kernel trick
states that we can transform any inner product based algorithm to an alternative
algorithm by replacing the inner products with a nonlinear kernel. According to
identity (2.8), performing this alternative kernel-based algorithm is equivalent to
applying the original inner product based algorithm in the feature space. The latter
algorithm is usually difficult or even impossible to carry out explicitly due to the
high dimensionality of the feature space. However, thanks to (2.8), we can simply
apply the equivalent kernel-based algorithm in the input space. The strength of this
simple and elegant idea is that while the obtained solution is a nonlinear function of
the input data (through the used nonlinear kernel), it is obtained by performing a
convex optimization problem implicitly in the feature space.

The advantages of moving to a higher-dimensional space in classification prob-
lems were already shown by the theorem of Cover [Cover, 1965], which demon-
strates that it is more probable that a problem is linearly separable in such a space.

Theorem 2.4 (Cover’s Theorem). There are C(N, n) possible linear separations of N
points in a an n-dimensional Euclidian space, where

C(N, n) = 2
n−1

∑
i=0

(

N − 1

i

)

. (2.9)

If the dimensionality of the space is higher than the number of points, n > N,
then all 2N separations are possible. Note that this theorem is only a guideline and
there exist specific configurations that do not satisfy it, for instance when all points
lie on a low-dimensional manifold.
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Reproducing kernel Hilbert spaces

By completing the previously-defined inner product spaces with a corresponding
norm ‖ f‖ :=

√

〈 f , f 〉, one can turn them into Hilbert spaces, which have some
interesting mathematical properties. Formally, a Hilbert space H is an inner prod-
uct space that is complete in the sense of Cauchy, i.e. a space in which every
Cauchy sequence {x(k)} necessarily converges to a unique x ∈ H. Examples of
Hilbert spaces are the vector space of n-tuples Rn equipped with the inner product
〈x, x′〉 = xTx′, and the set L2 of all square-integrable functions, whose inner product
is 〈 f , g〉 =

∫

f (x)g(x)dx. Note that the latter is a case of an infinite-dimensional
Hilbert space. By introducing the concept of reproducing kernels, one obtains the
following family of spaces:

Definition 2.5 (Reproducing Kernel Hilbert Space). Let X be a non-empty set and H
a Hilbert space of functions f : X → R. Then H is called a reproducing kernel Hilbert
space (RKHS) endowed with the inner product 〈·, ·〉 and the norm ‖ f‖ :=

√

〈 f , f 〉, if
there exists a function κ : X ×X → R with the following properties:

1. κ has the reproducing property

〈 f ,κ(x, ·)〉 = f (x), ∀ f ∈ H, ∀x ∈ X , (2.10)

and in particular, 〈κ(x, ·),κ(x′ , ·)〉 = κ(x, x′).

2. κ spans H, i.e. every f ∈ H can be written as

f (·) = ∑αiκ(xi, ·), (2.11)

where αi are some real-valued coefficients.

Following this definition, the RKHS H uniquely determines a kernel κ. However,
the opposite is not true, as will be illustrated in the following.

2.1.3 Mercer feature mapping

In this section, we will describe a procedure based on Mercer’s theorem to obtain a
specific Hilbert space associated to a given kernel κ. Although Hilbert spaces are
isometrically isomorphic and therefore the obtained space will be equivalent to any
other constructed RKHS, this theorem is interesting since it provides insight toward
the understanding of kernel methods.

Theorem 2.6 (Mercer’s Theorem). Given a compact input space X and the set L2 of
all square integrable functions, i.e.

∫

f (x)2dx < ∞, ∀ f (·) ∈ L2. If κ is a symmetric
real-valued function such that for all f (·) ∈ L2 we have

∫

X
κ(x, x′) f (x) f (x′)dxdx′ ≥ 0, (2.12)
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then it can be expanded as

κ(x, x′) =
nH

∑
i=1

λiψi(x)ψi(x
′), (2.13)

where ψi and λi are the eigenfunctions and (nonnegative) eigenvalues of κ, respectively,
and g(·) ∈ L2 [Mercer, 1909].

The requirement (2.12) in this theorem is called Mercer’s conditions, and the ob-
tained kernel is called a Mercer kernel. Notice that from (2.12) it follows that a
Mercer kernel is also positive definite.

An important consequence of the Mercer theorem is that it allows us to construct
an explicit Mercer kernel map φ of a data point x as

φ(x) =
[

√

λ1ψ1(x),
√

λ2ψ2(x), . . . ,
√

λnHψnH(x)
]T

. (2.14)

The dimensionality of this space depends on the number of nonnegative eigenvalues,
nH, which in case of the Gaussian kernel is infinite.

It can be shown that for every Mercer kernelκ there exists an RKHSH of functions
defined over X for which κ is the reproducing kernel. To this end, we consider a
kernel that satisfies (2.12) and the Hilbert space H containing the functions

f (x) =
∞

∑
i=1

αiκ(xi, x) =
∞

∑
i=1

αi

nH

∑
j=1

λ jψ j(xi)ψ j(x). (2.15)

By constructing an inner product

〈 f ,κ(x, ·)〉 =
∞

∑
i=1

αi

nH

∑
j,n=1

λ jψ j(xi)〈ψ j,ψn〉λnψn(x), (2.16)

and choosing 〈ψ j,ψn〉 = δ jn/λ j, the Mercer kernel κ becomes a reproducing kernel
for this Hilbert space, i.e. 〈 f ,κ(x, ·)〉 = f (x).

Interestingly, the Mercer kernel map and the RKHS kernel map lead to different
feature spaces. However, since they are both Hilbert spaces, they are isometrically
isomorphic, i.e. there exists a one-to-one linear mapping between them. Therefore,
in this thesis we will not distinguish between them.

2.1.4 Universal approximation and the Representer Theorem

An interesting property of kernel methods is that there exist several kernels
that can approximate any continuous function arbitrarily well [Steinwart, 2001,
Micchelli et al., 2006]. Formally, a kernel κ possesses the universal approximation
property if for any continuous mapping f : X → R and any accuracy ǫ > 0, there
exists a set of input points {ci}m

i=1 ∈ X and real numbers {αi}m
i=1, with m ∈ N, such

that

‖ f (·)−
m

∑
i=1

αiκ(ci, ·)‖ ≤ ǫ. (2.17)
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Furthermore, in the Hilbert spaceH associated with κ we can define a corresponding
vector h̃ ∈ H as

h̃ =
m

∑
i=1

αiφ(ci). (2.18)

By using h̃ as a linear operator in H,

‖ f (·)− h̃Tφ(·)‖ ≤ ǫ, (2.19)

it follows that the linear model in H possesses the universal approximation property.
Note that we will adopt a tilde to denote variables in feature space.

In order to determine what points ci should be used in the expansion (2.18),
one can make use of the Representer Theorem [Kimeldorf and Wahba, 1971]. This
theorem states that the solutions of certain risk minimization problems involving a
quadratic regularizer can be written as expansions in terms of the training data. In
[Schölkopf et al., 2001] a more general Representer Theorem was proposed in the
context of kernel methods:

Theorem 2.7 (Representer Theorem). Denote by X a set, by κ a positive definite
kernel on X × X , by {(x1 , y1), (x2 , y2), . . . , (xN , yN)} ∈ X × R a data set, by L :
(R×R)N → R an arbitrary cost function and by Ω : R → R any strictly monotonic
increasing function. Then, each f ∈ H that minimizes the regularized minimization
problem

min
f∈H

J( f ) = L ((x1, y1, f (x1)), · · · , (xN , yN , f (xN)) +Ω(‖ f‖H) (2.20)

can be written as a kernel expansion of the input data points, of the form

f (x) =
N

∑
i=1

αiκ(xi, x). (2.21)

In practice, we will mostly use a pointwise mean squared loss function L for which
the minimization problem (2.20) reads

min
f∈H

J( f ) =
N

∑
i=1

(yi − f (xi))
2 +Ω(‖ f‖H). (2.22)

The strength of the Representer Theorem is that it allows to find the possibly
infinite-dimensional solution h̃ of a minimization problem in feature space as a finite
combination of transformed data points x̃i. In this manner, the primal problem of
finding an optimal vector h̃ ∈ H is converted into the computationally much more
attractive dual problem of finding the N optimal expansion coefficients αi ∈ R of h̃.

2.1.5 Common kernel functions

In this section we list some commonly used kernel functions. Note that a kernel
function represents an inner product in some feature space, but it does not require
the input data to have a vector representation.



2.1 Kernels and Feature Spaces 15

Polynomial kernel. The polynomial kernel or order p is obtained as

κ(x, x′) =
(

〈x, x′〉+ c
)p

, (2.23)

where c is a nonnegative constant, usually 1. For low orders p, it is easy to obtain an
explicit feature mapping φ of (〈x, x′〉+ c)

p by decomposing it as a weighted sum of
monomials, using the binomial theorem.

Linear kernel. As a special case of the polynomial kernel of order 1, the linear
kernel is sometimes used

κ(x, x′) = 〈x, x′〉 = xTx′. (2.24)

Gaussian kernel. The Gaussian kernel (or radial basis function (RBF) kernel), is a
commonly used kernel function in kernel density estimation (KDE), such as Parzen
density estimation [Parzen, 1962]. It is calculated as

κ(x, x′) = exp

(

−‖x− x′‖2

2σ2

)

, (2.25)

where σ is a scaling constant. It can be shown that the Gaussian kernel spans an
infinite-dimensional feature space. This does not pose a computational problem,
though, since the kernel trick allows us to calculate the scalar product between two
points in this infinite-dimensional space by simply calculating the kernel function
(2.25) of the data in input space. Note that the factor 2 in the denominator is some-
times left out, in which case it is assumed that it is included in the factor σ2.

Sigmoid kernel. Much like the RBF kernel, the sigmoid kernel stems from neural
network theory. It is obtained as

κ(x, x′) = tanh(a〈x, x′〉+ c), (2.26)

where a, c ∈ R and are suitable constants. Note that this kernel is not positive
definite.

Sequence kernels. Sequence kernels compute the similarity between two se-
quences of strings taken from some alphabet [Lodhi et al., 2002]. These se-
quences do not necessarily need to have the same length. Sequence kernels
are commonly used in bioinformatics (for instance in biological sequence analy-
sis [Sonnenburg et al., 2005, Ben-Hur et al., 2008]) and the learning of formal lan-
guages [Kontorovich et al., 2008].

Time-series kernels. These kernels extend the concept of sequence kernels to time-
series [Rüping, 2001, Cuturi et al., 2007]. They are applied for instance in the prob-
lem of dynamic time-warping (DTW).
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2.2 Example Algorithms

Some of the most powerful kernel-based algorithms can be found in the areas of clas-
sification, regression and clustering. In this work we will focus mainly on applications
of kernel regression (in part II) and clustering (in part III).

In this section we illustrate two common kernel algorithms, which are obtained
directly by mapping linear algorithms into feature space. The first one is nonlinear
regression with kernels, which is a classical supervised learning problem. The sec-
ond one is a kernel-based implementation of principal component analysis (PCA),
which deals with the extraction of principal directions along which the data lie. No
labels are provided in the second example, which makes this fundamentally a blind
algorithm.

Care must be taken in constructing these algorithms, since the high dimensional-
ity of the feature space leads to certain difficulties that need to be addressed correctly.
We discuss these difficulties and a few measures that can be taken to overcome them
in section 2.3.

2.2.1 Kernel regression

Ridge regression Suppose we are given a set of data points xi ∈ Rn and their target
images yi ∈ R, and we are asked to retrieve a function that models the underlying
mapping y = f (x). This is the well-known problem of regression, and a linear
solution can be found by modeling this function as y = xTh +ǫ, where ǫ is an error
term. If the square norm of this error is minimized, we obtain the least-squares (LS)
criterion [Sayed, 2003], which is a widely used method in signal processing. The
solution is found as the vector h ∈ Rn that minimizes the functional

min
h

J(h) = ‖y− Xh‖2, (2.27)

in which we introduced the data matrix X ∈ RN×n that contains the N input patterns
xi stacked as its rows, i.e. X = [x1, x2, . . . , xN]

T, and the vector y ∈ RN that contains
all images yi. Typically, the number of observations N is larger than the number of
unknowns n, in which case the LS problem is overdetermined. Then, if XTX is a non-
singular matrix, the unique minimum-norm solution of the least-squares problem is
given by

h = X†y =
(

XTX
)−1

XTy. (2.28)

To improve generalization, the L2 norm of the solution can be used as a penalty term

min
h

J(h) = ‖y− Xh‖2 + chTh, (2.29)

where c is a regularization constant that controls the smoothness of the solution. This
type of regression, commonly known as ridge regression, was introduced by Tikhonov
[Tikhonov, 1963] as a remedy for ill-posedness. Essentially, it establishes a tradeoff
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between fitting the training data and reducing the norm of the solution. Taking the
derivative of the cost function with respect to h yields

XTXh− XTy + ch = 0, (2.30)

which is solved by

h =
(

XTX + cI
)−1

XTy, (2.31)

where I is the identity matrix2.
As mentioned earlier, the Representer Theorem [Kimeldorf and Wahba, 1971]

states that the solution h of minimization problems such as (2.29) can be written
as a linear expansion of the training data points. Specifically, we can rewrite (2.30)
in terms of h as

h = c−1XT(y− Xh), (2.32)

or, by introducing a set of coefficients αi,

h = XTα =
N

∑
i=1

αixi. (2.33)

The optimal coefficients can be obtained as follows:

α = c−1(y− Xh) (2.34)

⇒ cα = y− XXTα. (2.35)

Finally, we obtain

α =
(

XXT + cI
)−1

y, (2.36)

which is similar to (2.31). This yields two different forms of solving the ridge re-
gression problem (2.29). Equation (2.31) is called the primal solution. It obtains
the weight vector explicitly, based on the computation of the covariance matrix
XTX ∈ Rn×n. On the other hand, equation (2.36) gives the solution as a linear
combination of the training data. This solution is known as the dual solution. Notice
that it is based on the Gram matrix XXT ∈ RN×N. Although it requires more compu-
tation than the primal solution since we usually have n ≪ N, the information of the
training samples is given in inner products, which allows to apply the kernel trick.
As we will see in the following, when performing ridge regression in feature space it
is more worthwhile to solve the dual problem, as the dimension of the feature space,
n′, is usually much higher than the number of training data points, n′ ≫ N.

2Notice that the images yi do not necessarily need to be one-dimensional. If m-dimensional images
are used, the regression problem can be seen as m independent one-dimensional problems. The
combined solution h ∈ Rn×m of these problems is still obtained by (2.31).
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Kernel ridge regression If the data show nonlinear relationships, the previous lin-
ear regression technique will be unable to model them adequately. However, a non-
linear solution can be found by moving to feature space. Kernel ridge regression
(KRR) [Saunders et al., 1998, Evgeniou et al., 2000] is a technique that finds a non-
linear mapping f represented as a kernel expansion by minimizing the functional

min
f∈H

J( f ) =
N

∑
i=1

(yi − f (xi))
2 + c‖ f‖2

H , (2.37)

where H is the RKHS associated with the Mercer kernel κ and c is a regularization
parameter. Kernel ridge regression exploits the universal approximation capability
of kernel methods, which allows it to model the unknown mapping with any given
accuracy.

The Representer Theorem 2.7 shows that each minimizer f ∈ H of (2.37) has the
form

f (·) =
N

∑
i=1

αiκ(xi, ·), (2.38)

where xi are the training data points and αi are the corresponding coefficients, for
i = 1, . . . , N. Therefore, by substituting (2.38) in (2.37), one obtains

min
α

J(α) =
N

∑
i=1

(

yi −
N

∑
j=1

α jκ(x j, xi)

)2

+ c
N

∑
i, j=1

αiα jκ(xi , x j). (2.39)

After introducing the kernel matrix K and the coefficients vector α =
[α1,α2, . . . ,αN]

T, we can write (2.39) as

min
α

J(α) = ‖y−Kα‖2 + cαTKα, (2.40)

whose solution is
α = (K + cI)−1 y, (2.41)

which is the dual solution obtained in (2.36).
Notice that the regularization term in (2.40) cannot simply be left out (i.e., c = 0)

when working with kernels that have the universal approximation property, such as
the Gaussian kernel. For these kernels, the dimensionality of the feature space is
much higher than the number of observations, hence it is always possible to find
a solution that perfectly fits the training data. By introducing regularization, the
complexity of the solution will be limited, and as a result, it will generalize better to
new data points. These concepts will be discussed later in more detail.

In Fig. 2.1 the case of one-dimensional kernel ridge regression is illustrated. The
25 data patterns (xi, yi) in this example, represented by white dots, were generated
through to the model

yi =
sin(πxi)

πxi
+ vi, (2.42)
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Figure 2.1: Example of one-dimensional kernel regression. The white dots represent
the input data xi versus the noisy labels yi + vi. The estimated kernel regressor
function is shown as a solid black line, while the true underlying function is drawn as
a solid grey line. The smoothness of the estimated function is imposed by regularizing
the solution.

where vi represents a small additive white Gaussian noise component. Once a re-
gressor α is obtained through (2.41), the image of any new point x can be found
as

y = kT
xα = x̃TX̃α =

N

∑
i=1

κ(xi, x)αi, (2.43)

where X̃ holds the transformed training data points, x̃ is the transformed new test
point, and kx contains the kernels between the training data and the test point. This
allows to trace the entire regressor function, which is depicted by the solid black line
in Fig. 2.1. For this example a Gaussian kernel with σ = 1 and a regularization
constant c = 10−4 were used.

2.2.2 Kernel principal component analysis

Kernel principal component analysis (KPCA or kernel PCA) is a nonlinear generaliza-
tion of principal component analysis (PCA), a classical technique in dimensionality
reduction. Before addressing this “kernelized” version of PCA, we will first discuss
some basic concepts of the linear technique.

Principal component analysis

Principal component analysis (PCA) [Diamantaras and Kung, 1996, Jolliffe, 2002] is
an often used unsupervised technique in statistical data analysis, feature extraction
and data compression. Given a set of measurements of a multidimensional random
variable, the goal of PCA is to find a linear projection of this data onto a subspace
such that the error between the original and the projected data is as small as possible
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in the least-square sense. Mathematically, this is equivalent to finding the best low
rank approximation of the data via singular value decomposition (SVD).

Let us denote by x a zero-mean n-dimensional random variable. PCA will mini-
mize the cost function

arg min
W,x′

JPCA = E
[

‖x−Wx′‖2
]

s.t. wT
i w j = δi j, (2.44)

where x′ represents the projection of x onto a subspace of dimension m ≤ n, and the
columns wi of W ∈ Rn×m are the basis vectors of this subspace. The solution to this
problem is found by diagonalizing the covariance matrix of x. Given N observations
x1, x2, . . . , xN, an estimate of this covariance matrix can be obtained as

C =
1

N
XTX, (2.45)

where the matrix X ∈ RN×n contains the data stacked as rows. PCA is performed by
solving the following eigenvalue problem

1

N
XTXvk = λkvk. (2.46)

The solutions vk are called principal directions of the data. They constitute the or-
thonormal basis vectors of the PCA transform. After projecting the data onto these
directions, the principal components uk are obtained, which are the coordinates of the
data in the eigenvector basis:

uk =
1

N
√
λk

Xvk . (2.47)

Often, a small number of principal components are sufficient to account for most of
the variance in the data.

By combining the two previous equations, we find that the principal components
uk can also be obtained by solving another eigenvalue problem,

1

N
XXTuk = λkuk. (2.48)

The matrix XXT ∈ RN×N that appears here is the Gram matrix of the data. Interest-
ingly, the same PCA information is contained in both eigenvalue problems (2.46) and
(2.48), which are related through (2.47). Thanks to this relationship, the principal
directions and the principal components of the PCA problem can be retrieved by solv-
ing any of the eigenvalue problems and taking into account (2.47). When choosing
which of the eigenvalue problems to solve, one should take into account the differ-
ent computational complexities involved with each of them. If the number of data
points is much larger than the data dimensionality (N ≫ n), it is recommended to
solve the first eigenvalue problem (2.46) which has dimensions n× n. This case is
frequently encountered for instance in applications in communications. On the other
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Figure 2.2: Example of PCA. For a given two-dimensional data set (white dots), PCA
finds the principal directions v1 and v2. The first principal direction v1 indicates
the direction of maximal data variance, as can be seen by the depicted probability
density curves. Projecting the data onto this direction will yield the best possible
linear one-dimensional representation in the MSE sense.

hand, when working with relatively few data points of very high dimension (n≫ N),
solving the second problem (2.48) will create a smaller computational burden.

PCA obtains the optimal m-dimensional representation of the data by taking the
m first principal components, corresponding to the m largest eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λm. They have the following properties:

• The first m principal components contain more variance than any other m or-
thogonal directions.

• The mean-squared approximation error between the observations and the m
principal components is minimal.

• The principal components are uncorrelated.

This analysis motivates the use of PCA in data compression and noise reduction ap-
plications.

An example of PCA on a simple two-dimensional data set is illustrated in Fig. 2.2.
These data have a clear direction of maximal variance, which is identified correctly by
PCA as the first eigenvector v1. If the data have a more complex, nonlinear structure,
PCA will not be capable of finding an equally useful description of the data. This case
is illustrated in Fig. 2.3, where the two eigendirections of a “U”-shaped data set are
displayed. In this case we need an algorithm that is capable of extracting “nonlinear
eigendirections”.
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(a) λ1 = 1 (b) λ2 = 0.0318

Figure 2.3: Linear PCA applied on a “U”-shaped data set. Lines of constant projection
onto the first (a) and second (b) principal directions are shown, in which darker fill
colors represent higher values. As can be seen, linear PCA is not able to identify the
underlying nonlinear structure in the data.

Kernel PCA

Kernel principal component analysis is the procedure of performing PCA in feature
space [Schölkopf et al., 1998]. First, this requires to map the data points xi into
feature space, obtaining x̃i. Assuming that the transformed points are centered in
feature space3, i.e. ∑N

i=1 x̃i = 0, the covariance matrix is

C =
1

N

N

∑
i=1

x̃ix̃
T
i =

1

N
X̃TX̃. (2.49)

However, this covariance matrix is an n′ × n′ matrix, where n′ is the high, possible
infinite dimensionality of the feature space. The standard PCA problem formulation
in this space consists in solving

Cṽ = λṽ, (2.50)

which is now difficult or even impossible due to the high dimensionality of the used
matrices. Fortunately, another way of obtaining the PCA information can be obtained
by transforming this problem to its dual, Gram matrix-based formulation, as was
mentioned in the description of the linear PCA problem. The dimensions of the Gram
matrix (or kernel matrix) depend on the number of data points, N, and therefore as
long as this number is reasonably low this seems to be a good strategy.

Let us redefine the PCA problem in terms of the kernel matrix. According to
(2.49) we can write

Cṽ =
1

N

N

∑
i=1

(

x̃T
i ṽ
)

x̃i, (2.51)

which implies that all solutions ṽ must lie in the span of the transformed data
x̃1, x̃2, . . . , x̃N. Note that this is in accordance with the Representer Theorem. As

3In general the transformed data is not zero-mean in feature space. A procedure to obtain centered
data is described in appendix A.
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a consequence, there exist coefficients αi such that

ṽ =
N

∑
i=1

αix̃i = X̃Tα. (2.52)

Substituting (2.52) and (2.49) in (2.50) yields

1

N
X̃TX̃X̃Tα = λX̃Tα. (2.53)

Pre-multiplying this with the data matrix X̃ yields

1

N
X̃X̃TX̃X̃Tα = λX̃X̃Tα, (2.54)

which can be simplified by introducing the kernel matrix K = X̃X̃T , as

1

N
KKα = λKα. (2.55)

To find solutions of (2.55), we solve the eigenvalue problem

1

N
Kα = λα. (2.56)

for nonzero eigenvalues. Let λ1 ≥ λ2 ≥ · · · ≥ λN denote these eigenvalues, and
α1,α2, . . . ,αN the corresponding set of eigenvectors. To impose the unit norm of the
eigenvectors in feature space, ‖ṽk‖2 = 1, we can see from (2.52) and (2.56) that the
eigenvectors αk further need to be normalized as

Nλkα
T
kαk = 1. (2.57)

The entire KPCA procedure consists in solving the problem (2.56) and normalizing
the obtained eigenvectors as in (2.57). Although these are simple algebraic opera-
tions, they allow to extract nonlinear features from the data.

Note that kernel PCA relies on solving the dual problem, i.e. instead of calculating
the eigenvectors in feature space directly, it obtains their expansion in terms of the
transformed data. Therefore, in order to obtain the principal components of a test
point x it is necessary to calculate its projection in feature space onto the eigenvectors
ṽk. In particular, we obtain

x̃T ṽk = x̃TX̃αk = kT
xαk. (2.58)

An example of the nonlinear feature extraction capabilities of kernel PCA is given
in Fig. 2.4. Kernel PCA with a Gaussian kernel is performed here on the same
“U”-shaped data set that was used in Fig. 2.3. It can be observed that kernel PCA
successfully retrieves the nonlinear features present in the data. Moreover, since it
implicitly operates in a high-dimensional feature space, the number of features that
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(a) λ1 = 1 (b) λ2 = 0.9768 (c) λ3 = 0.7474

Figure 2.4: Feature extraction with kernel PCA, performed on the data set from Fig.
2.3. The contours of constant projection on the first (a), second (b) and third (c)
principal directions are plotted. Darker colors represent higher values, and the color
at the border of the plots represents the zero-value. The first principal direction of
KPCA correctly identifies the main nonlinear structure of the data, and the remaining
eigenvectors can be used to provide further insight.

can be extracted is not limited to the input data dimension as in linear PCA. Instead,
up to N features can be extracted.

Another example is given in Fig. 2.5, which illustrates the capabilities of kernel
PCA to detect zones of high data density. As will be seen in the chapter 7, this
property of kernel PCA can be exploited to construct clustering algorithms.

In general, kernel PCA can be employed to find directions in which a certain
feature is maximally present in the data set. For a linear kernel, the directions of
maximal data variance are detected, resulting in an algorithm that is equivalent to
linear PCA. The Gaussian kernel, on the other hand, is well-known as the kernel used
in Parzen window estimation for kernel density estimation (KDE), and therefore it
should not come as a surprise that kernel PCA with the Gaussian kernel can capture
“directions of maximal data density”. This idea is also reflected in [Girolami, 2002],
where it was shown how KDE can be performed based only on the solutions of the
kernel PCA eigenvector problem using a Gaussian kernel.

2.3 Regularization

Although the use of a high dimensional Hilbert space provides kernel methods with
a very high degree of flexibility in solving minimization problems, it is the same
flexibility that easily causes the solution to overfit to the training data. Specifically, if
a sufficiently “rich” kernel function is used and no precautions are taken, the solution
can have enough complexity to perfectly fit the given training data set while it will
not generalize well to new, unseen data. Additionally, this can also lead to numerical
instabilities.
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(a) λ1 = 1 (b) λ2 = 0.9955 (c) λ3 = 0.8975

(d) λ4 = 0.2756 (e) λ5 = 0.2536 (f) λ6 = 0.2454

Figure 2.5: Kernel PCA applied on a three-cluster data set. The contour plots of
constant projection on the first six principal directions are shown, along with the
corresponding eigenvalues λi. A Gaussian kernel was used.

In order to prevent this overfitting, the solution should be regularized, which is
commonly achieved by limiting its complexity. In regression, for instance, this can be
interpreted as smoothing out the obtained functional representation. In this section
we discuss three basic techniques to address overfitting.

2.3.1 L2 regularization

The most common form of regularization is given in the Representer Theorem (2.20),
which includes a regularization function Ω. A popular choice of regularization is
to choose Ω such that it penalizes large expansion coefficients αi, for instance by
penalizing the L2 norm of the solution as

Ω[ f ] :=
N

∑
i=1

α2
i = ‖α‖2. (2.59)

This type of regularization, which was already touched upon in section 2.2.1, is
known as ridge regression or quadratic regression, and was introduced by Tikhonov
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[Tikhonov, 1963]. In the feature space, the entire minimization problem can be writ-
ten as

min
h̃

J(h̃) = ‖y− X̃h̃‖2 + ch̃Th̃. (2.60)

Introducing the kernel matrix K = X̃X̃T and taking into account that h̃ = X̃Tα, it
was shown in section 2.2.1 that the solution is found as

α = (K + cI)−1 y. (2.61)

2.3.2 Sparsification

A second technique to lower the complexity is based on limiting the functional rep-
resentation of the solution. According to the Representer Theorem, the solution can
be represented as an expansion of all transformed input data points. Sparsifica-
tion consists in discarding the less relevant input data points from this expansion.
Apart from improving computational efficiency, it is also commonly known that a
sparse model usually gives better generalization ability [Platt, 1991, Vapnik, 1995,
Engel et al., 2004].

In order to select a compact subset of the training data points, different ap-
proaches have been proposed, including novelty criterion [Platt, 1991], approxi-
mate linear dependency (ALD) [Engel et al., 2004], the surprise information mea-
sure [Liu et al., 2010], and greedy algorithms [Cawley and Talbot, 2002]. The gen-
eral idea of these methods is to construct a dictionary of points of interest, for which
the kernel expansion and kernel matrix will be constructed. In most cases the dictio-
nary can be kept reasonably small. Since these methods are closely related to build-
ing networks in online problem settings, they will be discussed in detail in chapter 3,
which deal with online kernel methods.

2.3.3 Low-rank approximation

From the viewpoint of the feature space, the previous sparsification methods con-
struct a subspace spanned by the transformed dictionary points. By constraining the
solution to lie in this subspace, they inherently restrict the complexity of the solution.
A different manner to obtain such a subspace is found by directly constructing a low-
rank approximation of the transformed data, for instance by applying PCA in feature
space [Schölkopf et al., 1998]. As was shown in the example of section 2.2.2, this
consists in decomposing the kernel matrix into

K = UΣUT, (2.62)

where Σ ∈ Rm×m is a diagonal matrix containing the m principal eigenvalues and
U ∈ RN×m contains the corresponding eigenvectors. In practice there exist several
techniques that are capable of computing this decomposition efficiently, even for
large data sets, as will be shown in the next section.
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2.4 Practical Considerations

Many kernel methods require computing the entire kernel matrix K ∈ RN×N, whose
dimensionality grows quadratically with the number of data points N. Furthermore,
a wide range of operations on this matrix require up to O(N3) computations, for
instance the computation of its inverse or SVD decomposition. As a result, the com-
plexity of kernel methods can become prohibitive in problems where a large set of
training data is involved. In this section we discuss a few techniques that allow kernel
methods to scale to such problems.

A first category of kernel algorithms that can deal with large-scale problems
is the family of iterative optimization methods. A few examples of these tech-
niques include sequential minimization [Platt, 1999], which breaks up the large min-
imization problem into smaller sub-problems, and sparse approximation techniques,
which iteratively choose random subsets of the data to approximate the solution
[Vincent and Bengio, 2002]. Furthermore, in chapter 3 we will discuss online kernel
methods, which achieve low complexity by iteratively updating the solution as data
becomes available.

A second set of kernel methods for large-scale problems focus on approximating
the kernel matrix. This is usually achieved by finding a suitable low-rank decompo-
sition that satisfies

K ≈ UUT, (2.63)

where U ∈ RN×m is a “tall” but “narrow” matrix of rank m. For most common
kernels, the eigenspectrum of the kernel matrix declines rapidly and therefore an
efficient decomposition can be obtained with m ≪ N. Note that (2.63) is related
to the kernel PCA decomposition. Specifically, these methods can be employed to
perform kernel PCA efficiently on large data sets, as shown in appendix B.3. Here, we
limit the discussion to an overview of the most common kernel matrix decomposition
techniques:

• Incomplete Cholesky decomposition (ICD) [Bach and Jordan, 2002,
Kulis et al., 2006, Bach and Jordan, 2005] obtains a dimensionality re-
duction based on an efficient pivot-based scheme, that allows to compute the
decomposition without accessing all elements of K 4.

• Nyström approximation finds a numerical approximation to the eigendecom-
position of the kernel matrix from randomly chosen rows and columns. It is
based on the Nyström method [Williams and Seeger, 2000].

• Sparse greedy matrix approximation constructs an approximation of
the kernel by consecutively adding columns to its estimate of U
[Schölkopf and Smola, 2002]. Although it is similar to ICD, it includes a ran-
dom factor in its selection procedure, and it has a slightly higher complexity
than the two previous techniques.

4In appendix B an efficient way of calculating KPCA based on this form of ICD is discussed, which
is used throughout this work to alleviate the computational burden of KPCA.
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Low-rank approximation methods generally have time complexity O(Nm2) and
memory complexity O(Nm). Since the rank of the approximation, m, depends on
the desired accuracy of approximation, ǫ, these methods usually allow to fix either m
or ǫ.

A different approach to approximate the kernel matrix is followed by the empirical
feature map [Xiong et al., 2005, Abe and Shigeo, 2007]. This method constructs an
“empirical feature space”, which is a space spanned by the mapped training data that
gives approximately the same kernel value as that of the original feature space.

2.5 Choice of the Kernel Function

A problem inherent to every kernel method is the question of what kernel should be
used. For most kernels, this includes choosing one or more suitable kernel parame-
ters. Ideally, the kernel should reflect as much prior knowledge about the problem
as possible. By interpreting kernels as similarity measures between data points, the
choice of a kernel is often pointed out by the nature of the problem. For instance, if
data density is important, the Gaussian kernel will be a good starting point.

2.5.1 Kernel design

The design of kernels is a very active topic in the machine learning community, which
has led to a large number of techniques to construct positive definite kernels, or
even learn them. The construction of positive definite kernels can be as simple as
combining several different positive definite kernels. Examples of such kernels are
the linear combination of kernels with nonnegative coefficients, and the product of
two kernels. In part III of this thesis we will design kernels to include information
about the local structure of the data for specific applications. For an overview of
kernel design methods we refer to [Schölkopf and Smola, 2002]. More recently, the
concept of hyperkernels was introduced [Tsang and Kwok, 2004, Ong et al., 2005],
which define an RKHS on the space of kernels itself in order to learn a suitable kernel
function.

2.5.2 Kernel parameters

A number of techniques have been proposed to automatically select the kernel pa-
rameter, including rules-of-thumb as well as more theoretically founded approaches.
Common approaches include cross-validation and Silverman’s rule for the Gaussian
kernel [Silverman, 1986], which reads

σ = 0.9AN−1/5, (2.64)

where N is the number of data points and A = min(d,
q3−q1
1.34 ) is the minimum of the

empirical standard deviation d of the data and the data interquartile range scaled by
1.34.
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2.6 Conclusions

In this chapter we provided the theoretical background for kernel methods and we
laid out a number of related concepts, such as regularization, implementation issues
and the design of the kernel itself. The examples provided in this chapter will be used
as building blocks in the following chapters, in order to construct more elaborate
algorithms.
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Chapter3
Online Kernel Methods

Online kernel methods are kernel-based algorithms capable of operating in online
settings where the data arrive sequentially, while maintaining their computational
load moderate during each iteration. In general, online kernel methods aim to se-
quentially uncover a function f that maps a series of input patterns xn onto their
respective desired images dn. Similar to other online methods, they are useful in
situations where the amount of data is too high to apply batch algorithms and the
solution has to be updated sequentially to account for all processed data. A second
scenario that requires online updating of the solution occurs in dynamic environ-
ments, where the solution changes over time.

Typically, online learning consists of two basic steps, that are repeated at each
time instant n. First, the online algorithm receives an observation xn for which it
calculates the estimated image yn, based on its current estimate of f . Next, the
algorithm receives the desired image dn, which allows it to calculate the estimation
error en = dn − yn and update its estimate of f .

Online kernel methods are often based on linear adaptive filtering techniques
that are taken into feature space. The design of these algorithms requires to deal
with challenges such as overfitting and computational complexity issues. In this
chapter, we will focus on the most important online kernel methods, which are direct
implementations of linear adaptive filtering techniques in feature space. We give
a brief overview of some classical adaptive filtering algorithms, and discuss several
issues that emerge when formulating these algorithms in feature space.

3.1 Adaptive Filtering in the Input Space

In this section we review some basic concepts of linear adaptive filtering theory. We
will denote the input to a filter on time instant n as xn, its output as yn, and the
desired output as dn. The input signal xn is assumed to be zero-mean, and to allow
for a compact notation we will denote the time-delay vector of L taps of this signal on
time instant n as xn = [xn, xn−1, . . . , xn−L+1]

T.



32 Online Kernel Methods

3.1.1 Linear FIR filtering

Consider a zero-mean time series {x1, . . . , xN} used as the input for a linear filter
of length1 L that is characterized by the impulse response w = [w0, w1, . . . , wL−1]

T.
The output of this filter on time instant n is

yn =
L−1

∑
i=0

wixn−i = xT
n w, (3.1)

for n = 1, 2, . . . , N. In a batch problem setting, the entire sequence of input-output
patterns {(x1, d1), (x2, d2), . . . , (xN , dN)} is used to calculate the linear filter w. By
denoting the estimation error as en = yn − dn, the goal of optimal linear filtering is
to minimize the mean-square error (MSE) cost

J(w) = E[e2
n]. (3.2)

This cost function can be calculated in terms of the available data as

J(w) = σ2
d + wTRxw− 2wTp, (3.3)

where σ2
d is the variance of the desired signal, Rx is the input data covariance matrix

E
[

xnxT
n

]

, p is the cross-covariance between the input and the desired signal E [dnxn].
The gradient of (3.3) is given by

∇w J(w) = 2Rxw− 2p. (3.4)

Setting this gradient to zero leads to the well-known minimum mean-square error
(MMSE) Wiener filter solution

wopt = R−1
x p. (3.5)

This filtering problem can also be solved iteratively by applying the steepest descent
method. Given Rx and p, the update equation of the steepest descent method reads

wn+1 = wn −
µ

2
∇w J(w)|wn = wn + µ (p−Rxwn) , (3.6)

where µ is the step-size of the algorithm. Repeatedly applying this filter update will
converge to the Wiener filter solution if a small enough step-size is chosen.

3.1.2 Least mean square algorithm

The LMS algorithm is a classical stochastic gradient algorithm often used in adap-
tive filtering. It was proposed by Widrow and Hoff in 1960 [Widrow and Hoff, 1960,
Widrow et al., 1975] and it is widely used as a reference algorithm due to its simplic-
ity and robustness.

1In this thesis, we denote the length of linear filters as their number of taps L. The corresponding
filter order is L− 1.
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Algorithm 3.1 Least Mean Square (LMS)
initialize

w0 = 0.
for n = 1, 2, . . . do

yn = xT
n wn−1.

en = dn − yn.
wn = wn−1 +µxnen.

end for
Output wn.

The LMS algorithm aims to solve the MSE filtering problem (3.2) in an online
manner, updating its solution one step at a time as a new data pattern (xn, dn) be-
comes available. In practice, Rx and p are seldom known, and therefore the steepest
descent method (3.6) cannot be readily applied. To estimate these statistics, the LMS
algorithm uses the simplest choice: the instantaneous estimates, based on sample
values of the input and desired signal

R̂x = xnxT
n (3.7)

p̂ = dnxn. (3.8)

After substituting these estimates in the steepest-descent method (3.6), the well-
known update rule of the LMS filter is obtained:

wn+1 = wn +µxn

(

dn − xT
n wn

)

= wn +µxnen, (3.9)

where en is the a-priori error and xnen represents an instantaneous estimate of the
gradient.

The resulting LMS algorithm is summarized in Alg. 3.1. It is very fast, yielding
a time complexity of O(L). Moreover, thanks to its instantaneous estimate of the
gradient, it can perform tracking of non-stationary systems. On the downside, its
main disadvantage is that its instantaneous estimate of the gradient is noisy. As a
consequence, it never converges in static environments, but rather oscillates around
a solution with MSE J∞. The misadjustment of this solution, compared with the
optimal Wiener solution Jopt < J∞, depends on the step-size µ: A lower step-size will
lead to a lower misadjustment, but it will also slow down the convergence.

Notice, with the application of kernel methods and the kernel trick in mind, that
all operations of the LMS algorithm can be expressed solely in terms of inner prod-
ucts. The repeated application of the weight-update equation yields

wn = µ
n

∑
i=1

eixi, (3.10)

which allows to write the filter output at instant n for a given input x as

y =
n

∑
i=1

ei

(

xT
i x
)

. (3.11)
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Meanwhile, the error ei is obtained in terms of inner products as

en = dn −µ
n−1

∑
i=1

ei

(

xT
i xi

)

. (3.12)

A large number of modifications to the original LMS algorithm have been pro-
posed to improve its different aspects [Sayed, 2003]. Convergence, for instance, can
be improved by regularizing the squared norm of the solution. The resulting leaky
LMS algorithm aims to minimize the cost function

min
wn

J(wn) = E
[

e2
n

]

+ c‖wn‖2, (3.13)

where c is a regularization constant. This translates into the instantaneous update
rule

wn+1 = (1− µc)wn +µxnen. (3.14)

3.1.3 Recursive least-squares algorithm

A comprehensive introduction to the method of least squares (LS) can be found in
[Haykin, 2001]. Some of the basic concepts of least squares were also mentioned in
section 2.2.1, which dealt with regression. As the emphasis in this chapter will be on
deriving kernel algorithms, we will only require a description of the basic concepts
of least squares.

In the method of least-squares, the tap weights of the filter w are chosen such as
to minimize the cost function

min
w

JLS(w) =
N

∑
n=1

|en|2 =
N

∑
n=1

|dn − xT
n w|2. (3.15)

This method is deterministic in approach, in that it depends specifically on the num-
ber of data samples used in the computation. A regularization term can be included
in the cost function, resulting in

min
w

JLS(w) =
N

∑
n=1

|dn − xT
n w|2 + c‖w‖2, (3.16)

whose solution is found as

ŵ = X†y =
(

XTX+ cI
)−1

XTy. (3.17)

Given the least-squares estimate of the filter wn at iteration n, the recursive least-
squares (RLS) algorithm deals with the problem of updating this estimate when a
new data point xn+1 and desired response dn+1 become available [Haykin, 2001].
Apart from a regularization term, the cost function of RLS also commonly includes
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Algorithm 3.2 Exponentially-Weighted Recursive Least-Squares (RLS)
initialize

w0 = 0.
P0 = c−1I.

for n = 1, 2, . . . do
rn = 1 + λ−1xT

n Pn−1xn.
kn = λ−1Pn−1xn/rn.
en = dn − xT

n wn−1.
wn = wn−1 + knen.
Pn = λ−1Pn−1 − λ−1Pn−1xnxT

n Pn−1/rn.
end for
Output wn.

a weighting factor, for instance an exponential weighting that limits the contribution
of older data points. The resulting exponentially-weighted cost function is

min
wn

JRLS(wn) =
n

∑
i=1

(

λn−i
∣

∣

∣
di − xT

i wn

∣

∣

∣

2
+ cλn‖wn‖2

)

, (3.18)

where 0 < λ ≤ 1 is called the forgetting factor. The exponentially weighted RLS
algorithm aims to minimize this cost function in a recursive manner: Instead of de-
termining afresh the LS solution when a new data point becomes available, it updates
the solution in an efficient manner. In particular, in order to avoid the costly inver-
sion of the covariance matrix, the RLS algorithm makes use of the matrix inversion
lemma (see Lemma 3.1), which allows to calculate the inverse matrix in a recursive
manner. Given the covariance matrix at iteration n, Rn, and its inverse, R−1

n , it ob-
tains the inverse of the next covariance matrix R−1

n+1 = 1
n+1(nRn + xn+1xT

n+1)
−1 in

O(L2) operations.

Lemma 3.1 (Matrix Inversion Lemma). Let A and B be two positive-definite matrices
of size L× L that satisfy

A = B−1 + CD−1CT , (3.19)

where D is a positive-definite M×M matrix and C is an L×M matrix. The inverse of
matrix A can be expressed as

A−1 = B− BC
(

D + CTBC
)−1

CTB. (3.20)

This relationship is also known in the literature as Woodbury’s formula or the
Sherman-Morrison-Woodbury formula [Golub and Van Loan, 1996, Hager, 1989].

The entire exponentially-weighted RLS algorithm is summarized in Alg. 3.2.
Here, Pn can be interpreted as the inverse of the regularized data covariance matrix,
kn is called the gain vector and en is the prediction error. For λ = 1, the forgetting
factor has no influence, and assuming that the signals are ergodic the algorithm will
converge towards the solution of the regularized LS problem (3.17).
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3.2 Adaptive Filtering in RKHS

In recent years there have been some efforts in the literature to “kernelize" adaptive
filters. The resulting algorithms combine the adaptive characteristics of traditional
linear adaptive filters with the capabilities of kernel methods to resolve nonlinear
problems by means of a convex learning process with no local minima. Although
there have been numerous “adaptive” methods that use all training data, such as the
deterministic gradient method of kernel ADALINE [Frieß and Harrison, 1999], we
are more interested in algorithms that are capable of operating truly online, in the
sense that they allow to sequentially receive new data while training.

Before providing detailed algorithm descriptions in sections 3.3 and 3.4, we first
discuss the most common bottlenecks in the design of online kernel methods, which
are similar to the issues encountered by block-based (batch) kernel methods (see
section 2.3).

Computational complexity Traditionally, algorithms based on kernel methods
were not capable of operating online since their representation of the func-
tional mapping f becomes more complex as the number of observations in-
creases [Kivinen et al., 2004]. This is a consequence of the Representer Theorem
[Kimeldorf and Wahba, 1971, Schölkopf et al., 2001], which states that each mini-
mizer f ∈ H of the regularized LS cost function (2.37) can be expressed as a kernel
expansion

f (·) =
n

∑
i=1

αiκ(xi, ·), (3.21)

where {x1, x2, . . . , xn} is a set of stored examples called basis vectors, and
{α1,α2, . . . ,αn} are the stored coefficients. Without any measure taken, the num-
ber of required kernel functions grows linearly with the number of observations.
This also causes the kernel matrix to grow without bound, resulting in a super-
linearly computational complexity. Therefore, the main challenge in designing an
online kernel method lies in limiting the growth of this functional representation
[Platt, 1991, Vapnik, 1995, Engel et al., 2004].

Overfitting Additionally, online kernel methods suffer from overfitting, which is
inherent to kernel methods due to the high dimensionality of the induced Hilbert
space. Therefore some form of regularization is needed. Below we discuss the dif-
ferent options to apply regularization and to limit the computational complexity in
online kernel methods. Notice that some methods address both problems at the same
time.

3.2.1 Online regularization

To avoid overfitting, the complexity of the solution f can be penalized by limit-
ing its L2-norm (see section 2.3). The resulting minimization problem becomes
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[Evgeniou et al., 2000]

min
f∈H

J( f ) =
n

∑
i=1

L (di, f (xi)) + c‖ f‖2
H, (3.22)

where L(·, ·) is a loss function, H is the RKHS associated with the Mercer kernel
κ(·, ·) and c is a regularization parameter.

3.2.2 Online sparsification

The general idea behind sparsification methods is to construct a sparse dictionary
of points of interest, for which the kernel matrix will be constructed. These points
should allow to represent the remaining points in a fairly simple way, for instance
as a linear combination in feature space. As a general rule in learning theory, it is
desirable to design a network with as few processing elements as possible. Sparsity
reduces the complexity in terms of computation and memory, and it usually gives
better generalization ability to unseen data [Platt, 1991, Vapnik, 1995]. Apart from
avoiding overfitting, sparsification procedures are also capable of limiting the com-
putational complexity of online algorithms: Since their dictionary can usually be kept
reasonably small, the growth of the kernel matrix is restricted.

Suppose the dictionary at time instant n− 1 is Dn−1 = {ci}mn−1

i=1 , where ci is the i-
th stored center and mn−1 is the cardinality at this instant. When a new input-output
pair (xn, dn) is presented, a decision is made whether or not xn should be added to
the dictionary as a center. We shortly discuss two possible criteria to construct such
dictionaries.

Novelty Criterion The novelty criterion is an early data selection method, intro-
duced by Platt [Platt, 1991]. It is used to construct resource allocating networks
(RAN), which are essentially growing radial basis function networks. When a new
data point xn is obtained by the network, the novelty criterion calculates the distance
of this point to the present dictionary. If this distance is smaller than some preset
threshold, xn will not be added to the dictionary. Otherwise, it computes the predic-
tion error, and only if this error is larger than another preset threshold, xn will be
accepted as a new center.

Approximate Linear Dependency Criterion The approximate linear dependency
(ALD) test introduced in [Engel et al., 2004] requires some more computation. When
a new data pair {xn, yn} is presented, the algorithm tests whether the transformed
input point φ(xn) is approximately linearly dependent on the dictionary vectors, by
calculating the residual error

δn = min
a

∥

∥

∥

∥

∥

mn−1

∑
i=1

aiφ(ci)−φ(xn)

∥

∥

∥

∥

∥

2

, (3.23)
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where a = [a1 , . . . , amn−1 ]
T is a vector containing the expansion coefficients of the

linear combination. If δn does not exceed a certain threshold ν, the new data point
xn can be approximated sufficiently well in feature space by a linear combination
of the centers stored in the current dictionary. On the other hand, if δn > ν, the
current dictionary does not represent the new data point sufficiently well and it must
be expanded. In this case, a new center cn = xn is added to the dictionary, yielding
Dn = Dn−1 ∪ {cn} and mn = mn−1 + 1. ALD-based approaches generally have
complexity O(m2) at each time step, where m is the dictionary size.

A number of alternative methods have been proposed to achieve sparseness by
creating a basis dictionary and storing the corresponding coefficients. A Bayesian
framework for active data selection in online kernel methods was addressed in
[Liu et al., 2010]. By measuring the information a new data point can contribute
to a learning system, this criterion is capable of determining the data points that
“surprise” the system and should therefore be stored in its memory. A more
straightforward approach with a fixed-size memory was followed in the sliding-
window and fixed-budget kernel methods from [Van Vaerenbergh et al., 2006b,
Van Vaerenbergh et al., 2010b], which not only add points to the dictionary but also
prune unnecessary points. These concepts will be discussed in detail in chapter 4.

3.2.3 Online low-rank approximation

As mentioned in section 2.3, imposing sparsification can be interpreted as constrain-
ing the solution to lie in a subspace of the feature space. While dictionary-based
methods achieve this by selecting a reduced set of input data points, this constraint
can also be accomplished by directly seeking an optimal subspace of the feature
space, for instance by applying kernel PCA. This will both lower the computational
complexity, since it reduces the dimensionality of the involved matrices, and avoid
overfitting, since the solution is restricted to lie in this lower-dimensional subspace.

Online kernel PCA In [Hoegaerts et al., 2007] an algorithm was proposed that
allows to track the kernel eigenspace dynamically, making it possible to perform
online kernel PCA. Unlike iterative PCA approaches that recursively calculate the
PCA solution for a given data set, this method is truly online in that it accepts data
points sequentially and updates the KPCA solution in every iteration. Specifically, it
updates the eigenvectors and eigenvalues of the kernel matrix as new data points
are added to the problem. It has the possibility to exclude the influence of older
observations in a sliding-window fashion by only considering the last N observations,
which makes it suitable for time-varying problem settings. This implementation has
time and memory complexity O(NM2), where N is the number of data points in the
observed window and M is the number of eigenvectors used to span the subspace.
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3.3 Least Mean Squares Techniques in RKHS

Recently, several extensions of LMS into feature space have been proposed. Specifi-
cally, Kivinen et al. proposed an algorithm called NORMA (Naive Online regularized
Risk Minimization Algorithm) that directly differentiates the regularized functional
to get the stochastic gradient [Kivinen et al., 2004], which is equivalent to a ker-
nel version of the leaky least mean square algorithm (3.14). On the other hand,
Liu et al. presented a related technique that does not use explicit regularization
[Liu and Príncipe, 2008].

3.3.1 NORMA

Kivinen et al. proposed an algorithm to perform stochastic gradient descent
in reproducing kernel Hilbert space [Kivinen et al., 2004]. In order to learn a
mapping f , one can solve the following empirical risk minimization problem
[Schölkopf and Smola, 2002]

min
f∈H

J( f ) =
n

∑
i=1

L (di, f (xi)) , (3.24)

where L(·) is a suitable loss function. To avoid overfitting, NORMA penalizes the
norm of the mapping by introducing a regularization term, leading to the regularized
risk minimization problem

min
f∈H

J( f ) =
n

∑
i=1

L (di, f (xi)) + c‖ f‖2
H, (3.25)

which is the expression presented in (3.22). Inspired by the LMS algorithm, an online
approach was designed to find a solution by minimizing an instantaneous regularized
risk. In practice, LMS can be performed in feature space by replacing the inner
products in the LMS update equations (3.10), (3.11) and (3.12) by kernels. The re-
sulting algorithm, NORMA (Naive Online regularized Risk Minimization Algorithm),
is equivalent to a kernel version of leaky LMS.

By representing the estimate of the nonlinear mapping f as

fn(x) =
n

∑
i=1

αiκ(xi , x), (3.26)

the update rule of the coefficients αi in NORMA is as follows

αi =

{ −µL′ (yi, di)) , for i = n
(1−µc)αi, for i < n,

where L′ represents the derivative of the loss function with respect to f . A major
drawback to this update scheme is that the kernel expansion will contain n terms
at instant n. In NORMA, this is solved by truncating the kernel expansion: since at
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Algorithm 3.3 Naive Online regularized Risk Minimization Algorithm (NORMA)
initialize

y1 = 0.
α1 = −µL′(y1, d1).
βi = (1−µc)i, for i = 0, . . . , τ .

for n = 2, 3, . . . do
yn = ∑n−1

i=max1,n−τ
αiβn−i−1κ(xi , xn).

αn = −µL′(yn, dn).
end for

Output αi, for i = max(1, n− τ), . . . , n.

each instant n, the coefficients αi with i < n are scaled by (1 − µc), the smallest
terms can be dropped without incurring significant error. In practice, it was shown
that for a given truncation parameter τ ∈ N, the truncation error by dropping all
terms that are at least τ steps old is bounded. This truncation scheme fundamen-
tally converts NORMA into a sliding-window kernel LMS algorithm (see Fig. 1 in
[Kivinen et al., 2004]). The entire algorithm is summarized in Alg. 3.3.

3.3.2 Kernel least mean square algorithm

Recently, Liu et al. showed that the LMS algorithm can be well-posed in RKHS
without the need of an extra regularization term in the finite training data case
[Liu and Príncipe, 2008], because the solution is always forced to lie in the subspace
spanned by the input data. The proposed algorithm was named kernel least-mean
squares algorithm (KLMS).

The lack of an explicit regularization term leads to two important advantages.
First of all, it has a simpler implementation than NORMA, as the update equations
are straightforward kernel versions of (3.10), (3.11) and (3.12). Second, it can
potentially provide better results because regularization biases the optimal solution.

In particular, it was shown that a small enough step-size can provide a sufficient
“self-regularization” mechanism. Moreover, since the space spanned by {φ(xi)}N

i=1 is
possibly infinite-dimensional, the projection error of the desired signal dn could be
very small, as is well known from Cover’s theorem [Haykin, 1999]. On the downside,
the speed of convergence and the misadjustment also depend upon the step-size. As
a consequence, they conflict with the generalization ability.

In online scenarios where data is continuously being received, the size of the
KLMS network will continuously grow, posing implementation challenges. There-
fore a sparsification technique such as ALD can be applied. A method involving
Gaussian elimination steps on the KLMS gram matrix was recently proposed in
[Pokharel et al., 2009]. In Alg. 3.4 the basic kernel LMS algorithm without spar-
sification is summarized.
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Algorithm 3.4 Kernel Least Mean Squares (KLMS)
initialize

y1 = 0.
α1 = −µL′(y1 , d1).

for n = 2, 3, . . . do
yn = ∑n−1

i=1 αiκ(xi , xn).
αn = −µL′(yn, dn).

end for
Output αi, for i = 1, . . . , n.

3.4 Recursive Least-Squares Techniques in RKHS

Different types of kernel-based RLS algorithms have been proposed in the past few
years. Engel et al. presented a kernel recursive least-squares (KRLS) algorithm in
[Engel et al., 2004] that was a straightforward implementation of the RLS algorithm
in feature space. To limit the size of the kernel matrix it applies an ALD sparsification
procedure. In [Van Vaerenbergh et al., 2006b] we presented a sliding-window based
kernel RLS approach (SW-KRLS) that uses an updating procedure to keep the dimen-
sions of the kernel matrix fixed. Recently, Liu et al. proposed a kernel version of the
extended RLS algorithm [Liu and Príncipe, 2008] (EX-KRLS), and we presented an
extension of the sliding-window approach to a more general fixed-budget (FB-KRLS)
principle [Van Vaerenbergh et al., 2010b]. To better distinguish our own contribu-
tions, we will discuss only the ALD-based KRLS and EX-KRLS algorithms in this pre-
liminary chapter, leaving the SW-KRLS and FB-KRLS algorithms for chapter 4 in part
II of this thesis.

3.4.1 Kernel recursive least-squares algorithm

Kernel recursive least squares (KRLS or kernel RLS) is the technique of performing
standard RLS in feature space. At every time instant n, kernel RLS aims to minimize
the LS cost function

min
αn

J = ‖Knαn − dn‖2, (3.27)

where Kn is the kernel matrix of all seen data points {x1, . . . , xn}, Kn = X̃nX̃T
n , and

dn is a vector containing all seen desired outputs dn = [d1, . . . , dn]T. To simplify the
notation, we will leave out the index n in the following.

The theoretical solution, α = K†d, suffers from a number of problems includ-
ing overfitting and growing computational complexity. Engel et al. proposed a se-
quential sparsification procedure based on an approximate linear dependency (ALD)
criterion to avoid these problems [Engel et al., 2004]. Specifically, it approximates
this solution by using a reduced kernel matrix K̆ ∈ RM×M, obtained only from the
points stored in its dictionary D. By denoting C̃ as the data matrix containing the
transformed dictionary centers, the original matrix of transformed data can be ap-
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proximated as
X̃ ≈ AC̃, (3.28)

where A ∈ Rn×M contains the coefficients of the approximate linear combinations.
This allows to approximate the original kernel matrix as

K ≈ AK̆AT , (3.29)

and the cost function (3.27) can be rewritten as

min
ᾰ

J = ‖AK̆ᾰ− d‖2, (3.30)

where ᾰ = ATα contains a reduced set of coefficients. The solution to this LS prob-
lem is found as

ᾰ = (AK̆)†d = K̆−1(ATA)−1ATd, (3.31)

where we have exploited the fact that K̆ is non-singular by construction of the dic-
tionary D.

Given the solution ᾰn of (3.30) at a certain instant n, ALD-KRLS provides an
efficient way to update this solution as a new data pair {xn+1, dn+1} is received
[Engel et al., 2004]. In particular, it stores the matrices K̆−1

n , (AT
n An)

−1, and the
vector AT

n dn and it updates them every time a new data pair is received. The dictio-
nary Dn is either preserved or expanded with the input point xn+1.

The entire ALD-KRLS algorithm is reproduced in Alg. 3.5. It is efficient with
O(M2) time complexity and O(M2) memory complexity per time step, and it has
been successful in nonlinear problems including regression and time-series predic-
tion. In contrast to linear RLS, which can be extended easily to exclude the influence
of older data, it is not readily suitable for tracking time-varying environments, since
it assumes a static model. Solutions to this problem will be explored in chapter 4
by removing less relevant points from the dictionary. Notice that ALD-KRLS can be
extended by including a forgetting factor, but in order to adjust to variations in time
it also requires modifications to the ALD criterion that allow either to remove stored
data points or to modify the labels corresponding to these dictionary points.

3.4.2 Extended kernel recursive least-squares algorithm

From a state-space viewpoint, the standard RLS algorithm implicitly assumes that the
data satisfy the model

sn+1 = sn

yn = xT
n sn + vn,

(3.32)

where sn represents the state of the system, which is fixed in this case, xn is the input
to the system, yn represents the observations and vn is Gaussian white observation
noise, for all n [Haykin, 2001]. The first equation of (3.32) is called the state model,
while the second one is called the observation model. Due to its fixed state, this
model, which also lies at the basis of the ALD-KRLS algorithm, does not perform well
for time-varying systems.
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Algorithm 3.5 Kernel Recursive Least-Squares with Approximate Linear Dependency
criterion (ALD-KRLS)

initialize

First center c1 = x1.
Dictionary D1 = {c1}.
m = 1.
K̆1 = κ(x1, x1), K̆−1

1 = 1/κ(x1 , x1).
ᾰ1 = d1/κ(x1, x1), P1 = 1.

for n = 2, 3, . . . do
Receive (xn, dn).
Kernels of dictionary and new point: k̆n = [κ(c1 , xn), · · · ,κ(cm, xn)]T.
Optimal linear expansion coefficients: an = K̆−1

n−1k̆n.
ALD error: δn = κ(xn, xn)− k̆T

n an.
if δn > ν then

New dictionary center: cm = xn.
Update dictionary: Dn = Dn−1 ∪ {cm}.
Update inverse kernel matrix: K̆−1

n = 1
δn

[

δnK̆−1
n−1 + anaT

n −an

−aT
n 1

]

.

Update projection matrix: Pn =

[

Pn−1 0

0T 1

]

.

Update KRLS expansion coefficients: ᾰn =





ᾰn−1− an
δn

(

dn − k̆T
nᾰn−1

)

1
δn

(

dn − k̆T
nᾰn−1

)



.

m← m + 1.
else

Preserve dictionary: Dn = Dn−1.
Calculate qn = Pn−1an

1+aT
n Pn−1an

.

Update projection matrix: Pn = Pn−1− qnaT
n Pn−1.

Update KRLS expansion coefficients: ᾰn = ᾰn−1 + K̆−1
n qn

(

dn − k̆T
nᾰn−1

)

.

end if

end for
Output Dn and ᾰn.

A more general linear state-space model is used in the extended recursive least-
squares method

sn+1 = Asn + nn

yn = xT
n sn + vn,

(3.33)

where A is the state transition matrix, and nn is Gaussian white state noise. Kalman
proposed a two-step sequential procedure to update the state estimate, commonly
known as the Kalman filter [Kalman, 1960], which sequentially minimizes the fol-
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Algorithm 3.6 Extended Kernel Recursive Least-Squares (EX-KRLS)
initialize

a1 = αd1
cβ+κ(x1 ,x1)

.

Concomitant variable ρ1 = cβ
α2β+cq

.

Concomitant matrix Q1 = α2

(cβ+k1,1)(α2+cβq)
.

for n = 2, 3, . . . do

Kernels of stored points and new point: kn = [κ(x1, xn), · · · ,κ(xn−1, xn)]T.
zn = Qn−1hn.
rn = βnρn−1 +κ(xn, xn)− hT

n zn.
Algorithm output: yn = kT

n an−1.
A-prior error: en = dn − yn.

Update expansion coefficients: an = α

[

an−1− znr−1
n en

r−1
n en

]

.

ρn = ρn−1

α2+βnqρn−1
.

Qn = α2

rn(α2+βnqρn−1)

[

Qn−1rn + znzT
n −zn

−zT
n 1

]

.

end for

Output the expansion vector an containing the coefficients corresponding to
κ(xi, ·), for i = 1, . . . , n.

lowing LS cost function

J(w) = ∑N
j=0

(

λN− j
∣

∣

∣
d j − xT

j w
∣

∣

∣

2
+ cλN‖w‖2 + λN− jq−1‖nn‖2

)

s.t. x j+1 = Ax j + nn,
(3.34)

where the parameter q provides a trade-off between the modeling variation and mea-
surement noise. This problem is solved recursively by the extended RLS algorithm
[Sayed, 2003] which is similar in form to Alg. 3.2.

Recently, Liu et al. proposed an extended kernel recursive least-squares (EX-
KRLS) algorithm [Liu and Príncipe, 2008], that recursively obtains the solution of
(3.34) in feature space. The matrix inversion lemma cannot be applied directly here
because of the complicated constrained least-squares cost function (3.34). There-
fore, a special case was considered where the state transition operator has the form
A = aI. In [Liu and Príncipe, 2008] it was shown how this model, which indicates
either an attenuating or amplifying model, is suitable for tracking problems such as
slow fading communication channels. Moreover, to curb the growth of kernel matrix
size, an ALD criterion was applied. The core algorithm (without ALD) is summarized
in Alg. 3.6.
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3.5 Conclusions

In this chapter we introduced the concept of online kernel methods. We pointed
out the two most common drawbacks in taking kernel methods to online environ-
ments, specifically, overfitting problems and high computational and memory prob-
lems, along with a list of common solutions. We also discussed the most important
online kernel methods, and showed how they are obtained directly by taking linear
adaptive filtering techniques into feature space.
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Nonlinear Systems





Chapter4
Supervised Identification of

Nonlinear Systems

In this chapter we give an introduction to nonlinear system identification. After
discussing the most important types of nonlinear systems, we introduce a specific
family of block-based models, which will be used throughout the rest of this thesis.
We then provide a classification of nonlinear identification scenarios and discuss the
different kernel-based identification approaches. As a first contribution, we extend
the previously described family of online kernel methods with a set of fixed memory
size KRLS algorithms, and we show how they have certain advantages over other
online kernel methods in time-varying environments.

4.1 Volterra and Wiener theory of Nonlinear Systems

The field of nonlinear system identification has been studied for many years and
is still an active research area [Billings, 1980, Kalouptsidis and Theodoridis, 1993,
Sjöberg et al., 1995, Nelles, 2000, Giannakis and Serpedin, 2001]. In general, sys-
tem identification consists in trying to infer the functional relationship between a
system’s input and output, based on observations of the in- and outgoing signals.

For linear systems, identification follows a unified approach thanks to the superpo-
sition principle. This principle states that the output of a linear combination of input
signals to a linear system is the same linear combination of the outputs of the system
corresponding to the individual components. Or, simply put, the following holds for
the response L of every linear system:

L(αx1 +βx2) = αL(x1) +βL(x2), (4.1)

where α and β are scalars and x1 and x2 represent inputs to the system. As a con-
sequence, if a system is linear and time-invariant (LTI) it can be characterized com-
pletely by its impulse response.

Nonlinear systems, however, do not satisfy the superposition principle, and there
does not exist an equivalent canonical representation for all nonlinear systems. Con-
sequently, the traditional approach to studying nonlinear systems is to consider only
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one class of systems at a time, and to develop a parametric description that fits this
class and allows to analyze it.

One of the earliest approaches to parameterize nonlinear systems was introduced
by Volterra, who proposed to extend the standard convolutional description of linear
systems by a series of polynomial integral operators Hi with increasing degree of
nonlinearity [Volterra, 1887]. For discrete-time systems, this description becomes1

y[n] = H0 +
∞

∑
p=1

Hp(x[n]), (4.2)

where x[n] and y[n] are the input and output signals. Assuming the described non-
linear system is causal and of finite memory, the functionals Hp can be expanded
as

Hp(x[n]) =
M−1

∑
m1=0

· · ·
M−1

∑
mp=0

h
(p)
m1 ,...,mp x[n−m1] · · · x[n−mp], (4.3)

where h
(p)
m1 ,...,mp is the p-th order Volterra kernel of the system. The entire Volterra

kernel Hp is then described by its Mp coefficients h
(p)
m1 ,...,mp [Alper, 1965]. Note that

Volterra series are directly related to Taylor series, but they extend this concept by
allowing the represented system’s output to depend on past inputs.

If the input signals are restricted to a suitable subset of the input func-
tion space, it can be shown that any continuous, nonlinear system can be uni-
formly approximated up to arbitrary accuracy by a Volterra series of finite order
[Fréchet, 1910, Brilliant, 1958, Boyd and Chua, 1985]. This is a generalization of
the Stone-Weierstraß theorem, which states that every continuous function of a
variable x defined on an interval [a, b] can be approximated with arbitrary preci-
sion as a polynomial in x. Thanks to this approximation capability, Volterra series
have become a well-studied subject [Schetzen, 1980, Giannakis and Serpedin, 2001,
Franz and Schölkopf, 2006] with applications in numerous fields. In particular,
finite-order Volterra series that have finite memory (such as the truncated se-
ries of Eq. (4.3)) lie at the basis of the field of polynomial signal processing
[Mathews and Sicuranza, 2000].

In order to identify a nonlinear system ideally, the system response has to be
measured for all possible input functions. Volterra theory dictates that the appro-
priate system representation can be found by minimizing the L∞ norm between the
true output and the system output. Wiener proposed some relaxations to this iden-
tification scheme [Wiener, 1958, Papoulis, 1984] by introducing a framework of so-
called G-functionals, which are directly related to the original Volterra operators. He
showed that if the input to the system is white and Gaussian, the G-functionals are
mutually orthogonal and the entire system can be identified in the mean squared
error sense (by minimizing the L2-norm). This idea, which was exploited in the pop-
ular cross-correlation method of Lee and Schetzen [Lee and Schetzen, 1965], allows
to measure the Volterra kernels directly.

1Since the variables in this chapter often require subscripts, we will use brackets to indicate the
time index of a point, such as x[n], from this chapter on.
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H(z)
r[n]

f(·)x[n] y[n]

Figure 4.1: Block diagram of a Wiener system.

The main drawback to representing nonlinear systems as Volterra series is that
for growing degrees of nonlinearity and input dimension, the corresponding Volterra
representation requires to estimate an exponentially growing number of terms.
Therefore their application is limited to low-dimensional systems with mild non-
linearities. In the sequel we will focus on simplified nonlinear system models that
represents a trade-off between system complexity and nonlinear approximation ca-
pabilities.

4.2 Wiener and Hammerstein Systems

Although the functional series expansion of Volterra series provides an adequate rep-
resentation for a large class of nonlinear systems, practical identification schemes
based on this description often result in an excessive computational load. It
is for this reason that several authors have considered the identification of spe-
cific configurations of nonlinear systems, notably cascade systems composed of
linear subsystems with memory and continuous zero-memory nonlinear elements
[Narendra and Gallman, 1966, Gardiner, 1973].

A first such system, known as the Wiener system [Billings and Fakhouri, 1977],
consists of a linear filter followed by a static memoryless nonlinearity, as illustrated
in Fig. 4.1. In case a finite impulse response (FIR) filter is chosen as the linear part,
represented as

H(z) = h0 + h1z−1 + h2z−2 + · · ·+ hL−1z−L+1, (4.4)

the system’s output for a given input signal x[n], n = 0, 1, 2, . . . is obtained as

y[n] = f

(

L−1

∑
i=0

hix[n− i]

)

, (4.5)

where hi, i = 0, . . . , L − 1 represents the impulse response of the linear filter and
f (·) is the nonlinearity. This notation can be shortened by introducing the time-delay
vector x[n], as

y[n] = f
(

x[n]Th
)

. (4.6)

The Wiener model is a much more simplified version of Wiener’s original
nonlinear system characterization [Wiener, 1958]. However, despite its sim-
plicity, it has been used successfully to describe a number of nonlinear sys-
tems appearing in practice. Common applications include biomedical engi-
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H(z)
r[n]

f(·)x[n] y[n]

Figure 4.2: Block diagram of a Hammerstein system.

neering [Hunter and Korenberg, 1986, Westwick and Kearney, 1998], control sys-
tems [Billings and Fakhouri, 1982, Greblicki, 2004], digital satellite communica-
tions [Feher, 1983], digital magnetic recording [Sands and Cioffi, 1993], optical fi-
bre communications [Kawakami Harrop Galvão et al., 2007] and chemical processes
[Pajunen, 1992].

The inverse configuration, a series connection of a static memoryless nonlinearity
and a linear filter, is known as the Hammerstein system [Billings and Fakhouri, 1979]
(see Fig. 4.2). In case its linear part is represented by a FIR filter, the output of a
Hammerstein system is obtained as y[n] = ∑L−1

i=0 hi f (x[n− i]). Hammerstein systems
are encountered for instance in electrical drives [Balestrino et al., 2001], acoustic
echo cancelation [Ngia and Sjobert, 1998], heat exchangers and biomedical model-
ing [Westwick and Kearney, 2000].

Wiener and Hammerstein systems form particular types of block-oriented struc-
tures [Chen, 1995, Giannakis and Serpedin, 2001]. Other popular cascade models
include the so-called “sandwich” models that combine more than two blocks, for
instance the Hammerstein-Wiener model, which consists of a regular Hammerstein
system followed by an additional nonlinearity.

4.2.1 Review of identification techniques

Many identification approaches for Wiener and Hammerstein systems have been re-
ported in the literature since the late seventies. Most of them are supervised tech-
niques, although in the last decade a number of blind identification methods have
been proposed as well.

Traditional supervised methods followed a black-box approach, which does
not make any assumption about the system structure. Nonlinear equalization
or identification was tackled by considering nonlinear structures such as mul-
tilayer perceptrons (MLPs) [Erdogmus et al., 2001a], recurrent neural networks
[Kechriotis et al., 1994] or piecewise linear networks [Adali and Liu, 1997]. Other
black-box identification methods include techniques based on orthogonal least-
squares expansion [Korenberg, 1989, Chen et al., 1989] and separable least-squares
[Bruls et al., 1999].

To improve identification results, a number of algorithms were introduced that ex-
ploit the Wiener or Hammerstein’s structure explicitly. This can be done for instance
by an identification scheme that mimics the unknown system, and estimates its pa-
rameters iteratively [Narendra and Gallman, 1966, Billings and Fakhouri, 1977,
Billings and Fakhouri, 1982, Hunter and Korenberg, 1986, Wigren, 1994,
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Greblicki, 1997, Westwick and Kearney, 2000, Haykin, 2001, Greblicki, 2004,
Dempsey and Westwick, 2004].

Another approach that exploits the system’s structure consists of a two-step proce-
dure that consecutively estimates the linear part and the nonlinearity of the Wiener or
Hammerstein systems. Most proposed two-step techniques are based on predefined
test signals [Bai, 1998, Pawlak et al., 2007, Wang et al., 2007].

An even different proposition is found in [Aschbacher and Rupp, 2005], where
both blocks of the nonlinear system are estimated simultaneously through a cou-
pled regression on the unknown intermediate signal. In chapter 5 we will gener-
alize this technique and present a family of robust identification and equalization
techniques based on a kernel canonical correlation analysis (kernel CCA) framework
[Van Vaerenbergh et al., 2006a, Van Vaerenbergh et al., 2008a].

Extensions to the standard identification settings have also been proposed, for
instance to account for complex signals [Cousseau et al., 2007] and multiple-input
multiple output (MIMO) Wiener or Hammerstein systems [Goethals et al., 2005].

Although all above-mentioned techniques are supervised approaches (i.e., input
and output signals are known during estimation), recently, there have also been a few
attempts to identify Wiener and Hammerstein systems blindly. Most of these tech-
niques make certain assumptions about the input signal, for instance requiring it to
be Gaussian and white [Gómez and Baeyens, 2007, Vanbeylen et al., 2008]. Taleb et
al. presented a less restrictive method that only assumed the input signal was white
(i.i.d.) [Taleb et al., 2001]. The resulting technique aims to recover the input sig-
nal by minimizing the mutual information of the inversion system output. Recently,
we proposed a different approach based on oversampling of the nonlinear system’s
output, which does not make any assumption about the input signal’s statistics. This
technique will be discussed in detail in chapter 6.

4.3 Nonlinear System Identification with Kernels

In this part of the thesis we are interested in nonlinear system identification tech-
niques that are built specifically on the RKHS framework. These methods exhibit the
interesting property that they allow to construct universal approximators in the form
of expansions of kernel functions. In this section we will describe the different sce-
narios of system identification that will be treated in this work, and we will introduce
the corresponding kernel-based identification approaches.

In the most common scenario of nonlinear system identification, input and output
signals are available beforehand and no further information is given about the sys-
tem. An appropriate kernel-based identification technique for this scenario is kernel
least-squares regression, which was already discussed in section 2.2.1. If the system’s
input and output data are not known beforehand, but instead received sequentially,
the online kernel methods from chapter 3 could be employed.

In general, to determine what type of identification algorithm is needed, we
should ask the following three questions:
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• Are all data readily available to the algorithm, or do some data arrive after
a first solution is obtained? If all data are available, a batch (or block-based)
algorithm can be constructed. If this is not the case, an adaptive (or online)
algorithm is required, which is capable of updating the solution based on the
newly arriving data.

• Are both the input and output signals available, or only the output signal? The
first scenario allows for supervised identification, while in the second case only
blind identification is possible.

• Can the nonlinear system be described by a certain model? If this is the case,
such structure should be exploited to achieve a more accurate identification
algorithm. If not, a standard black-box algorithm is required.

Based on these criteria, we can distinguish among a number of different identification
scenarios.

1. Batch supervised black-box identification. This is the standard case of non-
linear identification, as introduced in section 2.2.1. All data is available, but no
information about the nonlinear mapping is given.

2. Online supervised black-box identification. In this scenario an online algo-
rithm is required, such as the kernel methods presented in chapter 3.

3. Supervised identification of model-based nonlinear systems. In chapter 5
we will discuss several identification and equalization algorithms for this sce-
nario, both for batch and online problems settings. To this end, we will develop
a framework of kernel canonical correlation analysis (kernel CCA). The nonlin-
ear system models chosen in this work will be the Wiener and the Hammerstein
systems.

4. Blind identification of model-based nonlinear systems. Blind techniques
aim to identify a system given only its output signal. In doing so, it is required to
make assumptions about either the input signal statistics, the system’s structure,
or both. While it is common to make assumptions about both, we will present
a technique that allows to identify and equalize a Wiener system blindly by
only exploiting its structure. This will be the topic of chapter 6. Although the
proposed technique is a batch algorithm, it performs a recursive estimate and
therefore it is readily extendible to online problem settings.

Before addressing the identification of specific model-based nonlinear systems in
the next chapter, the rest of this chapter will be dedicated to a set of online kernel-
based techniques we proposed for supervised black-box identification (the second
scenario in the previous list). These technique mark the first contribution of this
thesis, and they take up the overview of adaptive kernel filtering techniques where
we left it in chapter 3. Moreover, they will establish building blocks for the algorithms
introduced in the next chapter.
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4.4 Sliding-Window Kernel RLS

The ALD-KRLS algorithm [Engel et al., 2004] discussed in section 3.4 provides an
efficient means to calculate the solution to a batch least-squares nonlinear identifi-
cation problem. In order to achieve a low computational complexity, it starts with
a solution valid for only one or a few data points and recursively updates this solu-
tion to account for more data. It can also be applied in an online scenario where
not all data is available beforehand, although it requires that the nonlinearity to be
identified is static.

Unlike the linear RLS algorithm, ALD-KRLS is not able to operate in a time-varying
environment. In linear RLS this is made possible for instance by including a forget-
ting factor, yielding an exponentially weighted RLS algorithm. ALD-KRLS, however,
is based on the ALD criterion, which does not have a mechanism to exclude the
influence of already stored data points. As the nonlinear mapping changes in a time-
varying environment, input-output pairs stored by the ALD criterion will become
invalid and provide erroneous information to the algorithm. Although one could try
to lower the influence of such outdated input-output pairs, for instance by applying
a forgetting factor, the ALD criterion will not admit newer, possibly more accurate
input-output pairs to be stored if their input data coincides with any of the older
stored data points.

Another aspect of the ALD-KRLS algorithm that could be improved is its growing
memory. Although this growth is curbed by the ALD criterion and it will eventually
come to a halt, in many applications it would be interesting to limit the size of the
final memory. While this can be done in ALD-KRLS by manually stopping the growth,
the optimality of the obtained memory is not guaranteed.

In the following we will first introduce a simple KRLS algorithm with a fixed mem-
ory size, that can operate as a tracker. Afterwards, we will improve this algorithm by
equipping it with a criterion that allows to construct its memory optimally.

4.4.1 A sliding-window approach

In an online scenario, the solution of the regularized kernel LS regression problem
(2.41) reads

αn =
(

K
reg
n

)−1
dn, (4.7)

at every time instant n. Here, αn contains the kernel regression coefficients,
K

reg
n = Kn + cI is the regularized kernel matrix with regularization constant c, and

dn represents the vector of desired system outputs.
In order to exclude less important data points contained in (4.7), we pre-

sented an approach that only considers the last M data points in every time step
[Van Vaerenbergh et al., 2006b]. This approach applies a sliding window of length
M to the online data stream of input-output pairs {(x1, d1), (x2, d2), . . . }. For
the n-th sliding window, the observation matrix Xn = [xn, xn−1, . . . , xn−M+1]

T is

formed, and the corresponding kernel matrix K
reg
n = X̃nX̃

T
n + cI is obtained from

it (see Fig. 4.3). Similarly, the M last desired outputs are grouped into the vector
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Figure 4.3: (a) Kernel matrices Kn of growing size. (b) Kernel matrices Kn of fixed
size, obtained by only considering the data in windows of fixed size.

dn = [dn, dn−1, . . . , dn−M+1]
T. As a consequence, this method represents the nonlin-

ear mapping at every time step n as the nonlinear regressor (4.7) obtained only from
the M data points contained in the sliding window:

fn(x) =
M

∑
i=1

αn,iκ(xn−M+i, x) = kn(x)
Tαn, (4.8)

where αn,i represents the i-th coefficient of αn and kn(x) contains the kernel func-
tions between all points in the window and the test point x.

In the following, we will present an efficient scheme to update the solution (4.7)
when a new input-output data pair is received.

4.4.2 Updating the inverse of the kernel matrix

Given the solution of (4.7) at time instant n− 1, αn−1, the sliding-window approach
requires to obtain the inverse of the new regularized2 kernel matrix K−1

n and a new
output vector dn. Obtaining the new output vector is straightforward, as it only
consists in adding the new data point dn to dn−1 and removing the oldest data point
dn−M from it. The calculation of the new kernel matrix requires the calculation of the
M×M inverse matrix K−1

n . This is costly both in time (requiring O(M3) operations)
and in memory (O(M2)). To avoid the direct computation of the matrix inverse,
we proposed an update algorithm in [Van Vaerenbergh et al., 2006b] that allows to
obtain K−1

n solely from the knowledge of the data of the current window {Xn, dn}
and the previous inverse kernel matrix K−1

n−1.
Given the regularized kernel matrix Kn−1, the new regularized kernel matrix Kn

can be constructed in two steps. First, the first row and column of Kn−1 are removed.

2With slight abuse of notation, we will denote by Kn the regularized matrix that includes the
regularization term cI, wherever no confusion is possible.
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Algorithm 4.1 Sliding-Window Kernel Recursive Least-Squares (SW-KRLS)
initialize

Obtain K0.
Calculate and store K−1

0 .
for n = 1, 2, . . . do

Obtain dn: remove the oldest point from dn−1 and add dn to it.
Downsize K−1

n−1: Obtain K̄n−1 out of Kn−1, and compute K̄−1
n−1 with (C.4).

Upsize K̄−1
n−1: Obtain Kn as in (4.9), and compute K−1

n according to (C.3).
Update the solution: αn = K−1

n dn.
end for

This step is referred to as downsizing the kernel matrix, and the resulting matrix is
denoted as K̄n−1. In the second step, kernels of the new data are added as the last
row and column to this matrix:

Kn =

[

K̄n−1 k̄n−1(xn)
k̄n−1(xn)T knn + c

]

, (4.9)

where k̄n−1(xn) = [κ(xn−M+1, xn), . . . ,κ(xn−1, xn)]T and knn = κ(xn, xn). This step
is referred to as upsizing the kernel matrix. Notice that every element of the diagonal
of this matrix contains the regularization term c.

Calculating the inverse kernel matrix K−1
n is also done in two steps, using two in-

version formulas derived in appendices C.1 and C.2. First, given the previous kernel
matrix Kn−1 and its inverse K−1

n−1, the inverse of the downsized (M − 1) × (M − 1)
matrix K̄n−1 is calculated according to Eq. (C.4). Then, the matrix K̄n−1 is upsized to
obtain Kn, and based on the knowledge of Kn and K̄−1

n−1 the inversion formula from
Eq. (C.3) is applied to obtain K−1

n . Note that these formulas do not calculate the in-
verse matrices explicitly, but rather derive them from known matrices maintaining an
overall time complexity of O(M2) of the algorithm, where M is the window length.

To initialize the algorithm, we can either start with an empty window (of length
0) and let this grow to length M during the first M iterations by only applying the
upsizing operations, or apply zero-padding of the data to fill an initial window of
length M. In the latter case, the initial observation matrix X0 consists entirely of zeros
and the regularized kernel matrix K0 corresponding to these data and its inverse can
easily be computed. In case a Gaussian or polynomial kernel function is used, this
matrix is K0 = 1+ cI. The complete algorithm is summarized in Alg. (4.1).

4.5 Experiments with Sliding-Window Kernel RLS

To show the advantages of kernel-based methods over classical nonlinear algo-
rithms, the performance of the sliding-window kernel RLS algorithm was com-
pared with a multi-layer perceptron (MLP) in [Van Vaerenbergh et al., 2006b,
Van Vaerenbergh et al., 2007b], for online identification tasks. In this section we
reproduce those results.
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The supervised identification tasks were performed on static and time-varying
Wiener systems, which were considered black-box nonlinear systems during identi-
fication. Different amounts of additive noise were considered at the output of the
system, which is a standard practice in identification applications3. Furthermore, the
linear part of the Wiener systems is modeled as a FIR filter.

4.5.1 Identification of a Wiener System with an abrupt channel

change

We consider a supervised identification problem of a static Wiener system, in which
at a given time instant the linear channel coefficients are changed abruptly. This
allows to compare the tracking capabilities of both algorithms: During the first part
of the simulation, the linear channel is H1(z) and after receiving 500 symbols it is
changed into H2(z), with

H1(z) = 1− 0.3668z−1 − 0.4764z−2 + 0.8070z−3

H2(z) = 1− 0.8326z−1 + 0.6656z−2 + 0.7153z−3.

A binary signal xn ∈ {−1,+1} is sent through this channel, after which the signal is
transformed nonlinearly according to the nonlinear function f (·) = tanh(·). Finally,
20dB of additive white Gaussian noise (AWGN) is added. In these experiments, the
Wiener system is treated as a black box of which only the input and output are
known. To fill the initial sliding window, zero-padding of the signals was applied.
The MLP was trained in an online manner, i.e. in every iteration one new data point
was used to update the net weights.

Comparison to MLP

System identification was first performed by an MLP with 8 neurons in its hidden
layer and learning rate 0.1, and then by using the sliding-window kernel RLS with
window size N = 150 and using a polynomial kernel of order p = 3. For both
methods we applied time-embedding techniques assuming that the length L of the
linear channel was known. More specifically, the used MLP was a time-delay MLP
with L inputs, and the input vectors for the kernel RLS algorithm were time-delayed
vectors of length L, xn = [xn, . . . , xn−L+1]

T. The length of the used linear channels
H1 and H2 was L = 4.

At iteration n, the input-output pair (xn, dn) is fed into the identification algo-
rithm. The performance is then evaluated by estimating the next output sample
yn+1 = d̂n+1, given the next input vector xn+1, and comparing it to the actual output
dn+1. For both methods and all subsequent experiments in this section, the mean
square error (MSE) was averaged out over 250 Monte-Carlo simulations.

The MSE for both approaches is shown in Fig. 4.4. From iteration 500 to 650 it is
observed that the algorithm needs exactly N = 150 iterations to adjust completely to

3Some models suggest adding the noise component to the signal on the intermediate of the Wiener
system. We will not specifically consider such models.
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Figure 4.4: MSE of the identification of the nonlinear Wiener system of Fig. 4.1, for
the standard method using an MLP and for the window-based kernel RLS algorithm
with window length N = 150. A change in filter coefficients of the nonlinear Wiener
system was introduced after sending 500 data points.

the channel change. For the chosen learning rate, the MSE of the MLP initially drops
fast but it converges to a higher MSE.

Recently, a modification to the original sliding-window kernel RLS technique was
presented [Julian, 2009]. Based on the observation that an abrupt change in the
observed nonlinear system causes the MSE performance to peak, this algorithm pro-
poses to downsize the kernel matrix by more than one sample if a certain error
threshold is exceeded. By excluding multiple older data points, which account for a
large share of the error, it reduces an important part of the error peaks after an abrupt
change. By restricting the maximum number of computations per iteration to be the
same as for the original sliding-window KRLS algorithm, this algorithm determines
the maximal number of points that can be removed by the operation of downsizing,
which is computationally less expensive than upsizing. To recover the original kernel
matrix size, the algorithm can either omit the downsize operation during a number
of iterations, or recursively upsize the kernel matrix with the remaining (older) data
in the memory. Later in this chapter, we will present a different extension of the
original sliding-window kernel RLS algorithm based on a “fixed-budget” criterion.

In the following, the influence of the original algorithm’s parameters is discussed.
As a reference, we use to the basic setup with N = 150, L = 4 and 20dB SNR.

Influence of parameters

Window length Fig. 4.5 shows the performance of the kernel RLS algorithm for
different sliding-window lengths N. First, it is observed that a larger window corre-
sponds to slower convergence of the algorithm after the channel change. This occurs
because N iterations are needed to replace the data in the kernel matrix with data
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Figure 4.5: Comparison of the identification results of the kernel RLS algorithm for
different window lengths for Wiener system identification. Larger windows obtain
a better MSE. In general, the number of iterations needed for convergence is of the
order of the window length.
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Figure 4.6: Comparison of the identification results of the kernel RLS algorithm for
different Wiener system channel lengths. Since the same sliding-window length was
used in the three situations, the best results are obtained for the shortest channel.
Note that the channel length was known while performing identification.

corresponding to the new channel. Second, for small windows, peaks appear in the
MSE. The kernel method generally combines the images of the data points within
one window to represent the output of the nonlinear system. For small windows
(such as N = 75) the data points within one window are often insufficient to sample
the entire data range. Whenever a new point xn is observed that falls outside of the
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Figure 4.7: Identification results when the correct channel length L = 4 is not
known. The curve Lest = 3 shows that underestimation of the channel leads to a
worse performance than overestimation, which corresponds to Lest > 4.

sampled region, the performance shows an error peak. This also explains why the
algorithm converges to a lower error for larger windows.

Channel length If a longer channel is used in a Wiener system, resulting in a higher
input dimension, more basis vectors are needed by the sliding-window kernel RLS
algorithm to sample the input space adequately. As can be seen in Fig. 4.6, perfor-
mance drops if the same sliding-window length N = 150 is used in identification of
Wiener systems with different channel lengths.

If the correct channel length L is not known, an estimate Lest can be made. The
simulations of Fig. 4.7 show that the algorithm is very sensitive to underestimations
of the channel length (Lest < L). In case the correct channel length is not known, it is
preferred to overestimate this length slightly (Lest > L). Note that the computation
time is hardly affected by an increase of the estimated channel length, since the input
data dimension is of little importance once the kernel functions are computed.

Noise level Fig. 4.8 shows the MSE curves for different SNR values for the white
Gaussian additive noise, which reflect the variance of the noise directly.

Regularization constant Although the regularization constant is necessary to avoid
overfitting, the algorithm is robust to changes in its actual value, as can be seen in
Fig. 4.9. For very large values (c > 20) the effect of the regularization becomes
dominant.

Kernel function All previous tests were performed using a polynomial kernel func-
tion, which yielded satisfactory results, given the polynomial shape of the observed
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Figure 4.8: Identification results of the kernel RLS algorithm for different system
SNR values in Wiener system identification.
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Figure 4.9: Influence of the regularization constant on the algorithm’s performance.
For c ≤ 20 the obtained performance is very similar. For larger values, such as c = 50,
regularization has a dominating effect on the performance.

nonlinearity. When the Gaussian kernel was used, the algorithm’s performance
dropped slightly.

4.5.2 Identification of a slowly time-varying Wiener System

In linear systems that are varying in time, the RLS algorithm with forgetting factor
(see Alg. 3.2) can be applied to identify the system and track the system changes.
Here, we show that a sliding-window kernel RLS algorithm is also capable of track-
ing time variations. Fig. 4.10 shows the MSE curve for a Wiener system in which
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Figure 4.10: MSE for time-tracking of a Wiener system in which the channel varies
linearly.

the channel varies linearly over the first 1000 iterations from H1(z) to H2(z) and
is static over the next 1000 iterations. When the channel is varying in time, the
sliding-window kernel RLS algorithm obtains a slightly worse MSE than for the static
channel.

4.6 Fixed-Budget Kernel RLS

In sliding-window kernel RLS, the entire window is used as the kernel support to
represent the unknown nonlinear mapping. In every time step, the oldest point is
discarded from this memory, without considering the contribution of this point to the
current the kernel expansion. As a result, the performance is strongly affected every
time a significant point is discarded. An improvement to this procedure consists in
pruning the least significant point from the memory instead. Thanks to this modifica-
tion, the sliding-window technique can be seen as a special case of a broader family
of fixed-budget kernel RLS algorithms [Van Vaerenbergh et al., 2010b].

A central idea in fixed-budget kernel RLS is that not all training data are equally
significant. By letting the algorithm decide what data to maintain for its kernel ex-
pansion, we are giving it a more active role. For that reason, fixed-budget kernel RLS
belongs to the class of active learning algorithms.

4.6.1 Network pruning

To achieve a sparse network, one can either construct a network by adding rep-
resentative centers as shown in sections 2.3.2 and 3.2.2, or start from a large
network and prune less significant centers. Sparseness is preferred since it im-
proves generalization and lowers time and memory complexity. Pruning tech-
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niques have been well studied in the context of neural network design, for in-
stance in optimal brain damage [Le Cun et al., 1989] and optimal brain surgeon
[Hassibi et al., 1993], which are based on an analysis of the Hessian of the error
surface. In [de Kruif and de Vries, 2003, Hoegaerts et al., 2004] a number of differ-
ent, easier to evaluate criteria were presented to prune least-squares support vector
machines (LS-SVM).

A few methods have been proposed that combine growing and prun-
ing procedures, for instance generalized growing and pruning (GGAP)
[Huang et al., 2005], the forgetron [Dekel et al., 2008], and sliding-window al-
gorithms [Kivinen et al., 2004, Van Vaerenbergh et al., 2006b], which limit the
memory to the M newest data points. These approaches are interesting with
practical applications in mind, such as implementations on a microchip, since
they allow to put an exact upper bound on the memory size and the number of
computations needed. Moreover, they are capable of forgetting past data, which
makes them suitable for operating in time-varying environments. However, they
could be improved by applying a more intelligent discarding criterion.

Given the system memory of M points (xi , di) at iteration n− 1, we first add the
new point (xn, dn) to the memory. A simple approach to determine the least signifi-
cant point consists in performing kernel regression to map the M + 1 inputs xi onto
the M + 1 labels di by applying (4.7), which can be calculated efficiently in a recur-
sive manner (see section 4.4.2). Since each of the obtained coefficients αi represents
the contribution of the i-th data point to the nonlinear mapping, the least significant
point in the current regression is found as the one that has the lowest absolute re-
gression coefficient |αi|. It is easily seen that the evaluation of this criterion yields a
computational complexity of O(M) in each iteration.

In [de Kruif and de Vries, 2003] a criterion was proposed that prunes the point
that bears least error after it is omitted, in the context of least-squares support vector
machines (LS-SVM). This error can be obtained as

d(xi , di) =
|αi|

[K̆−1
n ]i,i

, (4.10)

where K̆−1
n is the inverse regularized kernel matrix consisting of M + 1 elements

(before downsizing), and [K̆−1
n ]i,i denotes the i-th element on its diagonal. Although

obtaining the inverse kernel matrix requires an additional computation when used
to prune a LS-SVM, this matrix is readily available in fixed-budget kernel RLS, as it
is calculated to update the KRLS solution. Therefore, the complexity of this criterion
is also O(M). Moreover, according to [de Kruif and de Vries, 2003] this criterion
obtains significant better performance than the regression-based criterion. For these
reasons we choose to use this criterion in fixed-budget kernel RLS.

Note that many other, more sophisticated criteria can be designed to prune the
memory. However, most of them are computationally much more expensive. We will
discuss some of them in the future research lines of this thesis (see chapter 10).
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4.6.2 Inverse matrix update

Once the least significant point has been determined, it is discarded from the mem-
ory. This also requires to recalculate the new kernel and inverse kernel matrices.
To obtain the downsized inverse kernel matrix, the matrix update procedure of the
sliding-window kernel RLS algorithm can be extended in a straightforward fashion.
Previously, we showed how the inverse kernel matrix could be obtained in an efficient
manner after the first row and column have been removed. In the current case, not
the first but the L-th row and column need to be removed, where L is the index of the
least significant point in memory. As is shown in appendix C.2.2, this can be obtained
by combining the downsizing formula for removing the first row and column with a
few simple permutations (see Alg. C.1).

4.6.3 Label update for tracking time-varying mappings

The above described procedure is capable of identifying a static nonlinear mapping,
by selecting points to store in memory and performing regression on these points.
If the nonlinear mapping changes over time, however, it is likely that the memory
contains points that do not reflect the current mapping well. Since regression is
performed only on the memory, these invalid points can remain in the memory and
affect the algorithm’s performance.

On the other hand, it is reasonable to assume that after a number of iterations
the input space will be sufficiently well sampled. Since the change in the observed
system’s response is reflected only on the desired data di, we only need to adjust the
data di stored in the memory in order to achieve tracking capability. We propose
to use the following update for all stored data labels, whenever a new input-output
point (xn, dn) is received

di ← di − µκ(xi, xn)(di − dn), ∀i, (4.11)

where µ ∈ [0, 1] is a step-size parameter.
The “relabeling” equation (4.11) takes into account the similarities in input and

output space, measured respectively by the kernel function and the difference di− dn.
As a consequence, it only affects points xi that are close enough to the new point xn

in the sense measured by the kernel. Concordantly, the change in the labels will
be proportional to di − dn. For instance, when using a Gaussian kernel, the kernel
κ(xi, xn) will be close to zero if the new point xn is far away from a stored point
xi, and the label yi will not be changed. On the other hand, if the new point xn

coincides with some stored xi and its label di is very different from dn, this label will
be changed proportionally to the difference di − dn. Notice that if µ = 0 this update
has no effect, and the algorithm assumes the observed nonlinear system to be static.

The entire fixed-budget kernel RLS algorithm is summarized in Alg. 4.2. In every
iteration, it first adds the new input-output pair (xn, dn) to its memory and subse-
quently decides which point to prune. The algorithm starts with an empty memory,
and during the first M iterations it skips the pruning step. The upsized matrices and



66 Supervised Identification of Nonlinear Systems

Algorithm 4.2 Fixed-Budget Kernel Recursive Least-Squares (FB-KRLS)
initialize

Store {x1, d1} in memory.
Calculate K−1

1 , and α with (4.7).
for n = 2, 3, . . . do

Update all stored labels di with (4.11).
Add (xn, dn) to memory and obtain K̆−1

n with (C.3).
if memory size > M then

Determine least significant stored point (xL, dL) with (4.10).
Prune (xL, dL) from memory and obtain K−1

n with Alg. C.1.
end if
Obtain KRLS solution based on updated memory, with (4.7).

end for
Output αi and (xi , di), for all i stored in the memory.

vectors are denoted with a breve here, for instance K̆n. Since the inverse kernel ma-
trix can be updated by Eq. (C.3) and Alg. C.1, which are simple algebraic operations,
this algorithm has the same computational complexity as the original sliding-window
kernel RLS algorithm.

4.7 Comparison of Kernel-Based RLS Algorithms

In this section we present an experimental comparison of different kernel RLS al-
gorithms. The first experiment analyzes the performance on the identification of a
static system, in particular the prediction of a nonlinear time-series. In the second
experiment, the tracking capability of the algorithms is compared on a time-varying
nonlinear channel.

4.7.1 Prediction of a steady-state nonlinear time-series

We perform one-step prediction on the nonlinear Mackey-Glass time-series with a
number of online algorithms. The algorithms are trained online on 500 points of this
series, and in each iteration the MSE performance is calculated on a test set of 100
points. A time-embedding of 7 is chosen, i.e. xn = [xn, . . . , xn−6]

T and the desired
output is yn = xn+1. The data are corrupted by zero-mean Gaussian noise with 0.001
variance.

We test the performance of the following RLS-based algorithms.

• Linear RLS.

• Sliding-window kernel RLS (SW-KRLS) with a window of 50 samples.

• ALD-based KRLS (ALD-KRLS) with accuracy parameter ν = 0.43. The accuracy
parameter will limit the dictionary growth. Its value is chosen here to obtain a
final memory size of approximately 50 samples.
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Figure 4.11: Top: Learning curves for one-step prediction on the Mackey-Glass time-
series. Bottom: indices of the points stored in memory by ALD-KRLS (ν = 0.43) and
FB-KRLS. Note that the final memory of FB-KRLS consists of points selected over the
entire time series.

• Fixed-budget kernel RLS (FB-KRLS) with a window of 50 samples.

• ALD-KRLS with accuracy parameter ν = 0. This case is included to provide
a lower bound on the performance. With this setting, the dictionary accepts
every data point and the resulting computational complexity is O(n2), where n
indicates the current iteration number.

For all kernel-based methods, the Gaussian kernel with σ = 1 is used, and a regular-
ization term c = 0.1 is included.

The learning curves of the different algorithms are shown in Fig. 4.11. It is
remarkable that the FB-KRLS technique obtains results that are very close to the
lower bound. By setting ν = 0.43, ALD-KRLS stores 53 points in memory, which
is similar to FB-KRLS. Nevertheless, in this case ALD-KRLS performs worse. In the
lower part of Fig. 4.11, the indices of the points in memory are shown, for ALD-KRLS
with (ν = 0.43) and FB-KRLS. Thanks to its pruning mechanism, FB-KRLS is capable
of selecting the most significant data points over the entire time series.

4.7.2 Identification of a time-varying nonlinear system

For the second experiment, we consider a nonlinear communications channel com-
posed of a linear filter followed by a static nonlinearity (a Wiener system). As the
system input we choose a binary signal, xi ∈ {−1,+1}, and 30dB of white Gaus-
sian noise is added at its output. The binary input signal is time-embedded with 4
taps, resulting in the input space showing 16 clusters. The static nonlinearity is the
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Figure 4.12: Performance on a time-varying Wiener system. In the first zone (“H1”)
all algorithms reach optimal steady-state performance, and ALD-KRLS and FB-KRLS
coincide. After the abrupt change at iteration 500, only the tracking algorithms are
able to recover.

saturation function f (x) = tanh(x). For the linear filter the following channels are
used:

H1(z) = 1− 0.2663z−1 − 0.5541z−2 + 0.1420z−3

H2(z) = 1 + 0.1050z−1 − 0.3760z−2 − 0.4284z−3

H3(z) = 1− 0.4326z−1 − 0.1656z−2 − 0.3153z−3.

During the first 500 iterations, the linear filter is fixed as H1(z). On iteration 501, the
channel is abruptly switched to H2(z), which is then changed linearly until becoming
H3(z) on the 1500-th iteration.

The algorithms use the following parameters: A Gaussian kernel with σ = 0.1
and λ = 0.01 are chosen for ALD-KRLS and FB-KRLS. Both methods only require 16
points in their dictionary, which is obtained for ALD-KRLS by setting ν = 0.1, and for
FB-KRLS by fixing M = 16. Note that since the input space shows only 16 clusters,
the final dictionary of ALD-KRLS will contain only 16 points even for smaller values
of ν. The SW-KRLS algorithm must be given a memory size of M > 16 to assure that
it contains most of the 16 possible input points. In this experiment we chose M = 50
for the SW-KRLS algorithm, and to account for situations in which the memory lacks
some point, it uses a Gaussian kernel withσ = 2, which should cover the entire input
space even if points are missing from the memory. Finally, ALD-KRLS and RLS use a
forgetting factor β = 0.99, and for FB-KRLS µ is set to 0.8.

The results, averaged out over 100 Monte Carlo simulations, are shown in Fig.
4.12. During the first 500 iterations, all algorithms reach their steady-state perfor-
mance. The MSE curves for ALD-KRLS and FB-KRLS overlap here. FB-KRLS obtains
better performance than SW-KRLS, since the latter does not actively select significant
points. After the abrupt change in the linear channel, the tracking algorithms RLS,
SW-KRLS and FB-KRLS are capable of recovering their steady state performance.
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Table 4.1: Performance comparison of final MSE values.

Algorithm MSE final memory size
ALD-KRLS 0.0951± 0.1363 16
RLS 0.0084± 0.0099 n/a
SW-KRLS 0.0020± 0.0087 50
FB-KRLS 0.0012± 0.0018 16

Since the channel is slowly changing, however, their MSE varies slightly over time.
On the other hand, ALD-KRLS performs very bad after the channel switch, due to
the fact that it is not designed to be a tracking algorithm. The ALD criterion selects
its dictionary entirely during the first 500 iterations, and since the input data points
xi are still the same after the channel switch (only the labels yi change), it is not
capable of adjusting its nonlinear mapping. Table 4.1 displays the MSE averaged out
over the last 500 iterations.

4.8 Conclusions

In this chapter we discussed different types of nonlinear systems, in order to design
kernel-based identification algorithms. Since nonlinear system identification gen-
erally requires models whose number of parameters grows exponentially with the
system complexity, we decided to focus on the family of Wiener and Hammerstein
system models in the rest of this part of the thesis. These systems provide at the same
time a simple and mathematically attractive structure, and they are found in a large
number of problems.

The rest of this chapter was dedicated to a class of online kernel-based identifi-
cation algorithms we recently presented. The main features of these algorithms are
the introduction of L2 regularization against overfitting and a fixed memory size. We
introduced efficient matrix inversion formulas to keep the complexity of the problem
bounded.

The proposed sliding-window KRLS algorithm is very easy to implement and it
is capable of achieving satisfactory performance in both static and time-varying en-
vironments. The fixed-budget kernel KRLS algorithm has the same computational
complexity but it takes a more active role in its data selection. In static environments
it outperforms other kernel-based adaptive filtering algorithms including ALD-KRLS,
given similar memory requirements. In a second experiment it was also shown that
it is capable of performing tracking, obtaining slightly better results compared with
sliding-window KRLS while using less memory.
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Chapter5
Supervised Identification of Wiener

and Hammerstein Systems

In this chapter we introduce identification and equalization algorithms that exploit
the structure of Wiener and Hammerstein systems. In particular, we follow a super-
vised identification approach that simultaneously identifies both parts of the nonlin-
ear system. Given the correct restrictions on the identification problem, we show
how kernel canonical correlation analysis (KCCA) emerges as the logical solution to
this problem. We then extend the proposed identification algorithm to an adaptive
version that allows to deal with time-varying systems. In order to avoid overfitting
we discuss and compare three possible regularization techniques for both the batch
and the adaptive versions of the proposed algorithm.

5.1 Problem Statement

Recently, an iterative gradient identification method was presented for Wiener sys-
tems that exploits the cascade structure by jointly identifying the linear filter and the
inverse nonlinearity [Aschbacher and Rupp, 2005]. It uses a linear estimator Ĥ(z)
and a nonlinear estimator ĝ(·), represented by a polynomial, that respectively model
the linear filter H(z) and the inverse of the nonlinearity f (·) of the Wiener system1,
as depicted in Fig. 5.1. The estimator models are adjusted by minimizing the error
e[n] between their outputs rx[n] and ry[n]. In the noiseless case, it is possible to find
estimators whose outputs correspond exactly to the reference signal r[n] (up to an
unknown scaling factor which is inherent to this problem).

In order to avoid the trivial solution, Ĥ(z) = 0 and ĝ(·) = 0, a constraint should
be applied to the solution. For this purpose, it is instructive to look at the expanded
form

‖e‖2 = ‖rx − ry‖2 = ‖rx‖2 + ‖ry‖2 − 2rT
x ry, (5.1)

where e, rx and ry are vectors that contain all elements e[n], rx[n] and ry[n], respec-
tively, with n = 1, . . . , N.

1Note that this approach assumes that the nonlinearity f (·) is invertible in the output data range.
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Figure 5.1: The used Wiener system identification diagram.

Typically, a unit norm or a linear constraint is applied on the filter coefficients. In
[Aschbacher and Rupp, 2005], a linear restriction was proposed: the first coefficient
of the linear filter Ĥ(z) was fixed to 1, which removes the scaling ambiguity. With
the estimated filter represented as h = [h1, . . . , hL] the minimization problem reads

min ‖rx − ry‖2 s.t. h1 = 1. (5.2)

However, from (5.1) it is easy to see that there exist situations in which this restriction
will not prevent the terms ‖rx‖2 and ‖ry‖2 from going to zero. For instance, if a
low-pass signal is fed into the system, the cost function (5.2) will not exclude the
possibility that the estimated filter Ĥ(z) exactly cancels out this signal, as could do a
high-pass filter. This problem is not limited to this restriction only, but it is inherent
to all restrictions applied only on filter coefficients [Vía et al., 2007a]. As a result,
such restrictions can lead to noise enhancement problems.

A second and more sensible restriction to minimize (5.1) is to fix the energy of the
output signals rx and ry while maximizing their correlation rT

x ry, which is obtained
by solving

min ‖rx − ry‖2 s.t. ‖rx‖2 = ‖ry‖2 = 1. (5.3)

Since the norms of rx and ry are now fixed, the zero-solution is excluded by con-
struction. To illustrate this, a performance comparison between batch identification
algorithms based on filter coefficient constraints and this signal energy constraint
will be given in section 5.4.1.

5.2 Kernel Canonical Correlation Analysis for Wiener

System Identification

We will now construct an identification algorithm based on the proposed signal
power constraint (5.3). To represent the linear and nonlinear estimated filters, many
different approaches can be used. For instance, the linear part can be represented by
finite impulse response (FIR), rational [Wigren, 1994], Laguerre [Wahlberg, 1991],
Kautz [Wahlberg, 1994], or linear state-space models [Hagenblad, 1999]. We will
represent the linear part of the system as a FIR model. For the nonlinear static part, a
number of parametric models can be used, including power series, Chebyshev poly-
nomials, wavelets and piecewise linear (PWL) functions, as well as some nonpara-
metric methods including neural networks [Wigren, 1994, Chen and Chang, 1996,
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Cousseau et al., 2007]. Nonparametric approaches do not assume that the nonlin-
earity corresponds to a given model, but rather let the training data decide which
characteristic fits them best. We will apply a nonparametric identification approach
based on kernel methods. More specifically, the nonlinearity will be represented as a
kernel expansion.

5.2.1 Identification algorithm

To identify the linear channel of the Wiener system, we estimate a FIR filter h ∈ RL

whose output is given by

rx[n] =
L−1

∑
i=0

hix[n− i] = x[n]Th, (5.4)

where x[n] =
[

x[n], x[n− 1], · · · , x[n− L + 1]
]T ∈ RL is a time-embedded vector.

The nonlinearity can be represented by a kernel expansion ĝ(·) = ∑N
i=1αiκ(y[i], ·),

yielding

ry[n] = ĝ(y[n]) =
N

∑
i=1

αiκ(y[i], y[n]), (5.5)

where αi are the expansion coefficients and κ(·, ·) is a suitable kernel function.
Although these representations of the linear and nonlinear part seem to be unre-

lated, they are in fact both projections, although in different spaces. On the linear
side of the system, the input vector x[n] is projected linearly onto the estimated
channel ĥ, yielding rx[n]. On the nonlinear side, a linear projection is performed in
the feature space, which corresponds to a nonlinear projection in input space: the
transformed vector ỹ[n] is projected onto a vector h̃y in feature space, yielding

ry[n] = ỹ[n]Th̃y. (5.6)

Since h̃y can be found as the solution to a quadratic minimization problem, the
Representer Theorem states that it can also be written as a linear combination of
the transformed input patterns, in accordance with (5.5). Specifically, h̃y can be
expanded as

h̃y =
N

∑
i=1

αiỹ[i], (5.7)

which allows to rewrite (5.6) as

ry[n] =
N

∑
i=1

αiỹ[i]
T ỹ[n] =

N

∑
i=1

αiκ(y[i], y[n]), (5.8)

where we applied the kernel trick in the second equality.
To find the optimal linear and nonlinear estimators, it is convenient to formulate

(5.3) in terms of matrices. By X ∈ RN×L, we will denote the data matrix containing
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x[n] as rows. The vector containing the corresponding outputs of the linear filter is
then obtained as

rx = Xh. (5.9)

In a similar fashion, the transformed data points ỹ[n] can be stacked as rows of
the transformed data matrix Ỹ ∈ RN×m′. The vector containing all outputs of the
nonlinear estimator is

ry = Ỹh̃y. (5.10)

Using (5.8), this can be rewritten as

ry = Kyα, (5.11)

where Ky = ỸỸT is the kernel matrix and α contains the coefficients of the ker-
nel expansion h̃y = ỸTα. With the obtained data representation, the minimization
problem (5.3) is rewritten as minimizing

min ‖Xh−Kyα‖2 s.t. ‖Xh‖2 = ‖Kyα‖2 = 1. (5.12)

This problem is a particular case of kernel canonical correlation analysis (KCCA
or kernel CCA) [Lai and Fyfe, 2000, Bach and Jordan, 2002, Hardoon et al., 2003]
in which one of the used kernels is linear. In general, it has been proved
[Hardoon et al., 2003] that minimizing (5.12) is equivalent to maximizing

ρ = max
rT

x ry

‖rx‖‖ry‖
= max

h,α

hTXTKyα
√

hTXTXhαTKT
y Kyα

, (5.13)

which is the problem of maximizing the correlation between the projected signals Xh
and Kyα. If both kernels were linear, this problem would reduce to standard canon-
ical correlation analysis (CCA), which is an established statistical technique to find
linear relationships between two data sets [Hotelling, 1936]. A brief introduction to
CCA can be found in appendix D.

The minimization problem (5.12) can be solved by the method of La-
grange multipliers, yielding the following generalized eigenvalue (GEV) problem
[Hardoon et al., 2003, Van Vaerenbergh et al., 2006a]

1

2

[

XTX XTKy

KT
y X KT

y Ky

] [

h
α

]

= β

[

XTX 0

0 KT
y Ky

] [

h
α

]

, (5.14)

where β = (ρ+ 1)/2 is a parameter related to a principal component analysis (PCA)
interpretation of CCA [Vía et al., 2005a]. In practice, it is sufficient to solve the
slightly less complex GEV

1

2

[

XTX XTKy

X Ky

] [

h
α

]

= β

[

XTX 0
0 Ky

] [

h
α

]

, (5.15)

since, as can be easily verified, the GEV problem (5.15) is transformed into (5.14) by
pre-multiplication with a block-diagonal matrix containing the unit matrix and KT

y .
Hence, any pair (h,α) that solves (5.15) will also be a solution of (5.14).
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The solution of the KCCA problem is given by the eigenvector corresponding to
the largest eigenvalue of the GEV (5.15). However, if Ky is invertible, it is easy to see
from (5.12) that for each h satisfying ‖Xh‖2 = 1, there exists an α = K−1

y Xh that
solves the minimization problem and, therefore, also the GEV problem (5.15). This is
a consequence of overfitting, which occurs for sufficiently “rich” kernel functions, i.e.
kernels that correspond to feature spaces whose dimension m′ is much higher than
the number of available data points N. For instance, in case the Gaussian kernel is
used, the feature space will have dimension m′ = ∞. With N unknown coefficients
αi and m′ ≫ N degrees of freedom, Eq. (5.15) potentially suffers from an overfitting
problem. Therefore, the GEV should be regularized.

5.2.2 Regularization techniques

In section 2.3, three basic regularization techniques were discussed. Here, we will
show how each of them can be applied to regularize the GEV (5.15).

L2 regularization

Ridge regression is a commonly applied regularization technique in ker-
nel CCA [Bach and Jordan, 2002, Suykens et al., 2002, Hardoon et al., 2003,
Lai and Fyfe, 2000]. It consists in adding a constraint on the L2 norm of the solution
h̃y, after which the restriction (5.12) becomes ‖Kyα‖2 + c‖h̃y‖2 = 1, where c is
regularization constant. In appendix D.3 we discuss a few different GEVs that obtain
the solution of this L2-regularized problem. Here, we will work with the GEV (D.18)
that is obtained by introducing regularization only in the right-hand side of the GEV:

1

2

[

XTX XTKy

X Ky

] [

h
α

]

= β

[

XTX 0

0 K
reg
y

] [

h
α

]

. (5.16)

Sparsification of the solution

In the sparsification approach, the solution is represented in terms of a dictionary of
M significant points, which can be obtained for instance in an online manner by the
ALD criterion [Engel et al., 2004]. Once a dictionary of points is found according to
a reasonable criterion, the complete set of data points Ỹ can be expressed in terms of
the transformed dictionary as Ỹ ≈ AD̃, where A ∈ RN×M contains the coefficients
of these approximate linear combinations, and D̃ ∈ RM×m′ contains the dictionary
points row-wise. This also reduces the expansion coefficients vector to ᾰ = ATα,
which now contains M elements. Introducing the reduced kernel matrix K̆y = D̃D̃T,
the following approximation can be made:

Ky = ỸỸT ≈ AK̆yAT . (5.17)

Substituting Ky by AK̆yAT in the minimization problem (5.12) leads to the GEV

1

2

[

XTX XTAK̆y

ATX ATAK̆y

] [

h
ᾰ

]

= β

[

XTX 0

0 ATAK̆y

] [

h
ᾰ

]

. (5.18)
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In section 5.3 we will adopt this sparsification procedure to design a regularized
adaptive version KCCA algorithm.

Low-dimensional approximation

Kernel PCA can be applied to obtain a low-rank approximation of the kernel matrix

Ky ≈ VΣVT , (5.19)

where Σ is a diagonal matrix containing the M largest eigenvalues si and V contains
the corresponding eigenvectors vi column-wise. Introducing ᾱ = VTα as the projec-
tion of α onto the M-dimensional subspace spanned by the eigenvectors vi, the GEV
problem (5.15) reduces to

1

2

[

XTX XTVΣ

VTX Σ

] [

h
ᾱ

]

= β

[

XTX 0
0 Σ

] [

h
ᾱ

]

, (5.20)

where we have exploited the fact that VTV = IM.

5.2.3 Unifying Wiener and Hammerstein system identification and

equalization

To identify the linear channel and the inverse nonlinearity of the Wiener system, any
of the regularized GEV problems (5.16), (5.20), or (5.18) can be solved. Moreover,
given the symmetric structure of the Wiener and Hammerstein systems (see figures
4.1 and 4.2), it should be clear that the same approach can be applied to identify
the blocks of the Hammerstein system. To do so, the linear and nonlinear estimators
of the proposed kernel CCA algorithm need to be switched. The obtained Hammer-
stein system identification algorithm estimates the direct static nonlinearity and the
inverse linear channel, which is retrieved as a FIR filter.

Full identification of an unknown system provides an estimate of the system out-
put given a certain input signal. To fully identify the Wiener system, the presented
KCCA algorithm needs to be complemented with an estimate of the direct nonlin-
earity f (·). This nonlinearity can be obtained by applying any nonlinear regression
algorithm on the signal in between the two blocks (whose estimate is provided by the
KCCA-based algorithm) and the given output signal y. In particular, to stay within
the scope of this work, we propose to obtain f̂ (·) as another kernel expansion

f̂ (·) =
N

∑
n=1

βnκ(·, r[n]), (5.21)

where r[n] = (rx[n] + ry[n])/2. In section 5.4 the full identification process is illus-
trated with some examples.

Apart from Wiener system identification, a number of algorithms can be based
directly on the presented KCCA algorithm. In case of the Hammerstein system, KCCA
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readily obtains an estimate of the direct nonlinearity and the inverse linear chan-
nel. To fully identify the Hammerstein system, the direct linear channel needs to
be estimated, which can be done by applying standard filter inversion techniques
[Haykin, 2001].

At this point, it is interesting to note that the inversion of the estimated linear filter
can also be used to equalize a Wiener system (see [Van Vaerenbergh et al., 2006a])
when combined with an estimate of the inverse nonlinearity, which is obtained by
the KCCA algorithm obtains in the first place. To come full circle, a Hammerstein
system equalization algorithm can be constructed based on the inverse linear channel
estimated by KCCA and the inverse nonlinearity that can be obtained by performing
nonlinear regression on the appropriate signals.

The main advantage of these techniques compared to black-box methods is that
by exploiting the specific model of the nonlinear system, the solution has less de-
grees of freedom and will likely be more accurate. Specifically, if a Wiener system is
identified in a black-box manner by kernel LS regression as fbb : RL → R, the entire
L-dimensional input space range must be represented in the training data, requir-
ing a large number of input points. By exploiting the system structure, on the other
hand, the inverse nonlinearity g : R → R is a one-dimensional function whose esti-
mation requires far less data, and the linear filter is represented only by L additional
coefficients.

5.3 Adaptive Solution

As discussed in chapter 3, in a number of situations it is desirable to have an adaptive
algorithm that can update its solution according to newly arriving data. Standard
scenarios include problems where the amount of data is too high to apply a batch
algorithm, and environments that change over time. In this section, we discuss an
adaptive version of kernel CCA that can be used for online identification of Wiener
and Hammerstein systems.

5.3.1 Formulation of KCCA as coupled RLS problems

The special structure of the GEV problem (5.15) has recently been exploited to
obtain efficient CCA and KCCA algorithms [Vía et al., 2007b, Pezeshki et al., 2005,
Van Vaerenbergh et al., 2006a]. Specifically, the GEV problem in CCA can be viewed
as two coupled least-squares regression problems, which, in case of kernel CCA, be-
come

{

βh = (XTX)−1XT r̂
βKyα = r̂,

(5.22)

where r̂ = (rx + ry)/2 = (Xh + Kyα)/2. This idea has been used in
[Vía et al., 2005b, Van Vaerenbergh et al., 2006a] to develop an algorithm based on
the solution of these regression problems iteratively: at each iteration t two LS re-
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gression problems are solved using

r̂(t) =
rx(t) + ry(t)

2
=

Xh(t− 1) + Kyα(t− 1)

2
(5.23)

as desired output.
Furthermore, this LS regression framework was exploited directly to develop an

adaptive CCA algorithm based on the recursive least-squares algorithm (RLS), which
was shown to converge to the CCA solution [Vía et al., 2005b]. For Wiener and Ham-
merstein system identification, the adaptive solution of (5.22) can be obtained by
coupling one linear RLS algorithm with one kernel RLS algorithm. To regularize this
kernel RLS algorithm, any of the three discussed regularization techniques can be
used (see section 3.2). We will illustrate each of them with a suitable kernel RLS al-
gorithm, and show how they fit into the KCCA framework. Although we will discuss
only the three kernel RLS methods considered in [Van Vaerenbergh et al., 2008a],
the procedure is identical for any other kernel RLS algorithm.

Note that the algorithm adaptively updates its estimation of both parts of the
system, and therefore shortly after initialization the signal r̂[n] will not yet represent
an accurate estimate of the real intermediate signal r[n]. Hence, the linear and kernel
RLS algorithm used in training must be capable of forgetting the influence of this
initially erroneous estimate. For the linear part, this is solved by simply using an
RLS algorithm with a forgetting factor. The nonlinear part requires a kernel RLS
algorithm with tracker capabilities, which is less obvious to implement, as was seen
in chapter 3. We will discuss this further in the experiments.

L2 regularization: sliding-window kernel RLS

The sliding-window method of section 4.4 creates buffers that capture the last N
input points, y = [y[n], . . . , y[n−N + 1]]T, and the last estimated points of the refer-
ence signal, r̂ = [r̂[n], . . . , r̂[n− N + 1]]T, which are used as the method’s output2. In
feature space, the input data y corresponds to a transformed data matrix Ỹ, which is
used to calculate the regularized kernel matrix K

reg
y = ỸỸT + cI. This allows to solve

the LS regression problem
α =

(

K
reg
y

)−1
r̂. (5.24)

The sliding-window approach provides this kernel RLS algorithm with the capabil-
ity to recalculate the solution α as new input-output pairs {y[n], r̂[n]} are received.
Since it discards older input-output pairs, it is capable to operate as a tracker. At
any moment the estimated output ry corresponding to a new input point y can be
calculated, for a given estimate of α, as

ry =
N

∑
n=1

αnỹ[n]ỹ =
N

∑
n=1

α[n]κ(y[n], y) = kT
yα, (5.25)

2As was mentioned in the previous chapter, the sliding-window kernel RLS algorithm shows better
tracker capabilities than the fixed-budget algorithm. Therefore, it is preferred in this kernel CCA
framework.
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where ky is a vector containing the elements κ(y[n], y) and y[n] corresponds to the
points in the input data buffer. This allows to obtain the identification error of the
algorithm.

When this algorithm is used as the kernel RLS algorithm in the adaptive kernel
CCA framework for Wiener system identification, the coupled LS regression problems
(5.22) become

{

βh = (XTX)−1XT r̂

βα =
(

K
reg
y

)−1
r̂.

(5.26)

Note that the more recent fixed-budget kernel RLS algorithm could also be used
in this framework. Nevertheless, since the main idea in this chapter is to perform
regression on the unknown reference signal r̂[n], any nonlinear RLS algorithm can
be used. Therefore, the L2-regularized method chosen in this chapter will be the
sliding-window kernel RLS algorithm, which was also used in the original study.

Sequential sparsification: ALD-KRLS

The dictionary-based kernel RLS algorithm recursively obtains the solution to the LS
problem by efficiently solving

ᾰ = (AK̆y)
†ry = K̆−1

y (ATA)−1ATry, (5.27)

where ry contains all output data and K̆y is the reduced kernel matrix from (5.17).
After plugging this kernel RLS algorithm into (5.22), the coupled LS regression prob-
lems become

{

βh = (XTX)−1XT r̂

βᾰ = K̆−1
y (ATA)−1AT r̂.

(5.28)

Given an estimate of ᾰ, the estimated output ry corresponding to a new input point
y can be calculated as

ry =
M

∑
i=1

ᾰiκ(c[i], y) = kT
cyᾰ, (5.29)

where kcy contains the kernel functions of the points c[i] in the dictionary and the
data point y.

Notice that the ALD criterion is not suitable for time-varying environments since
it cannot fully exclude the influence of already stored data points. Therefore, if
the estimate of the reference signal r̂ is unreliable at a certain moment in time, the
performance of this algorithm will be affected at all later instants.

Low-rank approximation: online kernel PCA-based RLS

The online kernel PCA algorithm from [Hoegaerts et al., 2007] (see section 3.2) can
be used to approximate the second LS regression problem from (5.22), leading to the
following set of coupled problems:

{

βh = (XTX)−1XT r̂

βᾱ = Σ−1VT r̂,
(5.30)
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Algorithm 5.1 Adaptive Kernel CCA for Wiener System Identification
initialize

Initialize the RLS and KRLS algorithm.
for n = 1, 2, . . . do

Receive {x[n], y[n]}.
Compute the outputs of RLS and KRLS, rx[n] and ry[n].
Estimated reference signal: r̂[n] = (rx[n] + ry[n])/2.
Use the input-output pairs {x[n], r̂[n]} and {y[n], r̂[n]} to update the RLS and
KRLS solutions h and α.
Normalize the solutions with β = ‖h‖, i.e. h← h/β and α ← α/β.

end for

where we used the notations of (5.19). Furthermore, the estimated output ry of the
nonlinear filter corresponding to a new input point y is calculated by this algorithm
as

ry =
N

∑
i=1

M

∑
j=1

κ(yi, y)Vi jᾱi = kT
y Vᾱ, (5.31)

where Vi j denotes the i-th element of the eigenvector v j.

5.3.2 Adaptive identification algorithm

The entire adaptive kernel CCA algorithm is summarized in Alg. 5.1. It couples a
linear RLS algorithm and a kernel RLS algorithm, as in (5.22). Depending on the
used type of regularization, the system of coupled equations it solves can take the
form of (5.26), (5.28) or (5.30). Notice the normalization step at the end of each
iteration, which fixes the scaling factor of the solution.

5.4 Experiments

In this section, we reproduce some experiments from
[Van Vaerenbergh et al., 2008a] in which the proposed kernel CCA algorithms
were experimentally tested. We begin by comparing three algorithms based on
different error minimization constraints, in a batch experiment. Next, we conduct a
series of online identification tests including a static Wiener system, a time-varying
Wiener system, and a static Hammerstein system.

To compare the performance of the used algorithms, two different MSE values can
be analyzed. First, the kernel CCA algorithms’ success can be measured directly by
comparing the estimated signal r̂ to the real internal signal r of the system, resulting
in the error er = r − r̂. Second, as shown in section 5.2.3, the proposed KCCA
algorithms can be extended to perform full system identification and equalization. In
that case, the full system identification error ey is obtained as the difference between
estimated system output and real system output, ey = y− ŷ.
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Figure 5.2: The 17 taps bandpass filter used as the linear channel in the Wiener
system, generated in Matlab as fir1(16,[0.25,0.75]).

The input signal for all experiments consists of a Gaussian with distribution
N (0, 1), and to the output of the Wiener or Hammerstein system additive zero-
mean white Gaussian noise is added. Two different linear channels and two dif-
ferent nonlinearities are used. The exact setup is specified in each experiment,
and the length of the linear filter is supposed to be known in all cases. In
[Van Vaerenbergh et al., 2006a] it was shown that the performance of the kernel
CCA algorithm for Wiener identification is hardly affected by overestimation of the
linear channel length. Therefore, if the exact filter length is not known, it can be
overestimated without significant performance loss.

5.4.1 Batch identification

In the first experiment, we compare the performance of the different constraints to
minimize the error ‖rx − ry‖2 between the linear and nonlinear estimates in the
simultaneous identification scheme from section 5.2. The identification of a static
Wiener system is treated here as a batch problem, i.e. all data points are available
beforehand.

The Wiener system used for this setup consists of the static linear channel from
[Aschbacher and Rupp, 2005] representing a FIR bandpass filter of 17 taps (see Fig-
ure 5.2) and a static nonlinearity given by f (x) = 0.2x + tanh(x). 500 samples are
used to identify this system. To represent the inverse nonlinearity, a kernel expan-
sion is used, based on a Gaussian kernel with kernel size σ = 0.2. In order to avoid
overfitting of the kernel matrix, L2 regularization is applied by adding a constant
c = 10−4 to its diagonal.

Three different identification approaches are applied, using different constraints
to minimize the error ‖e‖2. As discussed in section 5.1, these constraints can be
based on the filter coefficients or the signal energy. In a first approach, we apply
the filter coefficient norm constraint (5.2), which fixes h1 = 1. The corresponding
optimal estimators are found by solving a simple LS problem. If, instead, we fix the
filter norm ‖h‖2 + ‖α‖2 = 1, we obtain the following problem

min ‖rx − ry‖2 s.t. ‖h‖2 + ‖α‖2 = 1, (5.32)
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Figure 5.3: MSE ‖er‖2 on the Wiener system’s internal signal. The algorithms based
on filter coefficient constraints (dotted and dashed lines) perform worse than the
proposed KCCA algorithm (solid line), which is based on a signal power constraint.

which, after introducing the substitutions L =
[

X,−Ky

]

and v =
[

hT ,αT
]T

, becomes

min ‖Lv‖2 = min ‖vTLTLv‖ s.t. ‖v‖2 = 1. (5.33)

The solution v of this second approach is found as the eigenvector corresponding to
the smallest eigenvalue of the matrix LTL. As a third approach, we apply the signal
energy-based constraint (5.3), which fixes ‖rx‖2 = ‖ry‖2 = 1. The corresponding
solution is obtained by solving the GEV (5.16).

In Fig. 5.3, the performance results are shown for the three approaches and for
different noise levels. To calculate the error er = r − r̂, both r and r̂ have been
normalized to compensate for the scaling indeterminacy of the Wiener system. The
MSE is obtained by averaging out ‖er‖2 over 250 runs of the algorithms. As can be
observed, the algorithms based on the filter coefficient constraints perform clearly
worse than the proposed KCCA algorithm.

Figure 5.4 compares the real inverse nonlinearity with the estimate of this nonlin-
earity for the solution based on the h1 filter coefficient constraint and to the estimate
obtained by regularized KCCA. For 20dB of output noise, the results of the first algo-
rithm are dominated by noise enhancement problems (Figure 5.4 (d)). This further
illustrates the advantage of the signal power constraint over the filter coefficient con-
straint.

In the second experiment, we compare the full Wiener system identification re-
sults for the KCCA approach with two black-box neural network methods, specifically
a radial basis function (RBF) network and a multilayer perceptron (MLP). The Wiener
system setup and used input signal are the same as in the previous experiment.

For a fair comparison, the used solution methods should have similar com-
plexity. Since complexity comparison is difficult due to the significant ar-
chitectural differences between kernel and classical neural network approaches
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Figure 5.4: Estimates of the nonlinearity in the static Wiener system for different
constraints on the solution. The top row shows the true signal r[n] versus the points
y[n] representing the system nonlinearity, for a noiseless case in (a) and a system
that has 20dB white Gaussian noise at its output, in (b). The second and third row
show ry[n] versus y[n] obtained by applying the filter coefficient constraint h1 = 1
and the signal power constraint from KCCA, respectively.
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Figure 5.5: Full identification MSE ‖ey‖2 of the Wiener system, using two black-
box methods (RBF network and MLP) and the proposed KCCA algorithm. All three
methods had a similar complexity (in terms of the number of parameters).

[Schölkopf and Smola, 2002], we compare the identification methods when simply
given a similar number of parameters. The KCCA algorithm requires 17 parameters
to identify the linear channel and 500 parameters in its kernel expansion, totalling
517. When the RBF network and the MLP have 27 neurons in their hidden layer,
they obtain a comparable total of 514 parameters, considering they use a time-delay
input of length 17. For the MLP, however, better results were obtained by lowering its
number of neurons, and therefore, we only assigned it 15 neurons. The RBF network
was trained with a sum-squared error goal of 10−6 and the Gaussian function of its
centers had a spread of 10. The MLP used a hyperbolic tangent transfer function, and
it was trained over 50 epochs with the Levenberg-Marquardt algorithm.

The results of the batch identification experiment can be seen in Fig. 5.5. The
KCCA algorithm performs best due to its knowledge of the internal structure of the
system. Note that by choosing the hyperbolic tangent function as the transfer func-
tion, the MLP’s structure closely resembles the used Wiener system and, therefore,
also obtains good performance.

5.4.2 Online identification

In a second set of simulations, we compare the identification performance of the
three adaptive kernel CCA-based identification algorithms from section 5.3. In all
online experiments the optimal parameters as well as the kernel functions were de-
termined by an exhaustive search, and the fact that the different algorithms should
have comparable computational complexity was taken into account.
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Static Wiener system identification

The Wiener system used in this experiment contained the same linear channel as in
the previous batch example, followed by the nonlinearity f (x) = tanh(x). No output
noise was added in this first setup.

We applied the three proposed adaptive kernel CCA-based algorithms with the
following parameters:

• kernel CCA with standard regularization, c = 10−3, and a sliding window of
150 samples, using the Gaussian kernel function with kernel width σ = 0.2;

• kernel CCA with ALD-based sparsification from [Engel et al., 2004], with a
polynomial kernel function of order 3 and accuracy parameter ν = 10−4. This
parameter controls the level of sparsity of the solution;

• kernel CCA based on kernel PCA using 15 eigenvectors calculated from a 150-
sample sliding window, applying the polynomial kernel function of order 3.

The linear RLS algorithm used in all three cases was a standard exponentially
weighted RLS algorithm [Haykin, 2001] with a forgetting factor of 0.99.

The obtained MSE e2
r [n] for the three algorithms can be seen in Fig. 5.6. Most

notable is the slow convergence of the dictionary-based kernel CCA implementation.
This is explained by the fact that the ALD criterion used in the dictionary-based ker-
nel RLS algorithm from [Engel et al., 2004] is lacking a forgetting mechanism and,
therefore, the influence of the initially erroneous reference signal r̂ takes a large
number of iterations to decrease. The kernel PCA-based algorithm obtained its opti-
mal performance for a polynomial kernel, while the standard regularized kernel CCA
algorithm performs slightly better, with the Gaussian kernel.

A comparison of the results of the sliding-window KCCA algorithm for different
noise levels is given in Fig. 5.7. A different Wiener system was used, with linear
channel

H(z) = 1 + 0.3668z−1 − 0.5764z−2 + 0.2070z−3,

and nonlinearity f (x) = tanh(x).
Figure 5.8 shows the full online system identification results obtained by an MLP

and the proposed KCCA algorithm on this Wiener system. The used MLP has learning
rate 0.01 and was trained at each iteration step with the new data point. The KCCA
algorithm again has L2 regularization with c = 10−3, σ = 0.2, and a sliding win-
dow of 150 samples. Both the inverse nonlinearity and the direct nonlinearity were
estimated with the sliding-window kernel RLS technique. Although this algorithm
converges slower, it is clear that its knowledge of the internal structure of the Wiener
system implies a considerable advantage over the black-box approach.
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Figure 5.6: MSE e2
r [n] on the Wiener system’s internal signal r[n] for adaptive kernel

CCA-based identification of a static noiseless Wiener system.

Dynamic Wiener system identification

In a second experiment, the tracking capabilities of the discussed algorithms were
tested. Therefore, an abrupt change in the Wiener system was triggered3: During the
first part, the Wiener system uses the 17-coefficient channel from the previous tests,
but after receiving the 1000-th data point, its channel is changed to

H(z) = 1 + 0.3668z−1 − 0.5764z−2 + 0.2070z−3 .

The nonlinearity was f (x) = tanh(x) in both cases. Moreover, 20dB of zero-mean
white Gaussian noise was added to the output of the system during the entire exper-
iment.

The parameters of the applied identification algorithms were chosen as follows.

• for kernel CCA with standard regularization, we used c = 10−3, a sliding win-
dow of 150 samples and the polynomial kernel of order 3;

• for kernel CCA with ALD-based sparsification, we used accuracy parameter ν =
10−3 and a polynomial kernel of order 3;

• the kernel CCA algorithm based on kernel PCA was used with 15 eigenvectors,
a sliding window of 150 samples, and the polynomial kernel of order 3.

The length of the estimated linear channel was fixed as 17 during this experiment,
resulting in an overestimated channel estimate in the second part.

3Note that, although only the linear filter is changed, the proposed adaptive identification method
allows both parts of the Wiener system to be varying in time.
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Figure 5.7: MSE e2
r [n] on the Wiener system’s internal signal r[n] for various noise

levels, obtained by the adaptive KCCA algorithm.
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Figure 5.8: MSE e2
y[n] for full system identification of the Wiener system, using a

black-box method (MLP) and the proposed KCCA algorithm.

The identification results can be seen in Fig. 5.9. As in the case of the static
Wiener system, the ALD-based kernel CCA algorithm obtains the worst performance,
for reasons discussed earlier. The algorithms based on SW-KRLS and kernel PCA
based KRLS obtain very similar performance.

Static Hammerstein system identification

In this setup, we considered a static Hammerstein system consisting of the nonlin-
earity f (x) = tanh(x) followed by the linear channel

H(z) = 1− 0.4326z−1 + 0.3656z−2 − 0.3153z−3. (5.34)
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Figure 5.9: Wiener system MSE e2
r [n] obtained by adaptive identification of a Wiener

system that exhibits an abrupt change and contains additive noise.

To the output of this system, 20dB zero-mean additive white Gaussian noise was
added. When applying the proposed kernel CCA-based algorithms to identify this
system, the direct nonlinearity is estimated and a FIR estimate is made of the in-
verse linear channel, which corresponds to an IIR filter. To adequately estimate this
channel, the length of the direct FIR filter estimate was considerably increased.

The adaptive kernel CCA algorithms were applied with the following parameters:

• kernel CCA with standard regularization, c = 10−2, and a sliding window of
150 samples, using the Gaussian kernel function with kernel width σ = 0.2;

• kernel CCA with ALD-based sparsification, using accuracy parameter ν = 10−2

and the Gaussian kernel function with kernel width σ = 0.2;

• kernel CCA based on kernel PCA using 10 eigenvectors, a 150-sample sliding
window the Gaussian kernel function with kernel width σ = 0.2.

In all three algorithms, the inverse linear channel was approximated as a FIR channel
of length 15.

The MSE results for the Hammerstein system identification can be found in Fig.
5.10. The observed MSE performances are similar to the observations already made
for the previous examples. However, due to the different setup and the presence of
noise, the obtained results are not as good as those of the identification of a static
noiseless Wiener system (see Fig. 5.6). Nevertheless, with the chosen parameters,
the L2 regularization-based kernel CCA algorithm is capable of attaining the 20dB
noise floor.

In all previous examples, the length N of the sliding windows for the L2

regularization-based kernel CCA and the kernel PCA-based kernel CCA was fixed
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Figure 5.10: MSE e2
r [n] on the Hammerstein system’s internal signal r[n] for the

three adaptive kernel CCA-based algorithms.

as 150. Taking into account the number of eigenvectors used by the latter, both ob-
tain a very similar computational complexity. The ALD-based algorithm, on the other
hand, is computationally more attractive, but it is not capable of obtaining the same
performance levels in non-stationary environments.

5.5 Conclusions and Discussion

In this chapter we focussed on the problem of supervised Wiener and Hammerstein
system identification, taking into account explicitly the system’s structure. To this
end, we proposed to simultaneously estimate the linear and nonlinear parts in a
fashion inspired by the identification technique from [Aschbacher and Rupp, 2005].
However, we showed that by applying a more robust restriction to the solution, the
proposed kernel CCA algorithm emerges as the logical solution to identify these non-
linear systems. We then discussed a kernel CCA framework that encompasses differ-
ent types of regularization to avoid overfitting.

In the second contribution of this chapter, we showed how the identification prob-
lem can be solved in an iterative manner, by formulating the kernel CCA problem as
a set of two coupled least-squares regression problems. This allowed us to develop
adaptive versions of the proposed KCCA algorithms, for the three different types of
regularization, which are capable of identifying systems that change over time.

The proposed algorithms were compared in a series of batch and online exper-
iments. Experimentally it was verified that an ALD-based algorithm such as the
dictionary-based kernel RLS from [Engel et al., 2004] is not readily capable of per-
forming tracking, and therefore cannot be used in this kernel CCA framework. The
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kernel CCA algorithm using L2 regularization and a sliding window obtains similar
performance and computational cost as the kernel PCA-based algorithm. These two
algorithms showed to be successful in identifying both static and time-varying Wiener
and Hammerstein systems.

The publications that have contributed to this chapter are

• S. Van Vaerenbergh, J. Vía, and I. Santamaría. “Online kernel canonical corre-
lation analysis for supervised equalization of Wiener systems”. In Proceedings
of the 2006 International Joint Conference on Neural Networks (IJCNN). IEEE,
Vancouver, Canada, 2006.

• S. Van Vaerenbergh, J. Vía, and I. Santamaría. “Adaptive kernel canonical corre-
lation analysis algorithms for nonparametric identification of Wiener and Ham-
merstein systems”. EURASIP Journal on Advances in Signal Processing, volume
1, Article ID 875351, 13 pages, 2008.



Chapter6
Blind Identification and

Equalization of Wiener Systems

In this chapter we consider the problem of blind identification and equalization of
nonlinear Wiener systems. We follow a well-known linear blind identification ap-
proach that can be applied to linear single-input multiple-output (SIMO) systems
which, under certain conditions, can be obtained by oversampling a single-input
single-output (SISO) system. The SIMO systems considered in this chapter are mod-
eled as SIMO Wiener systems, which contain multiple Wiener systems that are excited
by a common input signal. By applying a kernel transform to the output of these sys-
tems, we are able to identify the linear channels and inverse nonlinearities with an
iterative CCA-based approach.

6.1 Introduction

In the last decade there has been a great interest in blind identification and equal-
ization methods. In digital communications, blind methods permit channel iden-
tification or equalization without the need to send known training signals, thus
saving bandwidth. In particular, the problem of blind identification of single-
input multiple-output (SIMO) linear channels has received considerable attention
[Xu et al., 1995, Vía et al., 2006]. In this case, blind identification can be accom-
plished by resorting only to the second-order statistics (SOS) of the channel output.

While a lot of attention has gone to the analysis of linear SIMO systems, many
real-life systems exhibit nonlinear characteristics. Recently, a growing amount of
research has been conducted on nonlinear system identification. For an overview
we refer to chapter 4. Due to the nonlinear dynamics of such systems, their blind
identification is a particularly challenging problem.

Blind methods generally assume some knowledge on the input signal statistics
and/or the channel model. For blind identification of Wiener system, few methods
have been proposed. In [Gómez and Baeyens, 2007, Vanbeylen et al., 2008] tech-
niques were proposed that require the input signal to be i.i.d. and Gaussian. A less
restrictive approach was followed by Taleb et al. in [Taleb et al., 2001], where the
input signal to the Wiener system is only required to be i.i.d.
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s[n]

x1[n]

x2[n]

H1(z)

H2(z)

Figure 6.1: A linear SIMO system.

In this chapter we present a blind method to identify and equalize nonlin-
ear SIMO Wiener systems that consist of various Wiener systems. These sys-
tems could represent a sensor array in which every sensor exhibits some nonlin-
ear behavior, or they could be obtained by oversampling the output of a nonlin-
ear communication channel that is modeled as a conventional SISO Wiener sys-
tem [Xu et al., 1995]. In general, the presence of multiple output channels in-
creases the performance of equalization methods, and therefore this scenario has
been studied frequently in linear environments [Xu et al., 1995, Ding and Li, 2001].
For the more challenging scenario of blind equalization of nonlinear SIMO systems,
a few methods have been proposed, particularly for multichannel Volterra models
[Giannakis and Serpedin, 1997, López-Valcarce and Dasgupta, 2001].

Before addressing the blind identification problem for SIMO Wiener systems, we
will briefly review the blind identification method for linear SIMO systems proposed
in [Xu et al., 1995].

6.2 Blind Identification of a Linear SIMO System

For simplicity, we will first treat the case of two outputs. Consider a system that
consists of two linear channels H1(z) and H2(z) that share the same input signal,
s[n], as depicted in Fig. 6.1. The output of each channel can be written as

xi[n] =
L−1

∑
j=0

hi[ j]s[n− j] = hi[n] ∗ s[n], (6.1)

where L is the maximal channel length (which we assume to be known), the co-
efficients hi[ j] represent the impulse response of each channel Hi(z), i.e. hi =
[hi[0], . . . , hi[L − 1]T, and hi[n] ∗ s[n] denotes the convolution between the filter hi

and the input signal s[n]. Such a system can be obtained, for instance, by oversam-
pling a single linear channel given that the source signal has some excess bandwidth,
which is the bandwidth occupied by the signal beyond the Nyquist frequency 1/2T.

The identification method presented by Xu et al. exploits the commutativity of
the convolution, in particular

h2[n] ∗ (h1[n] ∗ s[n]) = h1[n] ∗ (h2[n] ∗ s[n]). (6.2)

This property inspired the design of the identification diagram shown in Fig. 6.2,
which allows to find estimates of the channels, ĥ1 and ĥ2, by minimizing the follow-
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s[n]

x1[n]

x2[n]

H1(z)

H2(z) Ĥ1(z)

Ĥ2(z)

e[n]

Figure 6.2: A blind identification scheme for the linear SIMO system. If the estimated
Ĥ1 and Ĥ2 correspond to the real H1 and H2, the error e[n] will be zero.

ing cost function

min
ĥ1,ĥ2

J =
1

2

N

∑
n=1

|e[n]|2 (6.3)

=
1

2

N

∑
n=1

|ĥ2[n] ∗ x1[n]− ĥ1[n] ∗ x2[n]|2

=
1

2

N

∑
n=1

|ĥ2[n] ∗ (h1[n] ∗ s[n])− ĥ1[n] ∗ (h2[n] ∗ s[n])|2 .

In order to solve this minimization problem, let us adopt a matrix-based notation.
Define the matrix

Xi =







xi[n + L− 1] · · · xi[n]
...

. . .
...

xi[n + N − 1] · · · xi[n + N − L]






, (6.4)

for i = 1, 2. By denoting the estimate of the channel impulse response vectors as

ĥi =
[

ĥi[0], . . . , ĥi[L− 1]
]T

, (6.5)

it can be easily verified that in a noiseless case the solution should satisfy

X1ĥ2 = X2ĥ1, (6.6)

as illustrated in the identification diagram of Fig. 6.2. Correct identification is guar-
anteed when the channels Hi(z) do not share any common zeros, for i = 1, 2. Also,
the linear complexity of the input sequence, which is a measure of its diversity, should
be sufficiently high. For communication signals this is generally satisfied.

In order to avoid the zero-solution ĥi = 0, a restriction must be applied. Typical
restrictions in communications are either to fix the norm of the filters ĥi, or to fix the
norm of the output signal Xiĥ j.

A restriction on the filter norm was used in [Xu et al., 1995] to develop a LS
method. With this restriction, the minimization problem (6.3) becomes

min
ĥ1 ,ĥ2

JLS =
1

2

∥

∥

∥
X1ĥ2 − X2ĥ1

∥

∥

∥

2
s.t. ‖ĥ1‖2 + ‖ĥ2‖2 = 1, (6.7)
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whose solution can be obtained from the following eigenvalue problem
[

XT
1 X1 −XT

1 X2

−XT
2 X1 XT

2 X2

]

ĥ = βĥ, (6.8)

where ĥ = [ĥT
2 , ĥT

1 ]
T is found as the eigenvector corresponding to the smallest eigen-

value.
If, instead, the constraint is applied to the norm of output signals (as in

[Vía et al., 2006]), the cost function to minimize becomes

min
ĥ1,ĥ2

JCCA =
1

2

∥

∥

∥
X1ĥ2 − X2ĥ1

∥

∥

∥

2
s.t. ‖X1ĥ2‖2 = ‖X2ĥ1‖2 = 1. (6.9)

This is a canonical correlation analysis (CCA) problem, and its solution is given by
the principal eigenvector of the following generalized eigenvalue problem (GEV) (see
appendix D).

[

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2

]

ĥ = β

[

XT
1 X1 0

0 XT
2 X2

]

ĥ. (6.10)

Once the channels ĥ1 and ĥ2 have been estimated by solving either of the eigen-
vector problems, system equalization can be performed by applying the zero-forcing
(ZF) or the minimum mean square error (MMSE) approach. Note that both the LS
algorithm and the CCA-based algorithm require knowledge of the maximum channel
length1 L, and they assume that the linear channels share no common zeros.

Although we only discussed these methods for a 1 × 2 linear SIMO system,
their generalization to multiple output channels is straightforward, as shown in
[Xu et al., 1995] and [Vía et al., 2006]. Systems with more than two outputs can be
encountered for instance in sensor networks, or by oversampling a SISO system with
sufficient excess bandwidth. In applications in communications, the raised-cosine
filter is widely used for pulse-shaping. When a raised cosine pulse with a roll-off
factor β = 1 is used, the excess bandwidth amounts to 100% [Proakis, 1983], and by
oversampling with a factor 2 the signal diversity is already exploited completely.

6.3 Blind Identification and Equalization of SIMO

Wiener Systems

Let us now consider a nonlinear SIMO system, in which each channel is modeled
as a Wiener system. In Fig. 6.3 an example with only two outputs is shown, as
encountered for instance in [Chen, 1995]. We will call this system a SIMO Wiener
system, since each of its channels consists of a Wiener system. It can be found in a
blind source separation context, where it represents a specific post-nonlinear mixture
model of one source signal that is measured by multiple sensors that show a certain
nonlinear behavior.

1Note that we choose to specify the channel length L, which fixes the channel order as L− 1.
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s[n]

v1[n]

v2[n]

x1[n]

x2[n]

y1[n]

y2[n]

H1(z)

H2(z)

f1(·)

f2(·)

Figure 6.3: A SIMO system consisting of two Wiener systems. Additive noise is
added to the output of each channel, in the form of v1[n] and v2[n].

In general, this system can also be obtained by oversampling the output of a
single Wiener system, similar to the linear case of section 6.2. The validity of this
model can be shown as follows. Imagine that one had access to the Wiener system’s
internal signal and could sample it. Since this signal is the output of a linear channel,
by oversampling it one could represent the oversampled linear channel output by the
equivalent two-channel diagram from section 6.2. On the other hand, notice that
the Wiener system’s nonlinearity is memoryless and therefore applies to the signal
on a sample-by-sample basis. Therefore, it does not matter if one oversamples the
internal signal or the output signal, and hence the equivalent diagram corresponds
exactly to the one given in Fig. 6.3. Furthermore, in this case both nonlinearities
f1(·) and f2(·) are identical.

6.3.1 Problem setting and identification scheme

A SIMO Wiener system with 2 outputs can be modeled as

yi[n] =
L−1

∑
j=0

hi[ j]s[n− j] (6.11)

xi[n] = fi(yi[n]) + vi[n], (6.12)

for i = 1, 2, where s[n] represents the input symbol sent at time instant n, hi[ j] is
the j-th coefficient of the i-th linear FIR channel Hi(z), fi(·) is the nonlinearity of
channel i and vi[n] represents additive Gaussian noise, for i = 1, 2 and n = 1, . . . , N.
Without loss of generality, L represents the maximum channel length.

The blind equalization problem consists in recovering the transmitted signal s[n]
when only the output signals xi[n] are observed. The proposed solution is mainly
based on the linear identification method from section 6.2. First of all, note that,
if we are capable of canceling out the nonlinearities, for instance by applying the
inverse nonlinearities to the outputs xi[n], this problem reduces to the linear case
which can be solved by one of the discussed techniques.

The proposed identification diagram for a 1 × 2 SIMO Wiener system is repre-
sented in Fig. 6.4. In this diagram, the nonlinearities ĝi(·) represent the inverse of
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Figure 6.4: The proposed identification diagram for a SIMO system consisting of two
Wiener subsystems.

the nonlinearities fi(·). We will estimate these inverse nonlinearities as kernel ex-
pansions ĝi(·) = ∑M

m=1 α̂i[m]κ(xs
i [m], ·), where xs

i [m] are some basis points used for
the nonlinear representation. The corresponding output of the nonlinearity becomes

ŷi[n] = ĝi(xi[n]) =
M

∑
m=1

α̂i[m]κ(xs
i [m], xi[n]). (6.13)

In the following we will use the variable ks
i (m, n) = κ(xs

i [m], xi[n]) to simplify the
notation. In a first approach, all available points xi[n] will be used as basis vectors,
i.e., M = N.

Given only the outputs xi[n] of the system, direct estimation of the nonlinearities
is not possible in general, as no information on the input signal s[n] is available.
Therefore, we will design an algorithm that allows us to obtain both the linear filters
and the nonlinearities simultaneously, through a single cost function.

6.3.2 Proposed cost function

First, we will treat the case where the observed system has only two outputs. Given
the representation of the estimated nonlinearity ĝi(·) as in (6.13), the first output of
the proposed identification scheme (see Fig. 6.4) can be written as

z12[n] =
L−1

∑
j=0

M

∑
m=1

ĥ2[ j]k
s
1(m, n− j)α̂1[m]. (6.14)

In matrix notation, this becomes

z12[n] = ĥT
2 K1[n]α̂1, (6.15)

where the l-th row of K1[n] contains the elements from ks
1(n + l− 1, 1) till ks

1(n + l−
1, M). The expression for z21[n] is found in the same manner, in particular

z21[n] = ĥT
1 K2[n]α̂2. (6.16)
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In order to estimate the coefficients ĥi[ j] and α̂i[m], i = 1, 2, we propose to mini-
mize the MSE between the system’s output signals z12[n] and z21[n]

min
α̂,ĥ

J2 = ‖z12 − z21‖2 s.t. ‖z12‖2 = ‖z21‖2 = 1, (6.17)

where the vectors z12 and z21 contain N output samples of each channel, and by
α̂ and ĥ we denote parameter sets that respectively contain all coefficients of the
nonlinear expansion, α̂i[m], and all coefficients of the linear filters, ĥi[ j], for i = 1, 2.
The expanded form of this cost function is obtained by introducing the definitions of
z12[n] and z21[n], namely

min
ĥ,α̂

J2 =
N

∑
n=1

|z12[n]− z21[n]|2

=
N

∑
n=1

∣

∣

∣

∣

∣

L−1

∑
j=0

M

∑
m=1

ĥ2[ j]k
s
1(m, n− j)α̂1[m]−

L−1

∑
j=0

M

∑
m=1

ĥ1[ j]k
s
2(m, n− j)α̂2[m]

∣

∣

∣

∣

∣

2

s.t.
N

∑
n=1

|z12[n]|2 =
N

∑
n=1

|z21[n]|2 = 1. (6.18)

6.3.3 Iterative solution

The cost function (6.17) needs to be minimized w.r.t. two parameter sets, α and h,
but it has no closed-form analytical solution. However, if α̂1 and α̂2 were available,
it would be possible to obtain the corresponding optimal filters ĥ2 and ĥ1 by apply-
ing linear CCA. Moreover, since the nonlinearities g1(·) and g2(·) are represented
as linear combinations of kernels, a similar operation can be carried out to estimate
these: if ĥ2 and ĥ1 are given, (6.17) can be solved to find the optimal coefficients
of the kernel expansions α̂1 and α̂2. This suggests an iterative scheme that alter-
nates between updating the linear channels ĥi and the memoryless nonlinearities α̂i.
Convergence is guaranteed because each update may either decrease or maintain the
cost [Bezdek and Hathaway, 2003, Stoica and Selen, 2004].

This procedure also motivates the use of a signal energy based restriction in
(6.17). In both iteration types, the signal energy can be restricted, in contrast to
the restriction of (6.7) which can only be fulfilled when optimizing the linear filters.

Iteration 1: given α̂i, obtain ĥi

If estimates of α̂1 and α̂2 are given, Eq. (6.14) shows that the output z12[n] of the
identification scheme can be obtained as

z12[n] =
L−1

∑
i=0

ĥ2[i]ŷ1[n− i], (6.19)

where ŷ1[n − i] is calculated with (6.13). In matrix form this can be written as
z12 = Ŷ1ĥ2, where the n-th row of the matrix Ŷ1 contains the elements from ŷ1[n]



98 Blind Identification and Equalization of Wiener Systems

until ŷ1[n+ L− 1]. The minimization problem (6.17) can be rewritten as minimizing

min
ĥ

J2 = ‖Ŷ1ĥ2 − Ŷ2ĥ1‖2 s.t. ‖Ŷ1ĥ2‖2 = ‖Ŷ2ĥ1‖2 = 1, (6.20)

which can be solved by standard linear CCA.

Iteration 2: given ĥi, obtain α̂i

If estimates of ĥ1 and ĥ2 are given, Eq. (6.14) shows that the output z12[n] of the
identification scheme can be obtained as

z12[n] =
M

∑
m=1

w12[n, m]α̂1[m], (6.21)

where the variable w12[n, m] = ∑L−1
i=0 ĥ2[i]k1(n− i, m) is introduced. In matrix form

this can be written as z12 = W12α̂1, where the n-th row of the matrix W12 contains
the elements w12[n, 1] until w12[n, M]. The minimization problem (6.17) can be
rewritten as minimizing

min
α̂

J2 = ‖W12α̂1 −W21α̂2‖2 s.t. ‖W12α̂1‖2 = ‖W21α̂2‖2 = 1, (6.22)

which establishes a CCA problem that accounts for the estimation of the nonlin-
earities. However, if all data points xi[n] are used as support vectors in the kernel
expansion (6.13), i.e., if M = N (which implies α̂i ∈ RN), the dimensionality of this
problem is significantly higher than its linear counterpart (6.20). This will lead to
overfitting problems and high computational complexity, as discussed in the previous
chapters. To avoid these issues, we propose to apply PCA on the kernel matrices
Ki ∈ RN×N, and approximate them as

ViΣiV
T
i ≈ Ki, (6.23)

where Σi ∈ RM×M is a diagonal matrix containing the M largest eigenvalues of
Ki and Vi ∈ RN×M contains the M corresponding eigenvectors. This allows us to
redefine the variable w12[n, m] as

w12[n, m] =
L−1

∑
i=0

h2[i]v1(n− i, m), (6.24)

where v1(n, m) is the n-th element of the m-th eigenvector2 in V1.
Since the eigenspectrum of kernel matrices usually decays quickly, the dimen-

sions of the matrices Wi j in (6.22) can be reduced to N ×M, with M ≪ N, which
reduces the computational complexity of the CCA problem (6.22) correspondingly
from O(N3) to O(NM2). In practice, selection of the rank M can be done by in-
specting the decay of the eigenvalues, or by simply defining a percentage of the

2Since the eigenvalues can be absorbed in the expansion coefficients of α̂1 and α̂2, we do not need
to take them into account here.
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Algorithm 6.1 Alternating KCCA for Blind Equalization of SIMO Wiener Systems
initialize

Obtain ĥi by solving the LS problem (6.8).
Construct the kernel matrices Ki from xi[n].
Perform kernel PCA to obtain the rank-reduced matrices Wi j.

repeat
CCA1: With given ĥi, update α̂i by solving (6.22).
CCA2: With given α̂i, update ĥi by solving (6.20).

until convergence
Obtain s[n] from ŷi[n] and ĥi by applying linear ZF or MMSE equalizers.

signal energy that needs to be maintained. Kernel PCA can be performed efficiently
even on very large data sets by following the implementation described in appendix
B.3. Furthermore, note that this operation also avoids overfitting by restricting the
solution space to be low-rank.

6.3.4 Initialization

Analogously to many other iterative techniques, the proposed cyclic minimization
algorithm could suffer from local minima. In practice, nevertheless, local minima
can be avoided by means of a proper initialization technique. A straightforward ini-
tialization consists in fixing α̂i such that the kernel expansions represent the identity
function g(x) = x, and obtaining the initial estimate of the linear channels ĥi by
solving the linear LS problem (6.8) for the system outputs xi[n].

A more accurate initialization scheme can be obtained by combining all products
of ĥp and α̂p that occur in the cost function (6.18) into a single “solution vector”, and
minimizing the cost function w.r.t. to this vector. Since the solution should contain
the Kronecker products between α̂1 and ĥ2 on one hand, and α̂2 and ĥ1 on the other
hand, a good estimate can be obtained by imposing this structure on the solution.

However, the proposed blind equalization method requires the nonlinearity to
be invertible, and therefore in practice a linear initialization is close enough to the
global minimum. The entire iterative technique for 2 output channels is summarized
in Alg. 6.1.

6.3.5 Solution for systems with multiple outputs

In the general case of a system with P sensors, the cost function needs to take into
account the correlations between each pair of outputs.

The cost function (6.17) for a system with 2 output channels is generalized for P
outputs as

min
α̂,ĥ

JP =
P

∑
i, j=1

i 6= j

‖zi j − z ji‖2 s.t. ‖zi j‖2 = 1, (6.25)
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where zi j denotes the signal obtained by transforming the output signal xi by gi(·)
and filtering it by h j. The resulting algorithm is analogous to the two-channel case of
Alg. 6.1. The extensions of (6.22) and (6.20) to P outputs are obtained as follows.
Given estimates of ĥi, a set of estimates of α̂i is found by minimizing

min
α̂

JP =
P

∑
i, j=1

i 6= j

‖Wi jα̂i −W jiα̂ j‖2 s.t. ‖Wi jα̂i‖2 = 1, (6.26)

where the n-th row of Wi j contains the elements wi j[n, 1] until wi j[n, M]. Here,
wi j[n, m] is defined as wi j[n, m] = ∑L−1

l=0 h j[l]vi(n − l, m), and vi(n, m) is the n-th
element of the m-th eigenvector of Ki.

The solution to the minimization problem (6.26) can be found as the principal
eigenvector of the corresponding GEV. After some calculations, this GEV reads

Rĥα̂ = βDĥα̂, (6.27)

in which

Rĥ =











0 WT
12W21 · · · WT

1PWP1

WT
21W12 0 · · · WT

2PWP2
...

...
. . .

...
WT

P1W1P WT
P2W2P · · · 0











, (6.28)

Dĥ is a block-diagonal matrix whose i-th block on the diagonal is ∑P
j=1; j 6=i WT

i jWi j,

for i = 1, . . . , P, and α̂ = [α̂1, α̂2, . . . , α̂P]
T. Details of how this GEV is obtained can

be found in appendix D.
Subsequently, the parameters α̂i are fixed and new estimates of ĥi are obtained

by minimizing

min
ĥ

JP =
P

∑
i, j=1

i 6= j

‖Ŷiĥ j − Ŷ jĥi‖2 s.t. ‖Ŷiĥ j‖2 = 1, (6.29)

where the n-th row of the matrix Ŷi contains the elements ŷi[n] until ŷi[n + L− 1],
and ŷ1[n] is calculated with (6.13). Again, the minimization problem (6.29) can be
solved by retrieving the principal eigenvector of the corresponding GEV. This GEV,
which is identical to Eq. (D.10), is found as

1

P
Rα̂ ĥ = βDα̂ ĥ, (6.30)

in which

Rα̂ =











ŶT
1 Ŷ1 ŶT

1 Ŷ2 · · · ŶT
1 ŶP

ŶT
2 Ŷ1 ŶT

2 Ŷ2 · · · ŶT
2 ŶP

...
...

. . .
...

ŶT
PŶ1 ŶT

PŶ2 · · · ŶT
PŶP











, (6.31)
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Figure 6.5: The proposed identification diagram for a SIMO Wiener system in a
noiseless situation.

Dα̂ is a block-diagonal matrix whose i-th block on the diagonal is ŶT
i Ŷi, and the

solution ĥ contains the different estimated filters ĥ = [ĥ1, ĥ2, . . . , ĥP]
T.

Finally, we must note that when the SIMO system is obtained by oversampling,
the P nonlinearities will be the same. Obviously, this can be exploited to obtain a
more accurate estimate. The corresponding GEV can be found in a similar manner.
Notice also that oversampling multiple times implies that the noise components vi[n]
become correlated, which puts practical restrictions on the use of this algorithm.

6.4 Uniqueness of the Solution

In this section we consider the identifiability conditions of the proposed blind SIMO
Wiener system identification diagram. Although we only treat the case of two output
channels, the generalization to multiple outputs is straightforward.

Theorem 6.1 (Sufficient condition). The blind identification problem has a unique
solution if

1. The polynomials {Hi(z)}2
i=1 do not share any common zeros.

2. The linear complexity of the input signal is at least 2L + 1, where L is the maxi-
mum length of the linear channels.

3. The memoryless nonlinearities { fi(·)}2
i=1 are invertible and infinitely derivable.

4. The kernel function κ(·, ·) is a universal kernel.

The two first conditions are identical to the sufficient conditions of the linear blind
method from [Xu et al., 1995]. The third condition guarantees that the nonlinearities
of the system can be canceled out and that they are continuous. The last condition
ensures that the representations of g1(·) and g2(·) as kernel expansions can represent
any infinitely derivable nonlinearities without restrictions.

Consider the diagram of Fig. 6.5, which has no additive noise component. We
will prove that the cost function J2 = ∑N

n=1 e[n]2 only reaches its minimal value of
zero when the blocks g1(·), g2(·), B1(z) and B2(z) correspond to

{

g1(·) = f−1
1 (·); B1(z) = H2(z);

g2(·) = f−1
2 (·); B2(z) = H1(z),

(6.32)
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up to some arbitrary scalars, which are inherent to this identification problem. Al-
though it will not be explicitly stated, in the following we will assume that all equal-
ities and inequalities are considered up to such scalars.

First of all, note that the solution (6.32) is always a valid solution. Specifically,
its nonlinearities g1(·) and g2(·) cancel out f1(·) and f2(·), respectively, which yields
w12[n] = y1[n] and w21[n] = y2[n]. In this case the diagram of Fig. 6.5 reduces to
the linear diagram of Fig. 6.2, for which it was shown in [Xu et al., 1995] that the
unique solution consists of B1(z) = H2(z) and B2(z) = H1(z).

We now show that the indicated solution is the only possible solution for which
J = 0. Denote by ρi(x) the function composition

ρi(x) = (gi ◦ fi)(x), (6.33)

for i = 1, 2. When gi(·) = f−1
i (·), as for instance in the solution (6.32), this function

equals the identity function ρi(x) = x. We consider the two cases in which the linear
and nonlinear blocks differ from the ideal solution (6.32).

Case 1: g1(·) = f−1
1 (·) and g2(·) = f−1

2 (·), but B1(z) 6= H1(z) and/or B2(z) 6=
H2(z). In this case the nonlinearities fulfill (6.32) but one or both linear channels
do not. Since ρ1(x) = x and ρ2(x) = x here, this identification problem reduces to
the linear problem of [Xu et al., 1995], for which the only solution that yields J = 0
is B1(z) = H2(z) and B2(z) = H1(z). Therefore, if the nonlinearities fulfill (6.32),
the linear channels must also do so.

Case 2: g1(·) 6= f−1
1 (·) and/or g2(·) 6= f−1

2 (·). In the second case, assume that the
minimal cost J = 0 is obtained while at least one of the nonlinearities is different
from the solution (6.32). Here, either ρ1(x) 6= x, ρ2(x) 6= x, or they are both
different from the identity function. According to the Stone-Weierstraß theorem,
the continuous real-valued functions ρi(x) on a compact interval can be uniformly
approximated by sums of monomials. Without loss of generality, we consider only
functions of up to the second order

ρ1(x) = a1x + a2x2

ρ2(x) = b1x + b2x2

After taking Fourier transforms, the signals before B1 and B2 become

W12(ω) = S(ω)H1(ω) + a2
˜S(ω)H1(ω)

W21(ω) = S(ω)H2(ω) + b2
˜S(ω)H2(ω),

where Hi(ω) = F (a1B1[n]) and ˜S(ω)Hi(ω) = F
(

(s[n] ∗ Hi[n])
2
)

represents the

circular convolution. By denoting Gi(S,ω) = ˜S(ω)Hi(ω), for i = 1, 2, the output of
the diagram shown in Fig. 6.5 is obtained as

E(ω) = S(ω) [H1(ω)B2(ω)− H2(ω)B1(ω)] + [aG1(S,ω)B2(ω)− bG2(S,ω)B1(ω)]

= [S(ω)H1(ω) + a2G1(S,ω)] B2(ω)− [S(ω)H2(ω) + b2G2(S,ω)] B1(ω).
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When E(ω) = 0, the length of all filters between brackets cannot be inferior to L,
due to Bézout’s identity [Xu et al., 1995]. On the other hand, the second condition
in this theorem requires that their lengths do not exceed L. Hence, the lengths of
these filters are L, and we obtain

{

B1(ω) = H1(ω) + a2G1(S,ω)/S(ω)
B2(ω) = H2(ω) + b2G2(S,ω)/S(ω).

(6.34)

Since B1(ω) and B2(ω) depend on S(ω), Eq. (6.34) only holds for an arbitrary input
S(ω) when a2 = b2 = 0, in which case the solution reduces to (6.32). �

6.5 Experiments

We experimentally tested the proposed algorithm with some numerical examples.
All tests were conducted on data sets of N = 256 data symbols. The fraction of the
signal energy discarded by the kernel PCA procedure in the initialization phase was
fixed as 10−14. The resulting number of kept eigenvectors was between M = 11 and
M = 15. In all experiments convergence was obtained in less than 20 iterations.

The first system used is a 1× 3 Wiener SIMO system with linear filters

H1(z) = 0.6172 + 0.6247z−1 + 0.3373z−2 − 0.0349z−3 − 3.2957z−4

H2(z) = −0.8601 + 0.1532z−1 − 0.1888z−2 − 0.6264z−3 + 0.9985z−4

H3(z) = 1.3271− 0.1472z−1 − 0.4786z−2 + 0.6682z−3 + 0.0045z−4 ,

respectively. The nonlinearity was the same for all the channels, namely fi(x) =
tanh(0.8x) + 0.1x.

In the first experiment, the source signal was drawn from N (0, 1) and 20dB of
Gaussian white noise was added after the nonlinearities. The proposed method was
used to identify this system, with a kernel with σ = 1. Fig. 6.6 shows the true and
estimated linear filter and nonlinearity for one of the branches of the Wiener SIMO
system, after 15 iterations of the algorithm. Similar results were obtained for the
other branches of the system.

In a second experiment, we compared the performance of a number of CCA-based
equalizers. The results are shown in Fig. 6.7.

1. As a benchmark, we applied the blind linear CCA-based equalizer with zero-
forcing from [Vía et al., 2006] on a system that only contained the linear chan-
nels H1(z), H2(z) and H3(z). Its performance is shown by the solid curve with
black dots.

2. Then, we applied the same blind linear method on the SIMO Wiener system
from the first example. Since this system shows nonlinearities, the obtained
MSE is obviously very bad (as shown by the solid curve with white squares).

3. The performance of the proposed blind KCCA-based method is shown as the
solid curve with white circles.
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Figure 6.6: Identification results on the 1× 3 Wiener SIMO system. (a) shows the
noisy output x3[n] vs. the real internal signal y3[n], and x3[n] vs. the estimated ŷ3[n].
(b) shows the estimated filter coefficients of h3 vs. the real coefficients.

4. As a second benchmark, we included the results of the supervised equalization
method from chapter 5, using the same kernel parameters. This method was
performed in batch mode, on each system branch separately.

Averages were taken over 50 independent Monte-Carlo simulations, and the MSE
was calculated between the true and the estimated input signal. As can be observed,
the proposed method obtains very satisfactory results on this system. The MSE is
even very close to the one obtained by the related supervised method.

For the third test we compared three SIMO Wiener systems with different num-
bers of outputs. System 1 was a 1× 2 SIMO Wiener system with H1(z) and H2(z) as
defined in the first experiment. System 2 was the discussed 1× 3 system, and system
3 was a 1× 4 SIMO Wiener system that included all three previous Wiener systems
and a new linear channel

H4(z) = −0.1155− 0.9170z−1 + 0.5605z−2 + 0.4862z−3 − 0.8004z−4 (6.35)

in its fourth branch. The nonlinearity was maintained, and we exploited the fact
that it was the same for each channel. The results are shown in Fig. 6.8. As can
be observed, the performance improves when channels are added, which can be
explained by the fact that the algorithm is given more information to retrieve the
source signal. Nevertheless, this improvement quickly slows down as more channels
are added.

Finally, we repeated the third test for a system with a binary input s[n] ∈ {−1, 1},
but now we did not exploit the information that the nonlinearity was the same for
each channel. Very good results are obtained, as shown in Fig. 6.9, mostly due to the
fact that the input signal is binary and we only measure the bit error rate (BER).
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Figure 6.7: MSE comparison for different algorithms.
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Figure 6.8: Blind identification results for different SIMO Wiener systems with a
Gaussian input, where the algorithm took into account that all channels have the
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Figure 6.9: Results for SIMO Wiener systems with a binary input.

6.6 Conclusions

We proposed a blind equalization algorithm for nonlinear SIMO systems in which
every channel is a Wiener system. The method iterates between a CCA algorithm for
estimating the linear channel and a KCCA algorithm for estimating the memoryless
nonlinearities. The proposed method is capable of operating correctly when only two
output channels are available, which is in contrast to other blind nonlinear equaliza-
tion methods, for equalization of Volterra systems, such as [Taleb et al., 2001] and
[Giannakis and Serpedin, 1997, López-Valcarce and Dasgupta, 2001] that require at
least three output channels. Results show that this iterative algorithm converges fast
and achieves performance that is very close to a related supervised method.
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Chapter7
Spectral Clustering Techniques

This part of the thesis is dedicated to applications of spectral clustering to blind
source separation problems. In a typical source separation scenario, one or more
source signals are transformed through a mixture process, and only the final mixtures
are observed. In case the source signals are sparse signals or if they are drawn from
a finite constellation, the mixture data will often show a number of discrete data
groups that can be clustered using a suitable algorithm. In the next two chapters we
will discuss two source separation scenarios that lead to difficult clustering problems,
which require a sophisticated clustering algorithm such as spectral clustering. In this
introductory chapter we will discuss the technique of spectral clustering itself, along
with one of its most common implementations.

7.1 Data Clustering

Clustering is an important problem in unsupervised learning. The goal of clustering
is to partition a given set of “objects” such that the objects in the same group are
as similar as possible to each other, and at the same time as dissimilar as possible
to objects that belong to other groups. Traditional clustering algorithms include k-
means, hierarchical clustering [Hartigan, 1975], fuzzy c-means [Bezdek, 1981], and
expectation maximization (EM) learning [Dempster et al., 1977]. These algorithms
are easy to implement but their application is limited to rather simple clustering
problems.

Recently, the technique of spectral clustering has become a very popular clustering
method [Ng et al., 2001, von Luxburg, 2006]. Spectral clustering is easy to imple-
ment since it relies only on standard algebraic operations, yet it often outperforms
traditional algorithms on more complex clustering tasks. Specifically, it consists in
analyzing the spectrum of a modified kernel matrix.

Before introducing spectral clustering, we will first discuss two standard cluster-
ing techniques which are used later in this thesis.
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Algorithm 7.1 K-Means Clustering.
Given the data x1, . . . , xN ∈ X and the number of clusters to retrieve, K.
initialize

Choose µ j ∈ X randomly, for j = 1, 2, . . . , K.
repeat

Assign xi to the partition S j with the closest center µ j, for i = 1, 2, . . . , N.
Recalculate the µ j as the center of cluster S j, for j = 1, 2, . . . , K.

until there is no change in the assignments.

7.1.1 Common clustering algorithms

k-means clustering

The k-means clustering procedure is one of the most commonly used clustering tech-
niques. Given a data set xi ∈ X , i = 1, 2, . . . , N and the number of clusters to
retrieve, K, it aims to find the K partitions S = {S1, S2, . . . , SK} so as to minimize
the within-cluster sum of squares

arg min
S

K

∑
j=1

∑
xi∈S j

‖xi − µ j‖2, (7.1)

where µ j =
1
|S j| ∑xi∈S j

xi is the mean vector of partition S j. Although this problem is

NP-hard, a good solution can be obtained in general by using an iterative refinement
technique called the “k-means algorithm” (see algorithm 7.1).

Due to its iterative nature, the k-means algorithm is prone to converging to local
minima, and it is sensitive to its initialization. Thanks to its low computational com-
plexity, however, in practice it is often sufficient to choose the best clustering result of
multiple, randomly initialized runs. In general a more solid initialization is required,
and a number of techniques have been proposed for this purpose. For instance, re-
cently it was shown that the continuous (relaxed) solution of k-means clustering is
given by the PCA principal components [Ding and He, 2004]. This suggests that a
robust “PCA-guided” k-means clustering algorithm can be constructed by initializing
the standard k-means algorithm with the PCA relaxed solutions.

Kernel k-means The k-means algorithm can be carried out readily in fea-
ture space by describing the problem entirely in terms of inner products
[Schölkopf et al., 1996]. Recently, it was shown that the resulting kernel k-means
procedure is closely linked to spectral clustering [Dhillon et al., 2004]. Many other
kernel-based clustering algorithms have been proposed in the past decade, for in-
stance in [Jenssen et al., 2004] which employs an information theoretic learning
(ITL) criterion.
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Algorithm 7.2 Agglomerative Hierarchical Clustering.
Given the data x1, . . . , xN ∈ X and the number of clusters to retrieve, K.
initialize

Create N clusters S j and assign one data point xi to each of them.
repeat

Calculate D(S j, Sl), for j, l = 1, . . . , N.
Merge the clusters for which D(S j, Sl) is minimal.

until K clusters are obtained.

Hierarchical clustering

Hierarchical clustering is a heuristic procedure of building hierarchies of clusters.
This can either be done “bottom up” or “top down”. The bottom-up method consists
in first assigning one cluster to each data point and then merging these clusters it-
eratively. This is known as “agglomerative” clustering. The top-down method, also
known as “divisive” clustering, starts with one cluster that contains all points and
then recursively splits it while moving down the hierarchy. In algorithm 7.2 we sum-
marize the agglomerative technique, which is far more commonly used.

In order to decide which clusters should be combined in agglomerative clustering,
a measure of similarity or dissimilarity between clusters is required. Usually this is a
distance measure D. In each iteration, the clusters that are closest according to this
measure are merged. The most commonly used linkage criteria are

• Complete linkage clustering: Dcl(Si, S j) = max{d(xi , x j), xi ∈ Si, x j ∈ S j}.
The distance between two clusters is defined as the distance between the most
distant pair of points, one from each cluster.

• Single linkage clustering: Dsl(Si, S j) = min{d(xi , x j), xi ∈ Si, x j ∈ S j}. The
distance between two clusters is defined as the distance between the closest
pair of points, one from each cluster.

• Average linkage clustering: Dal(Si , S j) =
1

|Si||S j| ∑xi∈Si
∑x j∈S j

d(xi , x j). The dis-

tance between two clusters is defined as the average of distances between all
pairs of points, where each pair is made up of one point from each cluster.

7.2 Spectral Clustering

Spectral clustering [Ng et al., 2001, von Luxburg, 2006] is a recently proposed tech-
nique that performs data clustering based on a spectral analysis of point-to-point
similarities. Specifically, by calculating the eigenvectors of a modified kernel matrix
it reduces the original hard clustering problem to an easier clustering problem which
can be solved by conventional clustering algorithms in the eigenspace of this matrix.

The basic form of spectral clustering can be found by solving a graph biparti-
tioning problem [Chung, 1997], which consists in separating the graph into two
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Figure 7.1: Example of spectral clustering. (a) A set of data points {xi}N
i=1 rep-

resenting two intertwined data groups, difficult or impossible to cluster with con-
ventional clustering algorithms. (b) A graph Laplacian of these points is calculated
and the rows of its two principal eigenvectors, which we call {yi}N

i=1, are shown as
black dots. As can be seen in this plot, the eigenvector data form compact clusters
compared with the original data. The resulting points {yi}N

i=1 are clustered with K-
means. (c) The obtained cluster membership information is applied to the original
data. Note that the spectral clustering algorithm is sensitive to the choice of its kernel
scale (here σ = 0.03).

sets. A detailed deduction of spectral clustering from graph theory can be found
in appendix E. Furthermore, direct interpretations of spectral clustering as ran-
dom walks [Meila and Shi, 2000] and as kernel PCA [Alzate and Suykens, 2006]
(see section E.3) have been discovered. Compared with traditional clustering al-
gorithms, spectral clustering is especially attractive since it is capable of solv-
ing complex clustering problems by only performing fairly simple algebraic opera-
tions. Therefore, the literature on spectral clustering is abundant (see for instance
[Cristianini et al., 2000, Bach and Jordan, 2003, Kannan et al., 2004]) and it has al-
ready been applied successfully to problems in a large number of areas including
machine learning, image segmentation, data mining and bioinformatics.

Although there exist various spectral clustering techniques that have slightly dif-
ferent implementations, they all share the same basic procedure [Ng et al., 2001,
von Luxburg, 2006]. Assume we are given a set of data points x1, x2, . . . , xN and a
similarity measure κ(xi, x j) ≥ 0. In accordance to the previous chapters, this similar-
ity can be represented by a kernel function, and it should be chosen in such a way
that it reflects the information about the problem as much as possible. For instance,
if the goal is to retrieve dense clusters of connected points, the Gaussian kernel can
be used. Subsequently, spectral clustering is performed as follows:

1. First, construct a similarity graph from the data points and obtain the corre-
sponding kernel matrix K (here also called “similarity” or “affinity” matrix).

2. Second, compute a graph Laplacian matrix L from the similarity matrix.
Graph Laplacians are matrices studied in the field of spectral graph theory
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Algorithm 7.3 NJW Spectral Clustering.
Given the data x1, . . . , xN ∈ X and the number of clusters to retrieve, K.
Calculate the affinity matrix K: Ki, j = κ(xi, x j) and Kii = 0, for i, j = 1, . . . , N.
Calculate the diagonal matrix D: Dii = ∑N

j=1 Ki j.

Obtain the graph Laplacian L = D−1/2KD−1/2.
Construct V = [v1, . . . , vK] containing the first K eigenvectors of L.
Denote by yi the rows of V and normalize them to unit length.
Eigenvector clustering: cluster the points yi with k-means.
Assign the original point xi to cluster j only if yi was assigned to cluster j.

[Fiedler, 1975, Chung, 1997]. In order to construct a graph Laplacian, denote
by D the diagonal matrix whose i-th element is the sum of all similarities with
the point xi, i.e. D = diag(d1, . . . , dN), where di = ∑N

j κ(xi , x j). Commonly
used graph Laplacians include the unnormalized graph Laplacian L = D − K
and the symmetric normalized graph Laplacian L = D−1/2KD−1/2.

3. Third, calculate the K first eigenvectors v1, . . . , vK of the graph Laplacian, cor-
responding to the K largest eigenvalues, where K is the number of clusters to
retrieve. Construct a matrix V ∈ RN×K that contains the vectors v1 , . . . , vK as
columns, and let yi ∈ RK be the vectors corresponding to the i-th row of V, for
i = 1, . . . , N.

4. Finally, cluster the points yi with the k-means algorithm into clusters C1, . . . , CK.
The original point xi is assigned to cluster j if and only if yi ∈ C j.

The basic spectral clustering algorithm is illustrated in Fig. 7.1. Although the
last step of spectral clustering consists of a standard k-means algorithm, notice that
k-means alone would not succeed on the data of Fig 7.1 (a) without the described
preprocessing. Specifically, spectral clustering transforms the data xi into the points
yi which are much easier to cluster, thanks to the properties of the graph Laplacian
[Chung, 1997].

7.2.1 NJW algorithm

A popular implementation of spectral clustering is the Ng-Jordan-Weiss (NJW) algo-
rithm, introduced in [Ng et al., 2001]. This algorithm uses the symmetric normalized
graph Laplacian L = D−1/2KD−1/2, which penalizes small clusters, and it carries out
an additional normalization of yi to increase the robustness of the final k-means clus-
tering stage. The resulting NJW algorithm is effective in a large number of different
clustering problems, and similar to other spectral clustering algorithms it is also very
easy to implement. It is summarized in Alg. 7.3. We refer to appendix E for more
details on this algorithm.
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7.2.2 Parameter choice and implementation

Although spectral clustering algorithms allow to solve very complex clustering tasks
with straightforward algebraic operations, they show a number of difficulties. In
particular, they have a high computational complexity and require the choice of the
kernel parameter, which are problems related to all kernel methods. Additionally,
they require to determine the number of clusters, which is a problem inherent to
clustering.

The high computational complexity of spectral clustering is a problem exhib-
ited by most kernel methods. In particular, spectral clustering requires the calcu-
lation of the SVD of an N × N matrix, which involves a computational complex-
ity of O(N3). Recently several methods have been proposed to speed up spectral
clustering, such as those based on the incomplete Cholesky decomposition method
from [Alzate and Suykens, 2008], or the “parallel spectral clustering” algorithm from
[Song et al., 2008], which uses a sparse similarity matrix (nearest neighbors). Alter-
natively, any of the complexity-limiting techniques presented in section 2.4 could be
used.

Another important issue is the determination of a suitable kernel parameter, such
as the kernel “width” σ in case of the Gaussian kernel. As has been shown in a num-
ber of publications [Ng et al., 2001, Zelnik-Manor and Perona, 2004], the clustering
result is highly sensitive to the value of this parameter. This problem is directly re-
lated to the more general problem of kernel density estimation (KDE). A number of
well-founded algorithms have been proposed to determine this parameter including
Silverman’s rule (2.64), local scaling [Zelnik-Manor and Perona, 2004] and others
[Ng et al., 2001, Bach and Jordan, 2003].

A few techniques have been proposed to determine the number of clusters to
retrieve, including some rules-of-thumb (see for instance [Bach and Jordan, 2003]),
although in a lot of applications this number is known. In this work the number of
clusters to retrieve is known in all considered clustering problems.

7.2.3 Self-tuning spectral clustering

As mentioned in the introductory chapter 2 of this thesis, the design of a ker-
nel can include information about a point’s local neighborhood. To this end, in
[Zelnik-Manor and Perona, 2004] the elements of the affinity matrix are calculated
as

Ki j = exp(−d2(xi, x j)/(σiσ j)) (7.2)

where the “local scale” σi = dm(xi, xL) is calculated as the distance between xi

and its L-th closest neighbor. This ad-hoc measure determines for each point a
scale that adjusts to its own neighborhood, and therefore it can be used to cluster
points together if they belong to “similar adjacent neighborhoods”. According to
[Zelnik-Manor and Perona, 2004], the selection of L is independent of scale and it
is a function of the data dimension of the embedding space. Furthermore, a slightly
more robust algorithm can be obtained by selecting a higher L and calculating σi as
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the median distance between xi and its L-th neighbor. We will use this measure in
the following chapters.

7.3 Clustering in Source Separation

In source separation, clustering can be used to solve mixture problems in which the
source signals either belong to a finite alphabet or where they are sparse signals.

The first scenario occurs for instance in multiple-input multiple-output (MIMO)
communication systems, in which one or more antennas are used at transmitter and
receiver side. Since the transmitted symbols belong to a finite alphabet (the constel-
lation), the received data points will form clusters in the scatter plot corresponding
to the sent data symbols. A number of algorithms have been proposed to retrieve
these clusters.

In a standard setting, variations of the communication channel during the trans-
mission of one block of symbols are so small that they can be ignored or easily com-
pensated for. In chapter 8 we will focus on situations in which the MIMO system is
fast time-varying. Such situations can occur in mobile communications where trans-
mitter and/or receiver are moving at high speed. Depending on the Doppler spread
of the channels, the clusters in the system’s scatter plot will show different degrees of
overlap. Due to this overlap, traditional clustering algorithms will no longer be able
to decode the sent symbols. In chapter 8 we will design decoding procedures based
on spectral clustering for this task.

The second scenario we will study is the underdetermined blind source separa-
tion problem in which the sources are sparse signals. For such signals, a scatter plot
of the mixtures reveals axes that correspond the columns of the mixing matrix. If
the number of mixtures is insufficient to apply standard blind source separation tech-
niques, conventional clustering techniques can be applied to retrieve the directions
of these axes and identify the mixture process. However, if the mixture process of
sparse signals is nonlinear, the scatter plot of the mixed signals will show curves in-
stead of straight lines. Here, spectral clustering can be applied to find the position
of these curves, after which the problem can be reduced to a standard linear mixture
problem. This will be the topic of chapter 9.

7.4 Conclusions

In this chapter we introduced the problem of clustering and we discussed a number
of techniques for this task. In particular, we highlighted some of the properties of the
recently proposed spectral clustering technique. This kernel-based algorithm is capa-
ble of performing complex clustering tasks with basic algebraic operations. We also
discussed two standard scenarios in source separation where clustering algorithms
are required and pointed out situations that can no longer be treated by conven-
tional clustering algorithms. In the next chapters we will study these problems in
detail and design spectral clustering based techniques to solve them.
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Chapter8
Blind Decoding of Fast

Time-Varying MIMO Channels

In this chapter we address the problem of blind decoding of multiple-input multiple-
output (MIMO) systems that use M-PSK modulations. Since the transmitted symbols
belong to a finite alphabet (the constellation), the received data points will form
clusters corresponding to the transmitted data symbols. If such a MIMO system is
time-varying, the clusters in its scatter plot can overlap, and algorithms based on
traditional clustering cannot be applied.

We show that specific versions of spectral clustering can be designed to tackle
these problems. By adding a temporal dimension to the received data, intertwined
threads appear in its scatter plot. These can be clustered by a spectral clustering al-
gorithm that relies on the geometry of the used constellation. After obtaining clusters
that represent the different transmitted data symbols, the decoding problem consists
of assigning a symbol to each cluster, based on known (pilot) symbols.

8.1 Introduction

In the last decades, multiple-input multiple-output (MIMO) wireless communication
technology has gained considerable attention due to its potential to significantly in-
crease spectral efficiency compared with traditional single-input single-output (SISO)
technology.

A number of computationally efficient algorithms have been proposed for
reliable symbol detection in flat-fading MIMO systems, based on the assump-
tion that the MIMO channel is static and known at the receiver side, such
as the Vertical Bell Laboratories Layered Space-Time (V-BLAST) architecture
[Foschini et al., 1999]. Nevertheless, their direct application in time-varying en-
vironments is difficult, due to the need of perfect state information at the re-
ceiver side [Karami and Shiva, 2006]. A few adaptive equalization algorithms have
been proposed to resolve this issue [Choi et al., 2005, Rontogiannis et al., 2006,
Karami and Shiva, 2006, Kekatos et al., 2007] or the model-based approach in
[Liu and Giannakis, 1998]. All of these techniques are supervised equalization al-
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gorithms, requiring an initialization phase in which a number of pilot symbol slots
are transmitted.

An alternative approach to equalization can be based on clustering, exploiting
the fact that, for channels excited by signals belonging to a finite alphabet, the
noisy observations tend to cluster around a finite number of channel states. Since
the pioneering work by Chen, Mulgrew et al. [Chen et al., 1993, Chen et al., 1995]
these techniques have been widely applied in communications. Once the channel
states or cluster centroids have been estimated (typically by applying any supervised
clustering technique based on a known training sequence), channel equalization re-
duces to a classification problem, which can be solved efficiently using a radial basis
function network [Chen et al., 1993, Cid-Sueiro et al., 1994, Lee et al., 1999a], or a
support vector machine [Sebald and Bucklew, 2000, Mitchinson and Harrison, 2002,
Pérez-Cruz et al., 2001, Santamaría et al., 2003]. From a more general point of view
we can say that the problem of separating linear mixtures of discrete-alphabet inputs
reduces to the problem of finding and labeling a finite (and known in advance) num-
ber of clusters. It is also worth mentioning that these clustering methods consider
only time-invariant environments.

The main drawback of these algorithms is that the number of clusters grows
exponentially as MNt , where M is the constellation size and Nt is the number
of transmit antennas. During the last years, a lot of work has been directed to-
wards reducing the number of clusters to be estimated. This reduction can be
achieved by estimating only those cluster centers that lie close to the decision
border [Lee et al., 1999a, Santamaría et al., 2003], or by exploiting the symme-
tries of the channel states inherited from the symmetries of the input constella-
tion [Montalvão Filho et al., 2002, Kopsinis and Theodoridis, 2003]. Also, some ex-
tensions to multiple-input single-output channels have been recently proposed in
[Diamantaras, 2006, Diamantaras and Papadimitriou, 2006].

In time-varying systems, the variations in the mixing matrix provoke a move-
ment of the cluster centers and, consequently, the clusters adopt non-convex shapes
and overlap each other. Conventional clustering algorithms such as k-means, fuzzy
k-means and expectation-maximization (EM) learning, which typically require well-
separated clusters, would fail. A promising alternative is the recently proposed spec-
tral clustering technique [Ng et al., 2001], which is capable of clustering non-convex
data sets (see chapter 7).

In [Van Vaerenbergh et al., 2007a, Van Vaerenbergh and Santamaría, 2008,
Van Vaerenbergh et al., 2009] we initially presented and subsequently improved a
clustering technique that can deal with fast time-varying systems. Such systems show
normalized Doppler frequencies fdT ≥ 0.001, where fd is the Doppler frequency
and T the transmission rate. The proposed technique relies on three key principles.
First, by adding a temporal dimension to the scatter plot, it converts the overlapping
clusters into elongated threads, which can be clustered using a standard form of
spectral clustering. Second, the geometry of the constellation is taken into account
to reduce the number of clusters to retrieve, which, under normal circumstances,
grows exponentially. This procedure exploits the symmetries of the cluster centers
to reduce the number of clusters, therefore reducing the computational cost and
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Figure 8.1: A BPSK MIMO system with constant, flat-fading channels. A transmitter
with two antennas is shown on the left. For clarity, only one receiver antenna is
included in this diagram. Its scatter plot, depicted on the right, shows compact
clouds of points, which correspond to the transmitted data symbols.

extending the applicability of the method. And third, a specific path-based similarity
function, the connectivity kernel, is adopted to incorporate more information on the
problem into the clustering procedure. In particular, this kernel function favors
elongated clusters. The proposed clustering technique is fully unsupervised in that
no knowledge of a training sequence is required (i.e., a blind technique). Only
a few pilots (known symbols) are needed to label the clusters and to decode the
transmitted data. The obtained spectral clustering method is capable of finding
clusters in sequential data, and it achieves better results than state-of-the-art MIMO
decoding techniques for time-correlated channels such as the generalized decision
feedback equalizer proposed by Choi et al. [Choi et al., 2005].

In this chapter we discuss this technique in detail, and we apply it to the prob-
lem of decoding time-varying multiple-input multiple-output (MIMO) channels. We
present an efficient scheme to calculate the connectivity kernel for sequential data,
as well as a procedure to select its kernel scale. Some extensions to this method
will also be discussed. For instance, the use of orthogonal space-time block coded
(OSTBC) MIMO schemes, such as the popular Alamouti encoding [Alamouti, 1998],
allows us to exploit the structure imposed by the code in the clustering stage. For fast
time-varying channels, up to certain Doppler spreads, we obtain better results than
a space-time differential code. Also, further enhancements can be obtained by op-
timizing the final clustering stage of the spectral clustering algorithm. In particular,
the order of the data can be taken into account again in this final clustering stage to
avoid invalid solutions.

8.2 Problem Statement

In a typical MIMO flat-fading system with Nt transmit and Nr receive antennas (such
as in Fig. 8.1), the Nr-dimensional received vector x[n] = [x1[n], . . . , xNr [n]]

T at time
n is expressed as

x[n] = H[n]s[n] + v[n] (8.1)
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where H[n] is the complex Nr × Nt channel matrix whose elements represent inde-
pendent flat-fading SISO channels, s[n] contains the N (in general, complex) symbols
transmitted by the Nt antennas at time n, and v[n] represents spatially and tempo-
rally white complex zero-mean Gaussian noise. The goal of blind symbol decoding is
to estimate the symbols s[n] given only the received data points x[n].

In MIMO systems with block-fading channels, variations of the channel during the
transmission of one block of symbols are so small that they can be ignored. Hence
the channel matrix H[n] = H is considered constant during transmission of one block
of symbols. This is not the case for MIMO systems with fast time-varying channels,
where the channel matrix changes from symbol to symbol due to the Doppler spread
caused by the movement of the transmitter and/or receiver. In such systems, de-
pending on the Doppler spread, the channel matrices H[n] are temporally correlated.
These variations can be modeled for instance by the Clarke and Gans Fading Model
[Rappaport, 2001] which states that if a vertical λ/4 antenna with uniform power
distribution is used to transmit a single tone, the received spectrum is

SEz( f ) =
1.5

π fm

√

1−
(

f− fc

fm

)2
, (8.2)

where fc and fm are the carrier frequency and the maximum Doppler shift, respec-
tively.

The top row of Fig. 8.2 illustrates the effect of different Doppler spreads on the
scatter plot of a received data block in a typical binary phase-shift keying (BPSK)
MIMO system, for which the basic constellation points are d ∈ {+1,−1}. Whereas
the received data in a static system contains clearly separable clusters (Fig. 8.2(a)
top), in a time-varying system these will overlap (Fig. 8.2(b), (c) and (d) top) and
classical clustering algorithms that operate directly on the data will fail.

8.3 Key Geometrical Ideas of the Clustering Approach

As discussed in Section 8.2, the data points in a time-varying MIMO communication
system may form non-convex and even overlapping clusters in the scatter plots, im-
possible to cluster with classical algorithms. Spectral clustering can deal with the
non-convexity of these groups, but it will fail when the data clusters overlap. In
[Van Vaerenbergh et al., 2007a] a simple workaround was presented to circumvent
this problem, consisting in making use of the temporal index, which is usually dis-
carded for scatter plot analysis. It is discussed in detail in the following section.

A second problem arises when the number of points per cluster is too small. On
one hand, the clustering algorithm deals with one block of data at a time, containing
typically N = 256 data symbols. On the other hand, the number of clusters to
retrieve is MNt , where M is the size (the cardinality) of the source alphabet and Nt

is number of transmit antennas1. Both M and Nt need to be small to guarantee a

1Note that the channel length L = 1 since we are dealing with flat-fading channels.
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Figure 8.2: Effect of different normalized Doppler spreads on the received data
symbols. Top row: Scatter plots of the data received by one receive antenna for a
BPSK MIMO system with 2 transmit antennas, for different values of the normalized
Doppler frequency fdT. Bottom row: Scatter plots to which the time index was added
as an additional vertical axis. Due to the channel changes during the transmission of
the data block, curved threads appear in this plot.

sufficient number of points per cluster, which is usually not the case. However, as
will be demonstrated, it is possible to exploit the constellation geometry of M-PSK
systems to make the data clusters more dense and consequently easier to retrieve.

Finally, we would like to restrict the retrieved clusters to structures that are
elongated and thread-like. Although it is difficult to implement this into spec-
tral clustering as a hard constraint, a kernel that favors such elongated structures
can easily be designed. The proposed approach uses the connectivity kernel from
[Fischer et al., 2003] which is optimized to take into account the order of the data.
This kernel function will be discussed in section 8.4.

8.3.1 Adding the temporal dimension into the clustering problem

The received data x[n] in a fast time-varying MIMO system can be preprocessed for
spectral clustering by simply adding the temporal dimension into the vector of ob-
servations. The combined vector representing one data point and its temporal index
t[n] can be denoted as

x0[n] =
[

x[n]T , t[n]
]T

, (8.3)

which is a complex vector with Nr + 1 elements2. When this extra dimension is
added to the scatter plots of Fig. 8.2 (top), threads appear due to the temporal
correlation between consecutive channel matrices (see Fig. 8.2 (bottom)). Thanks
to its capabilities to cluster non-convex data sets, spectral clustering should be able
to retrieve these different threads from x0[n].

2The super-index 0 is used to distinguish it from rotated versions of this vector, see Sec. 8.3.2.
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8.3.2 Exploiting the input constellation symmetries

In clustering it is important that, in order to be detected, each cluster should have a
certain minimum number of points. A rule of thumb is to have at least 10 samples
per cluster. And since spectral clustering is a computationally costly procedure, this
number of clusters, which is MNt , should be reasonably low. Taking into account that
most commercial MIMO systems use up to Nt = 4 transmit antennas, we will only
treat BPSK systems (M = 2) and QPSK systems (M = 4) in this work.

Clusters should also be well connected, i.e., the distance between neighboring
points of the same thread should not be larger than the distance between points
of different threads. This requires a rescaling of the temporal dimension to match
the scale of the spatial dimensions, for instance t[n] = n/256, with n = 1, . . . , 256
for blocks of 256 symbols. Moreover, this means that if a symbol is not transmit-
ted during a considerable time, one thread might be incorrectly identified as two
separate threads. However, as will be shown in the next section, both difficulties
can be reduced by using information derived from the geometric properties of the
constellation.

In this section we show that the geometrical symmetries of the transmitted con-
stellation can be used to design a two-phase clustering algorithm, in which only a
reduced number of clusters needs to be detected during each phase. Before dealing
with the general case of Nt × Nr M-PSK MIMO systems, the proposed algorithm is
illustrated on a simple 2× 2 BPSK MIMO system.

Case of BPSK MIMO systems

In the noiseless case (v[n] = 0), Eq. (8.1) can be written as

x[n] = H[n]s[n]. (8.4)

For a 2 × 2 BPSK MIMO system, there will be 4 symbol clusters to detect in the
data x[n], corresponding to the transmitted symbol vectors [+1,+1]T, [+1,−1]T,
[−1,+1]T and [−1,−1]T. In Fig. 8.2 we can observe that for any cluster following
a certain trajectory, there is always another cluster following a trajectory symmetric
with respect to the origin. This observation is confirmed by (8.4): since a BPSK
system can generate both s[n] and −s[n], the data point x[n] as well as its opposite
−x[n] can be received. When transmitted through a time-varying channel, these data
points lie in clusters that follow symmetric trajectories with respect to the introduced
“temporal axis”. This property will be exploited to improve the spectral clustering
stage, by first grouping together the data points that follow symmetric trajectories.

This geometrical property is not limited to 2× 2 systems. In a general Nt × Nr

BPSK MIMO system with fast time-varying channels, for any cluster following a cer-
tain trajectory in time, there is always another cluster following the symmetric trajec-
tory. Combining the data of two such clusters will provide a more robust clustering
problem. This observation leads to the following two-phase algorithm: In the first
phase, groups of symmetric clusters are detected. One clustering problem needs to
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be solved here to find 2Nt−1 clusters. In the second phase, each group of symmet-
ric clusters is separated into two different clusters. This second phase consists of 2
independent problems.

Clustering procedure for Nt × Nr BPSK MIMO systems

Phase 1: Grouping of symmetric clusters. The following analysis shows how spec-
tral clustering can be extended to find clusters consisting of two symmetric “sub-
clusters” at a time. Similar to (8.3) we can introduce the “symmetric” data point

x1[n] =
[

−x[n]T , t[n]
]T

, (8.5)

which contains the data point opposite to x0[n] with respect to the temporal axis.
This new data point does not correspond to any real data point and can therefore be
considered a “virtual” pattern. It will only be used to facilitate the clustering process
and the superscript 1 refers to the fact that it is the first of these virtual patterns.
Other constellations such as QPSK need more virtual patterns per original data point,
as will be seen below.

Consider the distance measure

d(x[i], x[ j]) = min

(

∣

∣

∣
x0[i]− x0[ j]

∣

∣

∣

2
,
∣

∣

∣
x0[i]− x1[ j]

∣

∣

∣

2
)

. (8.6)

This measure is small in two cases: firstly for points that are very close to each other,
and secondly for points that are very close to opposite of each other. If a Gaussian
kernel is used with this distance measure for spectral clustering, neighboring points
as well as opposite points will be grouped together, leading to 2Nt−1 clusters. This
first phase avoids the incorrect clustering that might occur when some of the threads
have a low number of data points, by combining the information of symmetric clus-
ters.

Phase 2: Retrieving the individual clusters. After having identified the 2Nt−1

groups of symmetric clusters, the two individual threads for each group need to
be retrieved. Since these sub-clusters are now separated from the other clusters,
the clustering problem is greatly simplified. Problems might occur, however, if one
or both clusters contain few data points. Luckily, the constellation geometry can be
exploited again in this second phase of the problem, making use once more of the
symmetry of the sub-cluster’s trajectories.

Specifically, we can increase the number of points in each cluster by adding the
symmetric virtual patterns x1[n] to the data points x0[n] that need clustering. As
shown above, these symmetric points will lie in one of the two clusters to retrieve,
and their presence will only make the original clusters more dense. As a result, the
performance of the clustering algorithm will improve. Taking this into account, the
second clustering phase consists of the following steps:
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1. Expand the set of points to cluster, x0[n], with their (opposite) virtual points
x1[n].

2. Apply spectral clustering to these points.

3. Discard the virtual points to obtain clusters consisting only of the original points
x0[n].

Thanks to this procedure, even if one of the clusters has few nearby samples, tends
to have “holes”, or is even empty, it is still possible to apply spectral clustering to
retrieve the two clusters. In the case of an “empty” cluster the second step should
correctly leave one of the clusters empty and only identify its position.

Generalization to M-PSK MIMO systems

The described procedure to exploit the constellation geometry can be easily extended
to M-PSK constellations. In this general case, MNt clusters need to be retrieved,
which boils down to finding MNt−1 clusters in the first phase and M sub-clusters in
the second phase.

In case of BPSK systems the first phase of the clustering algorithm consisted in
grouping together clusters that follow symmetric trajectories in time. The main dif-
ference for M-PSK systems is that now the clusters to retrieve should follow trajecto-
ries that are rotated over a certain angle α with respect to the introduced temporal
axis. For QPSK systems this angle will be α = π/2, as can be deduced easily from its
constellation. The special case of BPSK systems is found for α = π . In general, we
have that α = 2π/M, where M is the size of the constellation.

The clustering algorithm consists of the same two phases as for BPSK systems.
The only difference is that not 1 symmetric virtual pattern but M− 1 rotated virtual
patterns should be taken into account in both phases. Instead of (8.6), the distance
measure to be used in phase 1 is

d(x[i], x[ j]) = min
k

[

‖x0[i]− xk[ j]‖2
]

, k = 0, . . . , M− 1, (8.7)

where

xk[n] =
[

e j·2kπ/MxT[n], t[n]
]T

(8.8)

are rotated versions of the data point x0[n] with respect to the temporal axis. For
k > 0 the points xk[n] represent the virtual patterns of x0[n]. In phase 2, all M − 1
virtual patterns per data point should be added to the clustering problem.

8.3.3 Symbol decoding

Once the symbol clusters have been successfully retrieved, the original time-varying
problem has been reduced to a simpler decoding problem, which is the only super-
vised part of the proposed algorithm. Each cluster should be mapped to a constella-
tion symbol, and to this end a small number of pilot symbols s[n] are transmitted at
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the start of the symbol block. Specifically, Nt pilots must be transmitted during Nt

slots3. Note that these pilot symbol slots are not needed for the clustering process.
Therefore it is not required that they are included at the beginning of the data block.
In practice, better results are obtained if the pilots are transmitted in the middle of
the block.

Defining the matrix of pilot symbols Sp = [s[i1], s[i2], . . . , s[iNt
]] and the matrix

of corresponding received data Xp = [x[i1], x[i2], . . . , x[iNt
]], an approximation of the

channel matrix H around the position of the pilot symbols can be obtained as

Ĥ = XpS−1
p . (8.9)

The symbol decoding stage of the algorithm consists in assigning the symbol slot s to
the cluster that contains the data points closest to the vector Ĥs, taken into account
the extra temporal dimension.

An overview of the complete algorithm will be given in Section 8.5.

8.4 Optimizing the Kernel Function

The previously described spectral clustering based technique obtains very satisfactory
results. In cases of high noise or high Doppler spread, however, it does not exclude
invalid solutions in which clusters are bifurcated or two threads are clustered as
one. Therefore, a restriction needs to be built into the clustering procedure to avoid
clusters that do not consist of single threads. In this section we present a kernel
function that favors clusters of elongated shape.

8.4.1 Path-based spectral clustering

Path-based clustering [Fischer et al., 2003, Ozertem et al., 2008] is a recently devel-
oped technique for clustering groups of points that are elongated in addition to being
dense. In graph theory, a path p in a graph G is an alternating sequence of vertices
and edges, beginning and ending with vertices, in which all vertices are distinct and
each edge is incident with the vertex immediately preceding it and with the vertex
immediately following it.

Let us denote by Pi, j the set of all paths from vertex i to vertex j. When dealing
with elongated structures, two points should be considered similar if there is a clear
path between them, in the sense that all of its edges are short. For instance, in Fig.
8.3, the vertices i1 and j belong to the same cluster. This is reflected in the fact that
there is a path between them that consists only of short edges. On the other hand,
the vertices i2 and j belong to different clusters, and any path connecting them will
contain at least one longer edge.

Based on this observation, in [Fischer et al., 2003] a kernel function was pro-
posed that calculates the similarity between two vertices i and j based on the weakest

3The number Nt is a theoretical minimum. In order to improve performance in certain situations,
more pilot symbols could be used.
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i1

i2

j

Figure 8.3: Path-based similarity: Due to the optimal paths generally following dense
regions of data, vertices i1 and j are considered more similar than i2 and j.

link of the best path between them. The weakest link of a path p is considered to be
its longest edge. We will denote the length of this edge as the “effective distance” of
the path, which can be written as

d̄
p
i, j = max

(k,l)∈p
dk,l . (8.10)

The best path between the two vertices will be the one whose effective distance is
shortest, and we denote the effective distance between the two vertices as

d̄i, j = min
p∈Pi, j

d̄
p
i, j. (8.11)

Based on this metric, the similarity between vertices i and j can be expressed using
the Gaussian kernel as

κc(xi , x j) = exp

(

−
d̄2

i, j

σ2

)

(8.12)

= exp

(

− 1

σ2
min
p∈Pi, j

max
(k,l)∈p

d2
k,l

)

.

This kernel function is called “connectivity” kernel.
Although the computation of the kernel function (8.12) contains a min-max op-

eration over all possible paths between two vertices, a recursive scheme can easily
be applied to calculate the kernel function based on the result for shorter segments,
for instance by using Dijkstra’s shortest path algorithm [Dijkstra, 1959] (as discussed
in appendix F). In the following we present an efficient procedure to calculate this
kernel in the special case of sequential data.

8.4.2 Adaptation for sequential data

The application considered in this chapter deals with data symbols from communi-
cations, which are transmitted and received sequentially. While the previous section
described the general path-based clustering method, the problem treated here deals
with ordered data and therefore it will benefit from incorporating temporal infor-
mation into the clustering process. Note that most kernel methods and clustering
algorithms do not take into account the order of the training data.
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Figure 8.4: The effective distance between vertices i and j can be calculated by
considering all combinations of two shorter optimal paths, from i to k and from k to
j, with k = i, . . . , j.

The connectivity kernel can respect the data order by only considering paths that
are “monotonic” in the temporal dimension. In other words, the paths used in kernel
(8.12) should either consist only of edges (k, l) ∈ p that fulfill l > k, or only of edges
that fulfill k > l. Moreover, this restriction greatly reduces the total number of paths
that need to be taken into account, which is very convenient for problems from the
area of communications.

The following scheme describes how to efficiently calculate the effective distances
between all pairs of data points, resulting in an effective distance matrix D̄. Once
obtained, the similarity between points can be obtained by calculating (8.12). Let
us denote by δ = j − i the “temporal separation” between points x[i] and x[ j], for
i, j = 1, . . . , N. We will fill the effective distance matrix D̄ one diagonal at a time, in
an inductive manner:

1. δ = 0: Elements on the diagonal of D̄ correspond to pairs of identical points,
and therefore d̄i,i = 0, ∀i.

2. δ = 1: Elements on the first upper diagonal are consecutive data points. In this
case, the effective distance equals the real distance d̄i,i+1 = di,i+1, ∀i.

3. δ = l: Elements on the l-th upper diagonal can be calculated based on the
results obtained for δ < l. The optimal path between x[i] and x[ j] is either
a direct connection of x[i] and x[ j], or a combination of two shorter paths,
as illustrated in Fig. 8.4. The effective distance of the direct connection is
simply its Euclidian distance, while the effective distance of a combination of
shorter paths can be calculated as the maximal effective distance of its parts.
The resulting effective distance between x[i] and x[ j] is the minimum of the
effective distances over these paths:

d̄i, j = min
(

di, j, max(d̄i,i+1, d̄i+1, j), . . . , max(d̄i, j−1, d̄ j−1, j)
)

. (8.13)

4. δ < 0: Since the distance measure is symmetric, the lower part of D̄ can be
copied from the upper part: d̄ j,i = d̄i, j.
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Algorithm 8.1 Spectral Clustering based Decoding of Time-Varying MIMO Channels.
initialize

Obtain the data points x0[n], for i = 1, . . . , N.
Construct the virtual patterns xk[n], as in (8.8), for k = 1, . . . , M− 1.

spectral clustering phase 1:
Use the connectivity kernel (8.12) to obtain the kernel matrix K.
Apply the NJW algorithm to retrieve MNt−1 clusters (see Alg. 7.3).

spectral clustering phase 2:
for each obtained cluster do

Create a set with the data points x0[n] from this cluster and all corresponding
virtual patterns.
Obtain the kernel matrix of this set, using the connectivity kernel (8.12).
Apply the NJW algorithm to retrieve M final clusters (see Alg. 7.3).
Discard the virtual patterns from each cluster.

end for

Decode the data symbols: assign symbols to the clusters as in Sec. 8.3.3.

8.5 Proposed Algorithm

The final algorithm to decode fast time-varying M-PSK MIMO systems is summarized
in Algorithm 8.1. Given the original data points x[n], it first adds the temporal index
t[n] to obtain the patterns x0[n], and then constructs the M− 1 virtual patterns xk[n]
per pattern by rotating them around the temporal axis. Next, it performs the de-
scribed clustering algorithm in two phases, with the connectivity kernel, and finally
it performs symbol decoding by assigning a data symbol slot to each cluster.

8.6 Extensions of the Core Algorithm

8.6.1 Exploiting additional information: OSTBC MIMO schemes

In the previous sections, the case of spatial multiplexing MIMO systems was dis-
cussed, in which Nt different symbols are transmitted by the Nt antennas at a
given time instant. Recently, space-time block coding (STBC) [Alamouti, 1998]
has emerged as one of the most promising techniques to exploit spatial diver-
sity in multiple-input multiple- output (MIMO) systems. Among space-time cod-
ing schemes, the orthogonal space-time block coding (OSTBC) [Alamouti, 1998,
Tarokh et al., 1999] is one of the most attractive because it is able to provide full
diversity gain with very simple encoding and decoding. The most popular OSTBC is
Alamouti coding [Alamouti, 1998]. It uses the following coding matrix to transmit a
block of 2 symbols s1 and s2:

S =

[

s1 −s∗2
s2 s∗1

]

. (8.14)
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The Alamouti code uses 2 time slots to transmit 2 symbols, which makes it a rate-1
code. It uses 2 transmit antennas, where the first one sends the symbols [s1, −s∗2]
and the second one sends the symbols [s2, s∗1]. The sequences transmitted by both
antennas are orthogonal, as can be easily verified:

[s1, −s∗2]
H · [s2, s∗1] = s∗1s2 − s2s∗1 = 0. (8.15)

The structure that the Alamouti coding adds to the data can be exploited in the
clustering problem as follows. With Alamouti coding, each original symbol pair is
transmitted in two consecutive time slots, where the second time slot contains a
transformed version of these symbols. To exploit the redundancy in a clustering
framework, new data points xA[n] can be constructed as follows:

xA[n] =

{

[

xT[n], xH [n + 1]
]T

, for n = 1, 3, 5, . . .
[

xT[n],−xH [n− 1]
]T

, for n = 2, 4, 6, . . .
(8.16)

This transformation is based on the relationship of time slots: it adds extra compo-
nents to the original data points x[n] that, due to the code structure, belong to the
same “time-slot pair” and therefore contain the same information.

As with spatial multiplexing, the resulting data points xA[n] will form data clus-
ters, and it is not difficult to verify that the number of these clusters will be the
same with or without transformation (8.16). However, the transformation causes
an increase of the embedding dimensionality, which increases the distance between
points of different clusters more than the distance between points of the same clus-
ter. This greatly improves the clustering results, as will be illustrated in a practical
experiment.

After embedding the received data according to (8.16), the two-phase spectral
clustering process can be applied as previously indicated.

8.6.2 A self-tuning connectivity kernel

Since the clustering procedure is very sensitive to the kernel width σ , the algorithm
proposed in [Van Vaerenbergh et al., 2007a] used a “local scaling” procedure for the
Gaussian kernel. Instead of using a single global σ for all data points, a local kernel
width σi was assigned to each point, equal to the median of distances to its K-th
nearest neighbors [Zelnik-Manor and Perona, 2004], as described in Sec. 7.2.3. The
same idea can be applied to increase the robustness of the connectivity kernel (8.12),
leading to the following locally scaled connectivity kernel:

κlc(xi, x j) = exp

(

−
d̄2

i, j

σiσ j

)

. (8.17)

This kernel is obtained in a straightforward manner by scaling each distance di, j by
the local scales σi and σ j, before calculating the effective distance d̄i, j.
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8.6.3 Optimizing the eigenvector clustering step of spectral clus-

tering

The proposed algorithm favors elongated groups of points by making use of the con-
nectivity kernel to calculate the kernel matrix. Ideally, each clustering procedure
should retrieve thread-like clusters that span as much of the time range as possible,
if the temporal dimension is taken into account. To rule out invalid solutions such as
bifurcated threads, which can occur by plainly applying k-means at the final step of
the spectral clustering algorithm, the temporal dimension can be added again to the
obtained points and hierarchical clustering can be used to detect the clusters.

In agglomerative hierarchical clustering (AHC) (see section 7.1.1), each point
is initialized as a cluster. Subsequently, the two closest clusters are joined, and this
process is repeated until the desired number of final clusters is obtained. The distance
between clusters is measured as the minimal Euclidian distance between any node
of the first cluster and any node of the second cluster, which is known as “single
linkage” hierarchical clustering. The additional constraint we add to avoid invalid
solutions, is that if two clusters overlap in time, they are only linked if at least m− 1
additional clusters overlap in the same time fraction. If this is not fulfilled, the cluster
pair is not merged but skipped in this iteration, and the next closest pair of clusters
is considered.

8.7 Generalized Decision Feedback Equalizer

The generalized decision feedback equalizer (GDFE) algorithm from
[Choi et al., 2005] is an adaptive algorithm for decoding fast time-varying MIMO
systems, based on the V-BLAST architecture. For each time instant, the symbols
are successively detected and canceled from the received data vector via decision
feedback filtering. The filter tap weights and symbol detection order are updated
using an RLS-based time- and order-update algorithm. Its complexity is O(M3)
but it provides some savings compared with V-BLAST. During its training period, it
needs to send a number of pilot symbols to initialize the algorithm. This method
is known to suffer from numerical instabilities. Therefore, several improvements
have been presented, for instance [Rontogiannis et al., 2006]. In the next section
we will compare the performance of the original GDFE algorithm with the presented
technique.

8.8 Simulation Results

A number of simulations were carried out to illustrate the performance of the pro-
posed algorithms. In all experiments, the following parameters were assumed: the
channels were independent Rayleigh flat-fading and the temporal variation of each
channel between a transmit and receive antenna pair was based on the Clarke-Gans
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model [Rappaport, 2001]. The symbols s[n] were grouped into frames consisting of
N = 256 slots.

8.8.1 Overview of the compared decoding techniques

A number of different decoding algorithms were compared, including a few varia-
tions of the proposed algorithm:

GDFE. The generalized decision feedback equalizer (GDFE) algorithm from
[Choi et al., 2005], with λ = 0.95.

SPCL: KNN + k-means. A simplified version of the presented spectral clustering
(SPCL) technique uses a K-nearest neighbor (KNN) kernel, the unnormalized graph
Laplacian matrix (see section 7.2), and k-means eigenvector clustering.

SPCL: Gaussian kernel + k-means. The algorithm proposed in
[Van Vaerenbergh et al., 2007a] uses a locally scaled Gaussian kernel, the sym-
metric normalized graph Laplacian matrix from the NJW algorithm (see section 7.2)
and k-means.

SPCL: Connectivity kernel + k-means. For this algorithm the Gaussian kernel was
replaced by a locally scaled connectivity kernel.

SPCL: Connectivity kernel + AHC. This algorithm uses spectral clustering with
a locally scaled connectivity kernel, the normalized graph Laplacian from the NJW
algorithm and agglomerative hierarchical clustering.

PCSI ML. As a reference lower bound error curve, we include results obtained by
the optimum maximum likelihood (ML) decoding, which has perfect channel state
information (PCSI).

For the adaptive GDFE method from [Choi et al., 2005], either Nt or 32 pilot sym-
bols were used in the initialization phase. Its forgetting factor λ was fixed as 0.95. For
all clustering algorithms, the optimal number of neighbors was determined experi-
mentally as K = 14, and the scaling of the temporal axis was fixed as tn = 5 · fdT · n
with n = 1, . . . , 256. Once the clusters were retrieved, the original symbols were
decoded using Nt pilot symbols, placed in the middle of the frame.

8.8.2 BPSK systems with spatial multiplexing

In a first setup, a 2× 2 system with a Doppler frequency of fdT = 0.005 was consid-
ered. Fig. 8.5 shows the bit error (BER) rates for the compared algorithms. As can be
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Figure 8.5: Performance comparison of different algorithms for a 2× 2 BPSK system
with fdT = 0.005. The indications 2P and 32P stand for the number of pilot symbols
used. As a lower bound for the blind algorithms, a BER curve for optimum maximum
likelihood (ML) decoder is included, which has perfect knowledge of the channel
state (PCSI).

observed, the algorithm from [Van Vaerenbergh et al., 2007a] (third curve) performs
poorly for high noise levels, but reaches the same performance as the GDFE for low
noise situations. Notice that the clustering algorithm only uses 2 pilot symbols (2P),
while the GDFE algorithm uses 32 pilot symbols (32P) in this test. When the Gaussian
kernel is replaced by the connectivity kernel, a dramatic increase in performance is
seen, as shown by the fourth curve. An additional improvement in performance can
be achieved when moreover the final k-means clustering method is replaced by the
described hierarchical clustering method. Notice also that all compared algorithms
have an error floor for higher SNR values. For the spectral clustering algorithms
this is due to situations in which the randomly generated channel threads overlap
and clustering fails. Such cases cannot be avoided even if no noise is present. An
improvement in the clustering algorithm might consist in embedding gradient infor-
mation in the used kernel.

We will now study the performance of these algorithms when one or more pa-
rameters of this basic problem setting are changed. Fig. 8.6 shows the change in
performance due to different normalized Doppler spreads, for the spectral cluster-
ing algorithm using a Gaussian kernel with k-means clustering, and the connectivity
kernel with hierarchical clustering. While there is an obvious decrease in MSE when
the Doppler spread is lowered, notice also that the spectral clustering algorithm with
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Figure 8.6: Comparison of the proposed method using a Gaussian kernel with k-
means eigenvector clustering, and using the connectivity kernel with hierarchical
eigenvector clustering, at different Doppler spreads, for a 2× 2 BPSK system.

the connectivity kernel is much better at decoding the symbols for high normalized
Doppler spreads and low noise ratios (third curve versus first curve). However, it
is also observed that the connectivity kernel is less robust to noise at these higher
Doppler spreads.

In Fig. 8.7 the effect of increasing the number of receive antennas Nt from 2 to
4 is shown. Note that that the performance of the GDFE degrades for lower noise
levels in this case, due to numerical instabilities. This can be avoided for instance by
the method described in [Kekatos et al., 2007].

The performance on a 4× 4 system is shown in Fig. 8.8. Since this system repre-
sents a more complex scenario with MNt = 16 clusters to retrieve, we only present
results for the (lower) normalized Doppler frequency fdT = 0.001. When using only
4 pilot symbols, the GDFE algorithm performs considerably worse than the proposed
spectral clustering methods.

8.8.3 QPSK systems with spatial multiplexing

In the second set of experiments, a QPSK signal was used in different MIMO system
configurations. We only include results for the cases when the number of transmit
antennas was Nt = 2, more specifically for a 2× 2 and a 2× 4 scenario. If 4 transmit
antennas were used, the number of clusters would increase to MNt = 44 = 32 which
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Figure 8.7: Performance comparison of different algorithms for a 2× 4 BPSK system
with fdT = 0.005.

would result in clusters with an average of 256/32 = 8 points. This would be insuf-
ficient to reliably detect clusters, even when exploiting the constellation geometry.

The proposed spectral clustering algorithms were applied as in the previous ex-
periment, with 2 pilot symbol slots. In Fig. 8.9, their results are compared with the
GDFE algorithm, for which first 2 pilot symbol slots were used, and this number of
pilots was then changed to 32 to obtain similar performance.

In Fig. 8.10 the results for a 2× 4 system are displayed, at different normalized
Doppler spreads. For higher Doppler spreads and low noise ratios, these results show
a clear advantage of using hierarchical clustering of the eigenvector data instead of
k-means clustering. Nevertheless, for lower noise ratios it is less robust than when
the k-means clustering is used. In this scenario the GDFE algorithm suffered from
numerical instabilities (similar to those in the 2 × 4 BPSK case) and therefore its
results are left out of this comparison.

8.8.4 MIMO systems with Alamouti coding

We now consider a 2× 2 BPSK system with Alamouti-coded data. Here, the results
of the spectral clustering algorithm were compared with the differential space-time
block code detection (DSTBC) [Gao et al., 2002], which can also be decoded in a
blind fashion (i.e. no channel state information is required). Both algorithms were
used with Nt pilot symbols.
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Figure 8.8: Performance comparison of different algorithms for a 4× 4 BPSK system
with fdT = 0.001.

The results for a 2 × 2 BPSK system are displayed in Fig. 8.11. The proposed
spectral clustering based is able to outperform the DSTBC algorithm only at certain
high SNR levels.

8.8.5 Impulsive noise

As a final example, Fig. 8.12 shows the clustering result on a data set that is con-
taminated by impulsive noise. The noise pdf of this example is p(v) = 0.9p1 + 0.1p2,
where p1 and p2 are zero-mean Gaussian white noise distributions with Eb/N0 =
15dB and Eb/N0 = −15dB, respectively. If the outliers lie between the clusters, us-
ing the connectivity kernel can lead to incorrect clustering, since the outliers can
constitute a path that connects two clusters [Fischer et al., 2003]. In such cases
it would be more convenient to use a Gaussian kernel, whenever the normalized
Doppler spread is acceptable. If the outliers do not lie in between the clusters, the
connectivity kernel-based clustering is usually not disrupted. Fig. 8.12 illustrates
the clustering in presence of impulsive noise. The top plot shows the result when 4
clusters are retrieved, and in the bottom plot 5 clusters are detected. In this last case
the outliers are automatically grouped as a new cluster.
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Figure 8.9: Performance comparison of different algorithms for a 2× 2 QPSK system
with fdT = 0.001.
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Figure 8.10: Comparison of the proposed algorithm with the connectivity kernel and
two types of eigenvector clustering, at different Doppler spreads, for a 2× 4 QPSK
system.
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Figure 8.11: BER curves for a 2× 2 BPSK MIMO system with Alamouti coding.
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Figure 8.12: Clustering with impulsive noise. Top: retrieving 4 clusters. Bottom:
retrieving 5 clusters.
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8.9 Conclusions

We presented a novel clustering algorithm that is capable of decoding fast flat-fading
time-varying M-PSK MIMO channels. This algorithm operates on the received data
to which it adds a temporal dimension, and it exploits constellation geometry to
retrieve symbol threads from it. The only supervised part of the presented clustering
method is the final decoding phase.

The presented clustering algorithm is a spectral clustering method whose differ-
ent steps were analyzed and adjusted to suit this particular problem. Specifically, it
was shown that the connectivity kernel is more appropriate than the Gaussian ker-
nel for this type of data. A number of extensions were also presented, including
a hierarchical clustering procedure to avoid mistakes made by k-means in the final
clustering step, and a method to exploit the additional structure introduced by the
Alamouti code. Although the algorithm can be used for different M-PSK systems, in
practice it is limited to moderate numbers of transmit antennas and BPSK and QPSK
constellations. Simulation results show that the presented algorithm outperforms the
adaptive GDFE method for high Doppler spreads using less pilot symbols.
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Chapter9
Underdetermined Post-Nonlinear

Blind Source Separation

This chapter deals with a blind source separation scenario in which the number of
mixtures is less than the number of sources. In this case, the sources cannot be
recovered by standard blind source separation techniques. Nevertheless, there exist
a number of clustering procedures to estimate the mixture matrix, by relying on the
sparseness of the source signals.

We focus on the post-nonlinear case, in which the linear mixtures undergo an
additional nonlinear transformation. Due to this nonlinearity, standard linear algo-
rithms are not capable of dealing successfully with this problem. We will design a
spectral clustering based technique which is able to estimate the inverse nonlinear
transformations. Once estimated, the problem is reduced to a linear source separa-
tion scenario which can be solved by one of the existing linear techniques.

9.1 Introduction to Blind Source Separation

Blind source separation (BSS) is an important problem in the signal processing area,
with a number of applications in communications, speech processing and biomed-
ical signal processing. In general, the goal of BSS is to recover a number of
source signals from their observed linear or nonlinear mixtures [Comon et al., 1991,
Cardoso, 1998]. Depending on the type of the mixing process, the number of sources,
ns, and the number of available mixtures, m, several scenarios can be distinguished.

9.1.1 Standard problem setting

The most basic scenario of BSS assumes a simple linear model, in which the mea-
surement random vector y ∈ Rm can be described as an instantaneous mixture

y = As + v, (9.1)

where s ∈ Rns is a zero-mean independent random vector representing statistically
independent source, A ∈ Rm×ns is the unknown mixing matrix, and v ∈ Rm is an
independent random vector representing sensor noise.
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The BSS problems that are based on this model can be categorized depending
on the number of mixtures, m, versus the number of sources, ns. Many techniques
have been developed for the case where as many mixtures as unknown sources are
available (m = ns). Most of them stem from the theory of independent component
analysis (ICA) [Comon, 1994, Hyvärinen et al., 2001], a statistical technique whose
goal is to represent a set of random variables as linear functions of statistically in-
dependent components. In the absence of noise, this reduces to the problem of
estimating the “unmixing matrix” W = A−1, which allows to retrieve the estimated
sources as x̂ = Wy = WAs. The unmixing matrix W is found by minimizing the
dependence between the elements of the transformed vector x̂. In order to estimate
this matrix, a suitable dependence measure or contrast function must be defined and
minimized with respect to W.

Most ICA contrast functions can be derived using the maximum likelihood (ML)
principle. By denoting the pdf of each source si as psi

, the pdf of the random source
vector s = [s1, . . . , sns ]

T is given by Ps = ∏ns
i=1 psi

(si) and the pdf of the observations
for a given mixing matrix A is

P(x|A, Ps) = |A|−1Ps(A
−1x), (9.2)

where A−1 is the unmixing matrix that needs to be estimated. Given a set of N
realizations of x, their normalized log-likehood is given by

LN(A, Ps) =
1

N

N

∑
n=1

log P(x[n]|A, Ps), (9.3)

and the ML estimate of the mixing matrix is A = arg maxA(LN(A, Ps)). For this
problem, an impressive amount of algorithms have been proposed in the literature.
We will shortly review some of the most interesting techniques1.

Infomax

The Infomax algorithm [Bell and Sejnowski, 1995] is based on the principle that net-
work entropy maximization, or “infomax”, is equivalent to maximum likelihood esti-
mation. Infomax maximizes the log-likehood function given in Eq. (9.3) with respect
to W = A−1, using a stochastic gradient descent. The original Infomax algorithm is
rather restricted, since it assumes the sources have sub-Gaussian distributions. Fur-
thermore, its convergence is slow due to the use of gradient techniques. Its main
advantage is its simplicity of implementation and very low computational complex-
ity.

JADE

The Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm
[Cardoso and Souloumiac, 1993] is based on higher-order statistics. In particular,

1Notice that these methods only exploit the spatial structure of the mixtures, which is a suitable
approach for mixtures of i.i.d. sources. If the sources have temporal structure, this information can
also be exploited (see for instance [Molgedey and Schuster, 1994]).
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it aims to obtain a cumulant matrix with equal eigenvalues. Cumulant matrices
are four-dimensional extensions of the covariance matrix, using the fourth order
cumulant cum(xi, x j, xk, xl) = E{xix jxkxl} − E{xix j}E{xkxl} − E{xixk}E{x jxl} −
E{xixl}E{x jxk}. The contrast function of JADE consists of a sum of squared cross-
cumulants of the estimated sources, which it minimizes by some efficient algebraic
techniques. Although JADE is very competitive for small-scale problems, its use of
cumulant tensors makes it unsuitable for large-scale applications.

FastICA

The FastICA algorithm [Hyvärinen and Oja, 1997] uses a fast “fixed-point” iterative
scheme to maximize the non-Gaussianity of the estimated sources. Implementations
were proposed that measure the non-Gaussianity either by approximating the kur-
tosis of the estimated sources or by their negentropy, although the latter is more
robust. In order to ensure orthonormality of the optimal unmixing matrix, FastICA
first decorrelates (“whitens”) the mixtures by a PCA-based transformation. The Fast-
ICA algorithm is computationally very efficient, has low-memory requirements, and
it is fairly unrestrictive with respect to the source distributions. Its main disadvantage
is that its performance depends on the choice of a suitable nonlinearity to calculate
the higher-order cumulants.

Kernel ICA

Kernel ICA [Bach and Jordan, 2002] uses a kernel CCA based contrast function to
obtain the unmixing matrix W. For “rich enough” kernels such as the Gaussian ker-
nel, it was shown that the components of the random vector x are independent if
and only if their first canonical correlation in the corresponding RKHS is equal to
zero. Kernel ICA minimizes a KCCA-based contrast function by means of a gradi-
ent approach, making use of the fact that after whitening the mixtures, the optimal
unmixing matrix W is orthonormal. Apart from outperforming the previous three al-
gorithms, Kernel ICA is more robust to outliers and near-Gaussianity of the sources.
However, these performance improvements come at a higher computational cost.

9.1.2 Underdetermined BSS

The previous methods dealt with the standard BSS problem where the number of
mixtures and sources are the same. If more mixtures than sources are available
(m > ns), the redundancy in information can be used to extend existing techniques
in order to achieve additional noise reduction [Joho et al., 2000].

If less mixtures than sources are available (m < ns), a more complex scenario
arises. This so-called underdetermined BSS problem can only be solved if one relies on
a priori information about the sources. Most techniques that tackle this problem are
designed as two-step procedures: In a first step the mixing matrix is estimated, often
based on geometric properties. In a second step the original sources are recovered.
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(a) Scatter plot. (b) Angle histogram.

Figure 9.1: Scatter plot and angle histogram of a linear mixture with 3 sparse
sources, with p = 0.9, and 2 mixtures. In the scatter plot (a), most samples are
aligned with a column of A due to the sparseness of the sources. This is reflected in
the angle histogram (b) that shows three dominant angles.

An extreme case of underdetermined BSS problems occurs when only one mixture
is available. In audio applications, this scenario is known as the single-microphone
source separation problem [Roweis, 2000, Bach and Jordan, 2004]. In the present
application, however, at least two mixtures will be available.

To estimate the mixing matrix, it is often assumed that the problem can be trans-
formed to a domain in which the sources are sparse, meaning that they equal zero
most of the time. For instance, in problems of audio separation it is usual to work in
the time-frequency domain, where overlap of the sources is likely to be much smaller
than in the time domain [Belouchrani and Amin, 1998]. In order to model sources
with different degrees of sparsity we consider the probability density function

psi
(si) = piδ(si) + (1− pi) fsi

(si), i = 1, . . . , n; (9.4)

where pi is the probability that a source si is inactive, δ(·) denotes Dirac’s delta and
fsi
(si) is the pdf of the i-th source when it is active [Luengo et al., 2005]. If pi is high,

the corresponding source will be inactive most of the time.
In the following we will assume that the sources in the BSS problem are sparse,

or that the problem has been transformed into a space where this is the case. When
only the i-th source is active, the output vector can be written as

y = Aisi + v, (9.5)

where Ai is the i-th column of the mixing matrix and si is the active source. Thus,
in the absence of noise this output signal will be aligned with the i-th column of A.
In mixtures with sparse sources, only one or few sources will be active most of the
time. Therefore, a large number of the output samples y will be aligned with one of
the directions represented by each column Ai, as can be seen in Fig. 9.1.

Using this geometrical insight, several algorithms were proposed to separate
sparse sources in an underdetermined problem setting [Bofill and Zibulevsky, 2001,
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(a) Scatter plot. (b) Angle histogram.

Figure 9.2: (a) shows the scatter plot of the mixtures of Fig. 9.1 after each mixture is
transformed nonlinearly and noise is added as in Eq. (9.6). The dominant directions
of the scatter plot are now nonlinear curves. The histogram (b) still shows three,
though less precise peaks, which only provide a linear estimation of the dominant
directions.

Vielva et al., 2001, Lee et al., 1999b, Luengo et al., 2005]. In a first stage, these
methods estimate the mixing matrix A by identifying the main vectors to which
the samples in the scatter plot are aligned. A large number of estimators have
been proposed for this purpose, among them a Parzen windowing-based method
[Erdogmus et al., 2001b], a line spectrum estimation method [Vielva et al., 2002]
and a kernel PCA based technique [Desobry and Févotte, 2006]. Once A is known,
the original source samples are estimated. The most straightforward method to do
this is by using the pseudoinverse of A. Better estimates can be obtained by the
shortest-path (L1-norm) method introduced in [Bofill and Zibulevsky, 2001] or the
MAP estimator described in [Vielva et al., 2001].

9.1.3 Post-nonlinear BSS

A considerable amount of research has also been done on the so-called post-nonlinear
BSS problem (PNL BSS), in which the sources are first mixed linearly and then trans-
formed nonlinearly. In this scenario, the m sensors that measure the mixtures show
some kind of saturation effect or another nonlinearity, which results in the extension
of (9.1) to a post-nonlinear mixture model

x = f (As) + v, (9.6)

where f(·) is an m× 1 vector of nonlinear functions and x ∈ Rm is the measurement
random vector.

In this model, each component fi(·) of f(·) affects only one mixture so that there
are no cross-nonlinearities. In the underdetermined case (m < n), the addition of
the post-nonlinear transformations means an additional difficulty for the estimation



144 Underdetermined Post-Nonlinear Blind Source Separation

Figure 9.3: The post-nonlinear mixing model for m = 2 mixtures and n = 3 sources.
The linear mixture model is represented by the large dashed block, in which the
sources are multiplied by mixing factors ai, j and then summed. The smaller dashed
block represents the nonlinearities that operate on each mixture.

of the mixing matrix, as can be seen in Fig. 9.2: the scatter plot now shows curves
instead of straight lines. Therefore, it is not sufficient to apply a clustering technique
on the angle histogram. The corresponding mixing diagram is shown in Fig. 9.3.

For an equal number of mixtures and sources (m = n), some algorithms have
been proposed [Solazzi et al., 2001, Tan and Wang, 2001, Babaie-Zadeh et al., 2002,
Taleb and Jutten, 1999] that treat the PNL problem. However, these algorithms can-
not deal with the more restricted problem of underdetermined PNL BSS. An underde-
termined PNL BSS algorithm was recently proposed in [Theis and Amari, 2004]. It
nevertheless requires the number of active sources at each instant to be lower than
the total number of available mixtures m and assumes noiseless mixtures. The ap-
proach presented in this chapter relaxes these restrictions on the sources and it is
able to work with noisy mixtures.

9.1.4 Proposed approach

The described algorithm aims at estimating the inverse nonlinearities g(·) = f−1(·)
of the underdetermined post-nonlinear blind source separation problem. Estimation
of g(·) allows to recover the linear mixtures y, which can be used to estimate the
original sources s relying on known methods for linear underdetermined BSS.

The algorithm consists of two main steps, as proposed in
[Van Vaerenbergh and Santamaría, 2006]. After some de-noising in a prepro-
cessing stage, we apply a spectral clustering technique that clusters the mixture
samples into different sets corresponding to the different sources. Next, the inverse
nonlinearities are estimated by training a set of multilayer perceptrons (MLP) with
the clustered data by minimizing a specifically designed cost function. Finally, each
mixture is transformed by its corresponding inverse nonlinearity. The resulting linear
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underdetermined BSS problem can be solved using any of the existing methods. The
different steps of this method are described in detail in the next sections.

A related approach for a much simpler BSS scenario was proposed simultaneously
in [Babaie-Zadeh et al., 2006]. It treated the basic linear BSS problem with m = ns

for sparse sources. In a first step, points were clustered into groups by a k-lines
procedure, and in a second step they were fitted to lines representing the columns of
the mixing matrix.

9.2 Clustering PNL BSS Data

In this section we show how spectral clustering can be applied to the problem of
underdetermined post-nonlinear BSS. In particular, after identifying samples that
correspond to time instants on which only one source is active, spectral clustering
can be used to cluster them into groups corresponding to the different sources.

9.2.1 Preprocessing

Some preprocessing steps are taken to facilitate the spectral clustering stage. Specif-
ically, the mixture samples are roughly reduced to those for which only one source
was active at that instant. Apart from guaranteeing the overall efficiency of the algo-
rithm, this reduction also lowers the computational cost.

Central samples are removed because they correspond to inactive sources and
are almost unaffected by the nonlinearity. If pi = p, ∀i, the probability of having
no active sources at all according to the sparse source model (9.4) is pn, so the
ν1 = pnN samples closest to the origin can be removed. In addition, “non-sparse”
samples, which are the result of multiple sources active at the same time, are also
removed. When applying local scaling (see section 7.2.3), points with a higher local
scale will likely correspond to multiple active sources, since the local scale is inversely
proportional to the local density of points. Therefore, the samples that correspond
time instants at which multiple sources are active can be estimated as the ν2 =
[

1− n(1− p)pn−1 − pn
]

N samples with highest local scale. This can also be seen as
a de-noising operation.

If the sources have different pi-values, ν1 and ν2 can easily be calculated accord-
ing to the previous description. In practice rough (over-) estimates can be used for ν1

and ν2. Especially when the pi are unknown, ν1 and ν2 should be chosen so that after
preprocessing the remaining samples can be clustered into non-overlapping clusters.

9.2.2 Identification and clustering limitations

The performance of the clustering algorithm will depend on the distance between
points of different clusters, since the spectral clustering algorithm based on a Gaus-
sian kernel is not capable of retrieving overlapping clusters correctly.

Furthermore, it is assumed that the different sources have double sided distribu-
tions. By applying spectral clustering, it is then possible to distinguish 2ns clusters,
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one for each sidelobe of the ns distributions. Since the nonlinearities are assumed to
be linear for small input values, determining which pair of clusters correspond to the
same source can be done by looking at which clusters have the same slopes close to
the origin. Finally, nS clusters are obtained, corresponding to the ns sources. We will
denote these clusters as Ci, and assume they contain time indices n. A point x[n] is
said to belong to a cluster Ci if n ∈ Ci.

9.3 Estimating the Inverse Nonlinear Functions

The clustering process retrieves ns curve-shaped clusters, where each cluster corre-
spond to one active source. In this section we will discuss two strategies to determine
the m inverse nonlinearities that should be applied on the m components of these
curves to transform them into the straight lines that appear in the linear underdeter-
mined BSS problem.

In [Theis and Amari, 2004], these nonlinearities were estimated by considering
that, after transforming the cluster data with the estimated inverse nonlinearities,
there should be a linear relationship between the same component of the points in
different clusters, which can be calculated by resampling all obtained curves. In the
approach proposed in [Van Vaerenbergh and Santamaría, 2006], we exploited the
fact that there should be a linear relationship between the different components of
the points in same cluster. Both approaches can lead to a reliable estimation of
the inverse nonlinearities, but while the former requires resampling of each clus-
tered curve to identify the corresponding components, the latter allows to operate
directly on the available data. By doing so it avoids the resampling process needed
in [Theis and Amari, 2004] that can be problematic in cases of strong nonlinearities
or in the presence of noise.

9.3.1 Cost function

According to the proposed criterion, there should be a fixed linear relation-
ship between any two components j, k of every point x[n] in a cluster Ci. We
will represent this linear relationship by a slope factor ρi

j,k. Therefore, in
[Van Vaerenbergh and Santamaría, 2006] the following cost function was proposed

min
g,ρ

J =
ns

∑
i=1

m−1

∑
j=1

m

∑
k= j+1

∑
ni∈Ci

(

g j(x j[ni])− ρi
j,kgk(xk[ni])

)2
. (9.7)

Here, x j[n] represents the j-th component of data point x[n], and g j(·) is the nonlin-
ear function that applies to the j-th component. Thanks to the introduction of the
slope factors ρi

j,k, the cost will be zero when the first term, g j

(

x j[ni]
)

, is mapped

exactly onto the second term, ρi
j,kgk

(

xi
k[ni]

)

, i.e., when there exists a linear relation-

ship with slope ρi
j,k between the components j and k of cluster Ci. In order to avoid

the zero-solution, the solutions were restricted by ∑ns
i=1 ∑m

j=1 ∑ni∈Ci
‖g j(x j[ni])‖2 = 1.
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Figure 9.4: The block diagram used for the MLP parameter training for m = 2. The
blocks labeled g1(.) and g2(.) represent the 2 MLPs. The slope estimator is used
to estimate the slope Ki

1,2 of the curve formed by (di
1(t), di

2(t)). To train the upper
MLP, we use as desired signal Ki

1,2di
2(t). In this way the error signal ei

1(t) = di
1(t)−

Ki
1,2di

2(t) measures the deviation from linearity of this curve. The same procedure is
carried out for the lower MLP.

Note that the definition of the cost function uses only the factors ρi
jk for which j < k.

In order to obtain a more symmetric cost function, one could fix the missing factors
as ρi

jk = 1 for j > k. Also notice that terms with j = k are omitted, since they do not
contribute to the cost function.

Since the cost function (9.7) has two parameter sets, i.e., the nonlinearities g j(·)
and the slope factors ρi

j,k, we propose to minimize this cost function in an iterative
manner, updating alternatingly each of the sets.

9.3.2 Estimation using an MLP-based model

In [Van Vaerenbergh and Santamaría, 2006] the inverse nonlinearities g j(.) are mod-
eled as single-input single-output (SISO) multilayer perceptrons (MLPs), with one
hidden layer of r neurons. For an input x, the output of the j-th MLP is obtained as

g j(x) =
r

∑
k=1

w j,2(k)Φ

(

r

∑
l=1

w j,1(l)x + b j,1(l)

)

+ b j,2

= wT
j,2Φ(w j,1x + b j,1) + b j,2, (9.8)

where w j,1, w j,2 ∈ Rr are weight vectors, b j,1 ∈ Rr and b j,2 ∈ R are biases and Φ(.)
is a neuron activation function.
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Parameter training

Fig. 9.4 illustrates the proposed training diagram corresponding to the cost function
(9.7) for the case m = 2. For m > 2 a similar diagram is obtained.

A simple initialization procedure consists in setting the parameters of the MLPs
such that they represent the identity function,

g j (x) = x, ∀ j. (9.9)

By assuming that the nonlinearities are smooth and invertible, this initialization
should allow to find the optimal solutions.

In each iteration of the actual training, the parameters of the MLP are adapted us-
ing a batch gradient approach to minimize (9.7). Similar to [Theis and Amari, 2004],
we also assume that the nonlinearities pass through the origin, i.e., g j(0) = 0.
Therefore the bias of the output layer b j,2 is fixed as b j,2 = −wT

j,2Φ
(

b j,1

)

. In

order to update the slope factors ρi
jk, the histogram-based estimator described in

[Luengo et al., 2005] can be used. Ideally, there should be a linear combination be-
tween components j and k of cluster i, resulting in

ρi
j,k =

x j[ni]

xk[ni]
, ∀ni ∈ Ci. (9.10)

After this training the mixing matrix can be estimated in a straightforward way rely-
ing on the estimated ρi

j,k.
In the future research lines of this thesis, we also propose a KCCA-based technique

that can replace the MLP-based nonlinearity estimation (see section 10.5.1).

9.4 Simulation Results

To illustrate the presented method we performed various experiments. In the first
experiment, we used the mixing model with 3 sources and 2 mixtures from Fig.
9.3. The source distribution fs1(si) was chosen as N(0, 1) and the sparsity factor was
p = 0.9. 5000 samples of these sources were mixed by

A =

[

0.2 0.8 1.0
0.9 0.4 0.1

]

. (9.11)

The obtained data points were transformed by the post-nonlinear functions f1(x) =
tanh(0.5x) and f2(x) = tanh(0.5x) and 20dB of Gaussian white noise was added to
the mixtures. The obtained measurements are the ones displayed in Fig. 9.2.

Self-tuning spectral clustering was applied to these data, with K = 10 neighbors2

and next two MLPs with 9 hidden neurons were trained to estimate the two inverse
2Since the goal of the clustering stage is to retrieve elongated clusters, one could argue that the

connectivity kernel from chapter 8 could be used. However, as the clusters in the present application
are much more dense, the advantage of the connectivity kernel is almost negligible compared to the
Gaussian kernel, in most cases.
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(a) Input data for clustering process. (b) Obtained linearized data.

Figure 9.5: Scatter plots before and after the nonlinearity estimation. (a) shows the
scatter plot after removing central samples and non-sparse samples. Six clusters can
be distinguished, and they are combined to three clusters. (b) shows the output of
the MLPs after training with this data. The estimated inverse nonlinearities (e) and
(f) coincide well with the real inverse nonlinearities (c) and (d) except for scaling.

nonlinearities, with a learning rate of µ = 0.01 and a maximum of 1000 epochs. The
activation function of each neuron was the hyperbolic tangent, and the coefficients
w j,1 and w j,2 were kept strictly positive in order to guarantee invertibility of the
obtained nonlinearity. In Fig. 9.5 the training process is illustrated on the scatter
plot. The estimated inverse nonlinearities, shown in Fig. 9.6, coincide well with the
real inverse nonlinearities, up to a scaling factor which is inherent to this problem.

Next, the slope factors ρi
j,k were used to estimate the mixing matrix

Â =

[

0.99 0.23 0.88
0.12 0.97 0.44

]

. (9.12)

Up to scaling and a permutation inherent to all BSS problems, it represents an ac-
ceptable estimate of the original A. Finally, the source signals s were recovered using
the underdetermined linear BSS algorithm proposed in [Bofill and Zibulevsky, 2001].
In this experiment, the evaluation criterion of the separation is the signal-to-noise
(SNR) ratio3, which compares the quality of the recovered signal with artifacts in the
estimate due to other sources and additive noise. Specifically,

SNR = 10 log10

‖ŝ‖2

‖s− ŝ‖2
, (9.13)

in which the estimate ŝ and the source signal s were normalized for fair comparison.
The obtained SNR values ratios amount 15dB, 11dB and 12dB respectively, compared
with 6dB, 4dB and 4dB when this linear BSS algorithm was applied directly on the
nonlinear mixtures. Although we achieved an improvement over the linear case, the
obtained error is still rather high.

3In this experiment, both the noise level and the separation evaluation criterion are expressed in
SNR. However, from the context it should be clear what value is referred to.
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(a) (b) (c) (d)

Figure 9.6: The estimated inverse nonlinearities (c) and (d) coincide well with the
real inverse nonlinearities (a) and (b), up to a scaling factor inherent to BSS prob-
lems.

In a second experiment we conducted a number of Monte-Carlo simulations for
signals with different sparsity and noise levels. The source signals were generated
according to model (9.6) with a normal distribution fs1(si) of zero mean and variance
10. For each sparsity and SNR level, 20 different mixing matrices were generated
randomly by choosing the amplitudes of the basis vectors uniformly from [0.1, 1] and
the angles uniformly from [−π , π ] with a minimum angle of π/10 between every pair
of basis vectors to avoid cluster overlapping. The number of samples in each case was
2500/(1− ν1 − ν2) in order to restrict the clustering to 2500 samples. After mixing
by A, the mixtures were transformed by the nonlinear functions f j(x) = tanh(x).
Finally Gaussian white noise was added to reach the specified SNR level.

A 2-measurement scenario with 3 mixtures (m = 3, ns = 2) as well as a 3-
measurement scenario with 5 mixtures (m = 5, ns = 3) were simulated. Self-tuning
spectral clustering was applied and m MLPs with r = 15 hidden neurons were trained
to estimate the two inverse nonlinearities, with a learning rate of µ = 0.01 and a
maximum of 1000 epochs. For all the neurons in the hidden layers the hyperbolic
tangent activation function was chosen.

After training, the basis vectors were estimated from ρi
j,k and the

source signals were estimated applying the shortest-path algorithm from
[Bofill and Zibulevsky, 2001]. The results are shown in Fig. 9.7. Since no measures
were taken to reduce the sensor noise, the obtained SNR values are highly dependent
on the noise level. Although in most cases the inverse nonlinearity estimation can
“linearize” the clusters sufficiently well (see for instance Fig. 9.5(b)), only a mod-
est SNR value was obtained even for the noiseless case (SNR = ∞dB). This is due
to the strong nonlinearity and to the fact that the MLPs only represent the inverse
nonlinear functions well for input points that are in the training range. Points that
are outside of it, such as the “non-sparse” samples, are estimated with greater error
and therefore represent the main contribution in the error. Notice also that the SNR
values obtained for the setting of the previous experiment (20dB noise and p = 0.9)
are slightly higher here, which is due to the fact that the results are averaged out
here over a number of random realizations of the mixing process.
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(a) 3 sources, 2 mixtures (b) 5 sources, 3 mixtures

Figure 9.7: Obtained SNR values for two different mixture problems, for different
sparsity and additive noise levels.

9.5 Conclusions

We presented an algorithm based on spectral clustering to solve the post-nonlinear
underdetermined blind source problem. The algorithm consists of two steps: First,
a spectral clustering algorithm is applied to identify the active sources. Second, the
inverse nonlinearities are estimated by a set of coupled MLPs. After these two steps,
the obtained signals represent a “linearized” underdetermined BSS problem, which
can be solved by traditional linear methods.

The presented method requires that the sources are sparse and the nonlinearities
are invertible. As long as the clusters corresponding to the different sources do not
overlap in the scatter plot of the mixtures, there is no restriction on the number of
sources or mixtures. We included simulation results for the case of 3 sources and 2
mixtures, and for the case of 5 sources and 3 mixtures. The proposed method is used
as a preprocessing step that linearizes the problem, after which a traditional linear
method is applied. If the proposed method is omitted, the unmixing performance
degrades significantly.

The publication that has contributed to this chapter is

• S. Van Vaerenbergh and I. Santamaría. “A spectral clustering approach to un-
derdetermined postnonlinear blind source separation of sparse sources”. IEEE
Transactions on Neural Networks, volume 17, no. 3, pages 811–814, 2006.
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Chapter10
Conclusions and Future Directions

Thanks to the advances during the last decade, the field of kernel methods has be-
come an attractive framework for treating a wide range of problems in nonlinear
signal processing. As machine learning techniques, kernel methods are universal
approximators by nature, and their solid mathematical foundation guarantees that
the resulting techniques are convex optimization problems. Additionally, a low com-
putational complexity can be guaranteed by designing online kernel methods or by
applying low-rank approximations to block-based techniques.

In this thesis we have studied the application of kernel methods to a number of
problems in nonlinear signal processing and communications, in particular identifi-
cation and equalization of nonlinear systems and nonlinear blind source separation.
The proposed techniques are related through their foundation in kernel regression,
kernel principal component analysis and kernel canonical correlation analysis. Fur-
thermore, a lot of attention has gone to developing efficient online techniques.

The presented algorithms demonstrate that kernel methods are capable of being
more accurate, more noise-robust, and algorithmically more interesting compared
with traditional methods in nonlinear signal processing. These advantages can be
attributed mostly to the used RKHS framework and to the flexibility of having a
kernel, which allows to engineer kernel methods to fit specific problems.

The main contributions to the state of the art presented in this thesis are

• the introduction of a family of kernel recursive least-squares algorithms that
use a fixed memory size, with application in nonlinear adaptive filtering;

• a kernel canonical correlation based framework for supervised identification
and equalization of Wiener and Hammerstein systems;

• a blind equalization technique for Wiener systems based on oversampling;

• a spectral clustering based algorithm for blind decoding of fast time-varying
MIMO systems.

In the following we summarize the main conclusions of each chapter. In addition,
we list some guidelines for future work based on the methods proposed in this thesis.



156 Conclusions and Future Directions

10.1 Sliding-Window and Fixed-Budget KRLS

The sliding-window kernel RLS and fixed-budget kernel RLS algorithms of chapter 4
are low-complexity online methods that have proven to be of interest in a number
of scenarios. For the identification of steady-state nonlinear systems, fixed-budget
KRLS is capable of obtaining better results than ALD-KRLS given the same memory
requirements. Additionally, both algorithms obtain acceptable results in time-varying
scenarios, while other kernel-based methods such as ALD-KRLS are not capable of
adjusting their solutions adequately to the changing environment. To maintain a
fixed memory size, the sliding-window approach discards the oldest point in every
iteration. The fixed-budget algorithm performs a more active type of learning, in
that it determines the least significant point to prune in each iteration, based on an
a-posteriori error minimization criterion.

Despite the fact that both methods have fairly simple architectures, they show a
few advantages that could allow for some more extensions:

• Their fixed memory size is an attractive property for implementations on mi-
croprocessors, which have limited memory. This property is in stark contrast to
many other methods that learn by building growing networks.

• Since they repeat the same basic operations in every iteration, and no grow-
ing memory needs to be taken into account, the number of computations per
iteration is fixed, and the total complexity is predictable.

Since the sliding-window KRLS algorithm can be considered a special case of the
fixed-budget algorithm, future research in this area will focus on improving the fixed-
budget KRLS algorithm. In the following we list some interesting related future
research topics.

10.1.1 Improving the discard criterion

The pruning criterion used in the original fixed-budget algorithm from chapter 4
aims to minimize the a-posteriori error, as inspired by pruning techniques for LS-SVM
[de Kruif and de Vries, 2003]. It requires the calculation of the inverse kernel matrix,
which supposes an expensive additional computation for most algorithms. However,
KRLS already performs this computation as part of its own recursion, and hence the
additionally required computational complexity is linear. Furthermore, although this
criterion is closely related to optimal brain surgeon [Hassibi et al., 1993], their exact
relationship remains to be studied.

More sophisticated discarding criteria can be designed by determining how well
each point of the memory can be explained by the remaining points, in a “leave-
one-out” strategy, which consists of the following steps. Denote by Dm the subset
of the memory that contains all points from the memory except for the one with
index m. For each possible data set Dm, the goal of the leave-one-out criterion is
to determine how much information the point-pair (xm, ym) could contribute to Dm.
Different measures of information can be applied here, such as the ALD criterion,
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which only takes into account the input data xi, or the surprise information measure
as proposed in [Liu et al., 2010], which takes into account input data and labels.
However, an effort needs to be made to maintain the computational complexity of
these approaches low, as a naive implementation would yield O(M3) per iteration,
where M is the number of points in memory.

10.1.2 Extensions to other kernel adaptive filtering techniques

The idea of pruning the data dictionary can be applied to other kernel-based adap-
tive filtering techniques, including extended KRLS [Liu and Príncipe, 2008]), ker-
nel affine projections algorithms (KAPA) [Pokharel et al., 2008] and the kernel least
mean squares (KLMS) algorithm [Liu et al., 2008]. Since EX-KRLS and KAPA are
related to KRLS, they can use a similar pruning criterion as FB-KRLS, based on pa-
rameters that are already calculated in each iteration. In KLMS, on the other hand,
no such parameters are available, and it would be desirable to maintain the overall
linear complexity of the algorithm. Therefore, a straightforward pruning criterion
for KLMS could only be based on the expansion coefficients of the kernel expansion,
which are proportional to the corresponding error. The usefulness of such criteria
remains to be studied.

10.1.3 Kalman filtering

Although the sliding-window and fixed-budget KRLS algorithms represent interesting
techniques to perform efficient identification of static and time-varying nonlinear
processes, a more elegant approach to perform nonlinear tracking would be to design
a recursive state system in RKHS. While there have been some efforts in that direction
(see for instance [Liu and Príncipe, 2008]), the design of a Kalman filter in feature
space is still an open research topic.

10.2 Kernel CCA for Supervised Identification of

Wiener and Hammerstein Systems

In chapter 5 we proposed a framework based on kernel CCA for identification of non-
linear Wiener and Hammerstein systems. We also provided an extension that allows
to perform equalization of these systems. The presented algorithms included adap-
tive versions that allow to plug in any kernel-based implementation of the recursive
least-squares algorithm. The only requirement of the chosen identification approach
is that the second block in the diagram is invertible (in case of Wiener systems, the
nonlinear part, and in case of Hammerstein systems, the linear filter). Fortunately,
a lot of widely used models fulfill this restriction, such as Wiener systems whose
nonlinearity is a weak saturation. We included simulations to demonstrate the per-
formance of the proposed algorithms, and to show their higher robustness to noise
compared with other algorithms.
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Many directions for future research are open. The proposed methods can be
used directly in problems with complex signals, for instance in the identification of
nonlinear power amplifiers for OFDM systems [Santamaría et al., 2003]. Another
possibility to explore is the application of kernel CCA to larger cascade models such
as the three-block Wiener-Hammerstein systems. Also, by combining the ideas from
this chapter and the techniques presented in chapter 6, a more accurate supervised
identification algorithm for Hammerstein systems can be designed. In the following
we present some preliminary results of this new algorithm, which we briefly explored
during the preparation of this thesis.

10.2.1 Supervised identification of Hammerstein systems

An interesting property of many kernel-based algorithms is that once the kernel func-
tions are calculated, all subsequent operations and optimizations are linear. This
property is particularly interesting in problems where one needs to model a system
that concatenates a nonlinear operation with one or several linear operations, such
as the Hammerstein system. Consequently, a simple yet very accurate supervised
identification method for Hammerstein systems can be constructed, based on kernel
least-squares regression. Although a different supervised identification method for
Hammerstein systems can be obtained as a specific configuration of the kernel CCA
framework proposed in chapter 5 (see section 5.2.3), this method has the advantage
that it imposes no restrictions on the system nor on the input data, and therefore
it should perform better for the particular problem of supervised Hammerstein sys-
tem identification. In this section we will briefly lay out the basic ideas behind this
approach.

Consider the following kernel expansion with N basis vectors xi

ŷ[n] =
N

∑
i=1

αiκ(xi , x[n]) = αTkx[n], . (10.1)

By extending this nonlinear mapping with a convolution, one obtains a model that
corresponds to the Hammerstein system

z[n] = h ∗ ŷ[n] =
N

∑
i=1

L−1

∑
j=0

h jαiκ(xi, x[n− j]), (10.2)

as illustrated in Fig. 10.1. In order to estimate the coefficients αi and h j, we propose
to minimize the MSE between the system output z[n] and the desired signal d[n]

min
α,h

J =
1

N

N

∑
n=1

|z[n]− d[n]|2

=
1

N

N

∑
n=1

∣

∣

∣

∣

∣

N

∑
i=1

L−1

∑
j=0

h jαiκ(xi, x[n− j])− d[n]

∣

∣

∣

∣

∣

2

, (10.3)
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H(z)
y[n]

f(·)x[n] d[n]

h
kx[n]

ακx[n]
ŷ[n]

z[n]

Figure 10.1: The block-diagram of a Hammerstein system (top) and the correspond-
ing proposed identification scheme (bottom). The identification scheme contains a
kernel expansion, consisting of the kernel transformation labeled κ and the expan-
sion with coefficients αi, followed by a FIR filter with impulse response h. Black
arrows indicate scalar variables, while the white arrow indicates that the output of
the kernel transformation is a vector. The advantage of this scheme is that only the
linear blocks α and h need to be identified, while the kernel transformation guaran-
tees that the real nonlinearity f (·) can be approximated as a kernel expansion up to
any accuracy.

which is a function of two parameters, α and h. Inspired by the technique presented
in chapter 6, this cost function can be minimized in a cyclic manner, by alternat-
ingly fixing one of the parameters, and minimizing w.r.t. to the other. The procedure
obtained in this way is an alternating kernel least-squares (AKLS) method, whose
convergence is guaranteed since each step either maintains or lowers the cost. In
most cases, local minima can be avoided by a smart initialization procedure. 5 In
order to alleviate the computational burden of this algorithm, the dimensionality of
the transformed data points can be reduced by applying centered kernel PCA be-
fore starting the iterative procedure, and maintaining only the M most significant
components.

We implemented a preliminary version of this algorithm in
[Van Vaerenbergh and Santamaría, 2010], which makes use of the ICD-based
centered kernel PCA implementation from appendix B, and we conducted two
simple experiments to demonstrate its usefulness. In a first test, the algorithm was
applied to a Hammerstein system composed of the nonlinearity f (·) = tanh(·)
followed by a 20-taps FIR filter with a randomly generated impulse response. For the
input signal, 500 points were taken from N(0, 1) and 20dB white Gaussian noise was
added to the system’s output. The proposed algorithm was applied using a Gaussian
kernel function with σ = 0.5. The fraction of the signal energy discarded by the
kernel PCA procedure in the initialization was fixed as 10−14, which resulted in
discarding all but m = 11 eigenvectors. The obtained estimates for the nonlinearity
and linear filter are shown in Fig. 10.2. Overall, the algorithm yielded a MSE of
−14.5dB on the noisy data.

In a second experiment we applied this identification technique to practical
data from human muscle stretch reflex dynamics. A description of how the input
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Figure 10.2: Identification results on the Hammerstein system. (a) shows the input
signal x[n] vs. the real internal signal y[n], and x[n] vs. the estimated ŷ[n]. (b) shows
the estimated channel coefficients of h vs. the real coefficients.

and output data was collected for system identification problem can be found in
[Westwick and Kearney, 2000]. 10000 data points were used for this experiment. Al-
though the linear filter in Hammerstein system identification is generally modeled as
an IIR filter, we approximated this by a FIR filter of length 40 in a first implemen-
tation. Based on the vast literature available on linear filtering, extensions of this
method that use IIR filters are straightforward.

First we applied kernel PCA using a Gaussian kernel with σ = 0.01. By fixing the
discarded energy fraction to be 10−14, kernel PCA maintained 257 eigenvectors. The
iterative procedure was initialized by exploiting the Kronecker-like structure of the
combined solution vector (see section 6.3). In Fig. 10.3, the normalized mean square
error (NMSE) learning curve is displayed, which reaches a final NMSE of 9.05 · 10−7,
but already converged sufficiently after around 10 iterations. In terms of the num-
ber of iterations, this algorithm converges rather fast, compared with conventional
methods which typically need several thousands of iterations to converge to obtain
the same error. Given these positive preliminary results, we plan to investigate the
different aspects of this method in future work.

10.3 Blind Equalization of Wiener Systems

The blind equalization technique from chapter 6 is based directly on the ideas intro-
duced in chapter 5, where a kernel-based algorithm was matched to the structure of
the studied system. In order to achieve a blind algorithm, we extended the blind LS
equalization technique from [Xu et al., 1995] to nonlinear scenarios, and we showed
how oversampling also allows to perform blind equalization of a certain class non-
linear systems. Specifically, the presented technique is capable of blindly equalizing
oversampled Wiener systems or SIMO systems whose input-output relations can be
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Figure 10.3: NMSE of the proposed method on the stretch reflex data set.

modeled as Wiener systems. Some other blind techniques have been proposed that
require more than one output channel, with application in blind Volterra systems
equalization. However, these techniques require at least 3 output channels, while the
proposed method is capable of operating correctly when only 2 outputs are available.

In the following, we will briefly discuss several new algorithms based on the ideas
presented in chapter 6.

10.3.1 Blind equalization of SISO Wiener systems

In [Taleb et al., 2001], a method is presented for blind equalization of Wiener sys-
tems. This method aims to invert a Wiener system by estimating a Hammerstein
system that is composed of the inverse blocks of the original system. In order to
estimate this inverse system, it minimizes the mutual information of the entire struc-
ture’s output signal. To represent the nonlinearity, the authors chose to use a kernel
expansion. The results obtained in chapter 6 suggest that some of the introduced
ideas could improve the performance of this algorithm. Among others, the applica-
tion of kernel PCA in a first stage could improve the noise-robustness and reduce the
overall computational complexity.

The blind identification of Wiener systems remains an active research topic, as
shown by the number of recent publications on this topic (see for instance the
maximum-likelihood approach from [Vanbeylen et al., 2009]).

10.3.2 Post-nonlinear blind source separation

The mixture model of the main problem presented in chapter 6 is known as a post-
nonlinear (PNL) mixture. In general, the post-nonlinear model is a well known mix-
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ture model in the field of blind source separation (BSS), that consists of a linear mix-
ture followed by a componentwise nonlinear transformation. It is frequently used
as a simplified nonlinear model, and it has the advantage that in some cases the
nonlinearity can be inverted. This idea is also exploited in chapter 9.

In the proposed blind equalization method for Wiener systems from chapter 6, a
specific post-nonlinear mixture model is used, in which only one source is present
and the linear mixtures include convolutions. However, the ideas used to design this
method could be exploited to solve other BSS problems, such as the more standard
PNL-BSS scenario in which multiple sources are present and the linear mixing process
is instantaneous.

10.4 Blind Decoding of Time-Varying MIMO Systems

In chapter 8 we treated the problem of blind decoding of fast time-varying MIMO
channels, which is a complex problem in the area of communications. Since typical
signals consist of symbols that belong to a finite alphabet here, we proposed a cluster-
ing approach to decode received data received in these MIMO systems. The proposed
technique extends the scatter plot with a temporal dimension, and then applies spec-
tral clustering to retrieve threads that correspond to the different data symbols. It
also exploits the symmetry of the M-PSK constellation in different ways to improve
robustness. In a second contribution, we optimized the kernel function used by the
clustering method so that it favors thread-like structures. We also presented an exten-
sion for Alamouti-coded signals, and discussed a hierarchical-clustering procedure to
replace the k-means clustering of the eigenvector data in the spectral clustering prob-
lem. This modification allows to take into account the temporal information again,
which leads to higher robustness in a number of situations.

At high normalized Doppler frequencies, the proposed algorithm outperforms
other adaptive techniques using less pilot symbols, thus allowing more information
to be sent. However, it requires the calculation of the eigenvectors of its kernel ma-
trix, which generally requires O(N3) operations. In most cases this can be lowered
to O(N2) using any of the techniques for efficient implementation described in sec-
tion 7.2.2, which, nevertheless, is still prohibitive in most real-time applications. This
analysis suggests that the proposed spectral clustering based technique could be used
as an initialization for an adaptive algorithm. Specifically, given only a few pilot sym-
bol slots it can estimate a short symbol vector sequence which can be used as a pilot
sequence for a (computationally more efficient) decision-based adaptive algorithm.

The problem addressed in chapter 8 applies spectral clustering to data that belong
to a certain geometric model. As mentioned a few times in this thesis, an important
guideline for kernel design in spectral clustering and kernel methods in general is
that the kernel should reflect as much knowledge about the problem as possible. In
that sense, the kernel represents the prior information about the addressed problem.
While the connectivity kernel used in this chapter represents a fairly simple model,
more complex parametric kernels can be designed for related problems. In the fol-
lowing we mention a few possible extensions to the presented method.
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10.4.1 Incorporating gradient information in clustering

A first direction for future work based on chapter 8 consists of the inclusion of gra-
dient information in the connectivity kernel, which determines the local gradient of
the curve-shaped cluster for each point. Equipped with this information, the kernel
should assign a high similarity only to close points that show a similar gradient.

First of all, this is very likely to increase the robustness of spectral clustering for
thread-like clusters, since the gradient information will favor the detection of smooth
curves. Second, this would also increase the possibilities of spectral clustering to
detect overlapping clusters, such as two crossing threads. On the other hand, the
computation of the gradient in a path-based kernel means a significant increase in
computational complexity. Moreover, it is likely to introduce an additional smooth-
ness parameter, which needs to be determined for each application, in addition to
the other kernel parameters.

An interesting application of a gradient-based spectral clustering would be the
problem of K-curves clustering, in which a number of points have to be grouped into
K smooth curves.

10.4.2 Multi-target clustering

The blind MIMO decoding problem with fast time-varying channels considered that
at each time instant there was only one observation that belonged only to one source.
A different problem is obtained when at each time instant there is one observation
for every source. The proposed clustering method based on the connectivity kernel
only requires a minimal change to operate on such data: in the calculation of the
connectivity kernel, we only have to exclude paths between points that occur at the
same time instant. Such a situation can be encountered for instance in the problem
of multi-target clustering, which is traditionally solved by adaptive methods such as
Kalman filtering or particle filtering.

10.5 Underdetermined Post-Nonlinear Blind Source

Separation

In chapter 9 we proposed a clustering method to treat the post-nonlinear BSS sce-
nario in which fewer mixtures than sources are available. By exploiting the sparse-
ness of the source signals, the proposed spectral clustering method detects samples
that correspond to time instants on which only one source is active. With the ob-
tained information, it is capable of compensating for the nonlinearities that operate
on each mixture. For this purpose, we proposed an iterative estimator based on a
coupled training of different MLPs. Once the nonlinearities are estimated, a linear
underdetermined source separation problem is obtained, for which any linear tech-
nique can be applied.

While the technique from chapter 9 was chronologically the first contribution to
this thesis, a future research topic could consist in improving it by applying the tech-
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niques presented in the rest of this thesis. Specifically, the MLP-based estimation of
the nonlinearities could be replaced by a method based on kernel regression. Be-
low we summarize the main ideas of this approach, which yields a kernel canonical
correlation based estimation.

10.5.1 Estimation of the nonlinearities using kernel CCA

In chapter 9, each nonlinearity g j(·) was represented by an MLP, whose parameters
needed to be estimated through back-propagation. The framework of kernel meth-
ods allows for a more elegant estimation of these nonlinearities. To this end, the
nonlinearities g j(·) are first represented as kernel expansions

g j(x) = ∑
i

α
j
iκ(xi, x), (10.4)

where xi are some one-dimensional support points. Specifically, this support can be
chosen as the set containing the j-th component of all points x[n] of all clusters, for
n = 1, . . . , N.

By plugging this representation of the nonlinearities into the cost function (9.7)
and adopting a matrix notation, an algebraically more interesting formulation of the
minimization problem can be obtained. Denote by xi

j the vector containing the j-th
component of all points in cluster Ci. By transforming this vector into feature space,
we obtain the data matrix X̃i

j. The kernel matrix between component j of cluster

i1 and cluster i2 can now be written as Ki1 ,i2
j = X̃i1

j (X̃
i2
j )

T. A large kernel matrix
containing the contribution of the j-th component of every mixture point x[n] is then
obtained as

K j =









K1,1
j . . . K1,ns

j
...

. . .
...

Kns,1
j . . . Kns,ns

j









=







X̃1
j (X̃

1
j )

T . . . X̃1
j (X̃

ns
j )

T

...
. . .

...
X̃ns

j (X̃
1
j )

T . . . X̃ns
j (X̃

ns
j )

T






. (10.5)

This allows to rewrite (9.7) as the minimization problem

min
α,P

J =
m

∑
j=1

m

∑
k=1

∥

∥K jα j − P jkKkαk

∥

∥

2 (10.6)

s.t.
m

∑
j=1

∥

∥K jα j

∥

∥

2
= 1,

whereα j contains all elementsα j
i and P jk is a diagonal matrix containing the scaling

factors between the components j and k of each cluster

P jk =













P1
jk 0 0 0

0 P2
jk 0 0

0 0
. . . 0

0 0 0 Pns
jk













. (10.7)
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Here, each matrix Pi
jk is a diagonal matrix containing only instances of the element

ρi
jk on its diagonal1.

Given an estimate of each slope factor ρi
jk, the minimization problem (10.6) can

be rewritten as the following kernel CCA problem (see appendix D)

1

ns







P1,1K1 . . . P1,nsKns
...

. . .
...

Pns,1K1 . . . Pns,nsKns













α1
...

αns






= λ







K1 . . . 0
...

. . .
...

0 . . . Kns













α1
...

αns






, (10.8)

or, in short,
Rα = λDα (10.9)

On the other hand, given an estimate ofα j, the CCA problem can be solved for ρi
jk

by minimizing the cost function (10.8) with respect to ρi
jk, which yields a simple LS

problem. In this manner a cyclic minimization process can be designed that switches
between optimizing the nonlinearities and the scaling factor, until convergence is
reached, similar to the technique introduced in chapter 6.

1Remind that ρi
jk = 1 for j ≥ k.
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AppendixA
Data Centering in Feature Space

A number of techniques, such as kernel PCA, require the data to be centered in
feature space. While the explicit computation of the centered data in feature space
represents a very complex problem for most kernels, it is fairly easy to calculate the
kernel matrix of the centered data.

In this appendix, we first derive the most general case of data centering: A kernel
matrix is to be calculated between two data sets, A and B, that are centered in
feature space with respect to, respectively, data sets C and D; from A we remove
the mean of C, and from B we remove the mean of D. Once the formula of this
general case is obtained, more practical cases are derived from it, where some of
these defined data sets coincide.

We denote the first data set as A, its number of points data as NA, and the data
points themselves as xAi , i = 1, 2, . . . , NA, which after transformation to feature space
become x̃i

A. Similar notation is used for data sets B, C and D. The elements of the
kernel matrix KAB between data sets A and B are denoted as kABi j = κ(xAi , xBj ) =

(x̃Ai )
T x̃Bj .

When data sets A and B are centered in feature space respectively w.r.t. data sets
C and D, the elements of the resulting centered kernel matrix are obtained as

kAB,CD
i j =

(

x̃Ai −
1

NC

NC

∑
k=1

x̃Ck

)T (

x̃Bj −
1

ND

ND

∑
k=1

x̃Dk

)

= (x̃Ai )T x̃Bj −
1

ND

ND

∑
k=1

(x̃Ai )T x̃Dk −
1

NC

NC

∑
k=1

(x̃Ck )
T x̃Bj

+
1

NCND

(

NC

∑
k=1

x̃Ck

)T (ND

∑
k=1

x̃Dk

)

.

Denoting the all-ones matrix of size NA by NB as 1AB, we obtain the centered kernel
matrix as

KAB,CD = KAB − 1

NC
1ACKCB − 1

ND
KAD1DB +

1

NCND
1ACKCD1DB . (A.1)
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In case the data sets C and D coincide, the centered kernel matrix is found as

KAB,C = KAB − 1

NC
1ACKCB − 1

NC
KAC1CB +

1

N2
C

1ACKCC1CB . (A.2)

When the data sets B, C and D coincide, the centered kernel matrix is found as

KAB,B =

(

KAB − 1AB

NB
KBB

)(

I− 1BB

NB

)

, (A.3)

where I is the unit matrix. In case all data sets coincide, A = B = C = D, the
previous equation takes the form

KAA,A =

(

I− 1AA

NA

)

KAA
(

I− 1AA

NA

)

, (A.4)

as introduced for instance in [Schölkopf et al., 1998].
In practical cases, centering is mostly performed using (A.4), where we wish to

obtain the kernel matrix for only one data set and remove its mean in feature space.
For feature extraction, it is often necessary to compute the images of test patterns that
are centered with respect to a given data set. This case corresponds to the centering
formula obtained in (A.3). The remaining formulas, (A.2) and (A.1), represent cases
that can occur in applications such as pre-imaging [Kwok and Tsang, 2004].



AppendixB
Incomplete Cholesky Decomposition

for Kernel Matrix Computation

B.1 Incomplete Cholesky Decomposition

In this appendix we review a common technique to obtain a low-rank approximation
of Gram matrices. For this purpose, we employ the incomplete Cholesky decompo-
sition (ICD), as introduced in [Fine and Scheinberg, 2001, Bach and Jordan, 2002],
which allows to approximate the entire Gram matrix in O(M2N) operations, where
N is the number of data points and M is the rank of the approximated matrix.

Any N × N symmetric positive definite matrix K can be expressed as K = GGT,
where G is an N × N lower triangular matrix with positive diagonal entries. This
decomposition is known as the Cholesky decomposition, which is a special case of LU
decomposition for symmetric positive definite matrices [Golub and Van Loan, 1996].
The goal of incomplete Cholesky decomposition, however, is to find a matrix Ḡ of size
N×M, for small M, such that the difference K− ḠḠT becomes arbitrarily small. In
practice, this approximation becomes possible when the eigenspectrum of K decays
quickly.

In order to avoid the O(N2) operations required to calculate the kernel matrix
K itself, Ḡ must be computed without accessing all elements of K. At each step i,
incomplete Cholesky decomposition achieves this by constructing the matrix Ḡi out
of the columns of K for which the diagonal elements (the “pivots”) of the residual
K− ḠiḠ

T
i are above a certain threshold. As a result, the only elements of K that are

needed in memory are the diagonal elements. Most other elements are never used
and those that are needed can be calculated as simple kernel evaluations on the input
data.

The value of M can either be fixed or determined by requiring a certain approxi-
mation accuracy ‖K− ḠḠT‖ < ǫ, where ǫ is a small positive number. Algorithm B.1
presents the entire pivot-based algorithm to obtain incomplete Cholesky decomposi-
tion, for a given accuracy threshold ǫ, including a speedup procedure introduced by
Seth et al. in [Seth and Príncipe, 2009]. This algorithm uses the notation Ḡa:b,c:d and
Ḡ:,i to refer to the matrix extracted from Ḡ by taking the rows a to b and columns c
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Algorithm B.1 Incomplete Cholesky Decomposition
initialize

Permutation vector: p = [1, 2, . . . , N].
Diagonal of the residual matrix: d = diag(K).
First column of Ḡ: Ḡ:,1 = K:,1.
i = 1.

while ∑N
j=i d j > ǫ do

if i > 1 then
Update the residual diagonal: di:n = diag(Ki:N,i:N)− Ḡi:N,1:i−1ḠT

i:N,1:i−11.
end if
Find the new best element: j∗ = argmaxi≤ j≤Nd j.
Update the permutation: pi ↔ p j∗.
Permute rows i and j∗: Ḡi,1:i−1 ↔ Ḡ j∗ ,1:i−1.

Update the diagonal: Ḡi,i =
√

d j∗, j∗.

Calculate the i-th column: Ḡi+1:N,i =
1

Ḡi,i
(Kpi+1:N,pi

− Ḡi+1:N,1:i−1ḠT
i,1:i−1).

i ← i + 1.
end while

Sort the rows of Ḡ according to p: Ḡ← Ḡp,:.
Output Ḡ and M = i− 1.

to d, and by taking the i-th column, respectively, and 1 denotes the all-ones vector of
adequate length.

B.2 Low-rank Approximation of the Centered Kernel

Matrix

The centered kernel matrix of a data set can be approximated easily after the in-
complete Cholesky decomposition ḠḠT has been obtained. Specifically, the centered
low-rank approximation of the kernel matrix is found as

(ḠḠT)centered = (I− 1/N)ḠḠT(I− 1/N) (B.1)

= (Ḡ− 1Ḡ)(Ḡ− 1Ḡ)T (B.2)

= ḠcḠT
c . (B.3)

Not surprisingly, the approximate kernel matrix ḠḠT can be centered in feature
space by simply removing the column means from Ḡ. For more specific centering
schemes, such as the ones presented in appendix A that involve different data sets,
the centered low-rank kernel matrix can be obtained in a straightforward fashion
based on the approximation for the asymmetric kernel matrix between different data
sets, as discussed in [Seth and Príncipe, 2009].
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B.3 Approximate Kernel PCA based on ICD

The described low-rank approximation technique is closely related to kernel PCA. In
particular, ICD determines an M-dimensional subspace of the feature space, spanned
by the columns of Ḡ, by considering only the most significant pivots. Although the
columns of Ḡ constitute a basis of this subspace, in general they are not orthogonal.
Orthogonality (and more specifically, orthonormality) can be obtained by solving the
following M×M eigenvalue problem

1

N
ḠTḠv = λv, (B.4)

and using the coefficients of the resulting eigenvectors v as weights to combine the
columns of Ḡ into different basis vectors. Although this subspace is not obtained by
the least-squares criterion necessary for PCA, in practice it is very close to the optimal
PCA subspace and it only differs in the least significant dimension. Therefore, this
procedure allows to construct a fast approximation of kernel PCA, especially useful in
problems with large data sets, since it does not require to calculate the entire kernel
matrix. It also allows to calculate the centered kernel PCA decomposition, by simply
removing the column means from the obtained basis vectors (as in section B.2).
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AppendixC
Matrix Inversion Formulas

In this appendix we present formulas to obtain the inverse of a matrix from which
certain rows and columns are removed or to which rows and columns are added.
Given the original matrix and its inverse, the matrix inversion lemma is applied to
obtain efficient formulas that avoid inversion of the entire matrix. The overall com-
putational complexity of each formula is O(M2), where M is the number of rows and
columns of the original matrix.

The matrix inversion lemma states the following: Let A and B be two positive-
definite matrices of size M×M that satisfy

A = B−1 + CD−1CT , (C.1)

where D is a positive-definite L× L matrix and C is an L×M matrix. The inverse of
matrix A can be expressed as

A−1 = B− BC
(

D + CTBC
)−1

CTB. (C.2)

C.1 The Inverse of an Upsized Matrix

By upsizing a matrix we refer to adding one row and one column to it. In case a row
and column are added at the end, we obtain the following formulas. Specifically, the
matrix A shown below is upsized to the matrix K. Given the inverse matrix A−1 and
the upsized matrix K, the inverse matrix K−1 can be obtained as follows:

K =

[

A b

bT d

]

, K−1 =

[

E f

fT g

]

⇒







AE + bfT = I
Af+ bg = 0

bTf+ dg = 1

⇒ K−1 =

[

A−1(I + bbTA−1Hg) −A−1bg

−(A−1b)Tg g

]

, (C.3)

with g = (d− bTA−1b)−1.
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C.2 The Inverse of a Downsized Matrix

By downsizing a matrix K, we denote the operation of removing a row and column of
the matrix. We start with the basic case of removing the first row and column.

C.2.1 Removing the first row and column

When the first row and column of matrix K are removed, the matrix D is obtained.
The inverse matrix D−1 can be expressed in terms of the known elements of K−1 as
follows:

K =

[

a bT

b D

]

, K−1 =

[

e fT

f G

]

⇒
{

be + Df = 0

bfT + DG = I

⇒ D−1 = G− ffT/e. (C.4)

C.2.2 Removing an arbitrary row and column

The procedure that removes an arbitrary row and column is similar to operation
needed to remove the first row and column. Given a matrix L and its inverse L−1,
we remove the i-th row and column of L and would like to obtain the inverse of this
matrix only in terms of L and L−1.

First of all, notice that it is possible to swap the i-th row and column of L with
its first row and column by pre- and post-multiplying it with the following symmetric
permutation matrix Pi of size M

Pi =









0 0 1 0
0 Ii−2 0 0
1 0 0 0
0 0 0 IM−i









, (C.5)

where I j is the unit matrix of size j and 0 is the all-zeroes matrix of adequate dimen-
sions. This matrix is obtained by swapping the i-th and the first row and column of
the unit matrix I. It has the important property that it is equal to its inverse P−1

i = Pi.
A related matrix also needed for this inversion procedure is

Qi =





0 Ii−1 0
1 0 0
0 0 IM−i



 , (C.6)

which is orthogonal, since QiQ
T
i = I. Pre- and post-multiplying a matrix by Qi puts

its i-th row and column in front of all others.
The entire procedure to obtain the inverse can be found in Alg. C.1. This pro-

cedure can be explained as follows. First of all, the first row and column of K cor-
respond to the i-th row and column of the original matrix L. Second, all but one
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Algorithm C.1 Procedure to obtain the inverse of a matrix whose i-th row and col-
umn are removed

Compute K = PiLPi and K−1 = PiL
−1Pi, with Pi from (C.5).

Remove the first row and column of K to obtain D.
Calculate the inverse D−1 by applying (C.4).
Obtain QiD

−1Qi, with Qi from (C.6).

of the elements of the original row and column are found as the i − 1-th row and
column of D. In the final step this row and column are restored as the first row and
column by placing them in front of the other rows and columns. Finally, notice that
all multiplications with Pi and Qi can be performed by simple row- and column-swap
operations. In practice, Pi and Qi never have to be calculated nor stored.
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AppendixD
Canonical Correlation Analysis

D.1 Canonical Correlation Analysis for Two Data Sets

Consider two random zero-mean variables x1 and x2 that are multi-dimensional.
Canonical correlation analysis (CCA) is the problem of finding basis vectors for these
variables such that the correlation between the projections of the variables onto these
basis vectors are mutually maximized [Hotelling, 1936, Hardoon et al., 2003]. Con-
trary to standard correlation analysis, which is dependent on the coordinate system in
which the variables are described, CCA seeks a pair of optimal linear transformations
for each of the sets of variables, such that the transformed variables are maximally
correlated. Here, we will follow the analysis from [Hardoon et al., 2003].

Denote by h1 ∈ Rn1 and h2 ∈ Rn2 the respective projection vectors, and by y1 =
xT

1 h1 and y2 = xT
2 h2 the obtained transformed one-dimensional variables. Notice

that the dimensionality of x1 ∈ Rn1 and x2 ∈ Rn2 does not need to be the same.
Assume we are given N observations of each of the variables, x1[1], . . . , x1[N] and
x2[1], . . . , x2[N], which can be stacked row-wise in order to obtain the corresponding
data matrices X1 ∈ RN×n1 and X2 ∈ RN×n2. The obtained projections are combined
in a similar fashion into data vectors y1 = X1h1 and y2 = X2h2.

With this notation, the function to be maximized is

ρ = max
h1,h2

hT
1 XT

1 X2h2
√

hT
1 XT

1 X1h1hT
2 XT

2 X2h2

= max
h1,h2

hT
1 R12h2

√

hT
1 R11h1hT

2 R22h2

, (D.1)

where we have introduced the covariance matrices Ri j = XT
i X j, with i, j = 1, 2.

Notice that (D.1) is not affected by scaling h1 or h2, since

ahT
1 R12h2

√

a2hT
1 R11h1hT

2 R22h2

=
hT

1 R12h2
√

hT
1 R11h1hT

2 R22h2

. (D.2)
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Therefore, the CCA problem (D.1) is equivalent to maximizing the numerator subject
to the constraint

{

hT
1 R11h1 = 1

hT
2 R22h2 = 1.

(D.3)

The corresponding Lagrangian is

L(h1, h2, λ) = hT
1 R12h2 − λ1

(

hT
1 R11h1 − 1

)

− λ2

(

‖hT
2 R22h2 − 1

)

. (D.4)

Deriving to both projection vectors leads to

δL
δh1

= R12h2 − 2λ1R11h1 = 0 (D.5)

δL
δh2

= R21h1 − 2λ2R22h2 = 0. (D.6)

Subtracting hT
2 times Eq. (D.6) from hT

1 times Eq. (D.5) yields

0 = hT
1 R12h2 − 2λ1hT

1 R11h1 − hT
2 R21h1 + 2λ2hT

2 R22h2

= 2λ2hT
2 R22h2 − 2λ1hT

1 R11h1. (D.7)

Together with the constraints (D.3), this implies that λ1− λ2 = 0, and we can denote
λ = λ1 = λ2. Therefore, the Lagrangian (D.4) can be maximized by solving the
following generalized eigenvalue problem (GEV), which is obtained directly from
(D.5) and (D.6)

1

2

[

0 R12

R21 0

] [

h1

h2

]

= λ

[

R11 0
0 R22

] [

h1

h2

]

. (D.8)

The optimal CCA solution h = [hT
1 , hT

2 ]
T is found as the eigenvector corresponding

to the largest eigenvalue of this generalized eigenvalue problem (GEV). The encoun-
tered solution for the maximal eigenvalue corresponds to the first canonical correla-
tion ρ1. The subsequent canonical correlations are found as the ρ-values correspond-
ing to the eigenvalues correspond to the successive eigenvalues of (D.8).

An equivalent GEV of the form Rh = λ′Dh can be found as

1

2

[

R11 R12

R21 R22

] [

h1

h2

]

= λ′
[

R11 0
0 R22

] [

h1

h2

]

, (D.9)

where λ′ = λ+ 1/2.

D.2 Generalization to Several Data Sets

In 1971, Kettenring described a maximum-variance (MAXVAR) generalization of the
canonical correlation analysis framework [Kettenring, 1971] to several data sets.
CCA was implemented here through a two-layer neural network, where the first layer
performs a constrained projection of the input data, and the second layer performs an
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extraction of the principal components. A summary of different alternative general-
izations of CCA can be found in [Vía et al., 2007b]. In particular, Vía et al. proposed
a generalization that is equivalent to MAXVAR CCA and allows for an elegant exten-
sion of the GEV (D.9), as

1

M











R11 R12 · · · R1M

R21 R22 · · · R2M
...

...
. . .

...
RM1 RM2 · · · RMM





















h1

h2
...

hM











= λ′′











R11 0 · · · 0
0 R22 · · · 0
...

...
. . .

...
0 0 · · · RMM





















h1

h2
...

hM











. (D.10)

D.3 Kernel Canonical Correlation Analysis

In order to retrieve nonlinear relationships between data sets, the problem of CCA
can be transformed into feature space. First of all, this requires transforming the data
points as x̃i[n] = φ(xi [n]), for i = 1, 2 and n = 1, . . . , N. The data matrices X̃i are
constructed by stacking these points as rows. After following a similar reasoning as
in section D.1, we obtain the transformed version of the GEV (D.8),

1

2

[

0 X̃T
1 X̃2

X̃T
2 X̃1 0

] [

h̃1

h̃2

]

= λ

[

X̃T
1 X̃1 0

0 X̃T
2 X̃2

] [

h̃1

h̃2

]

. (D.11)

By representing the solutions as expansions in terms of the data, h̃1 = X̃T
1α1 and

h̃2 = X̃T
2α2, and pre-multiplying (D.11) with a suitable block-diagonal data matrix,

we obtain

1

2

[

X̃1 0
0 X̃2

] [

0 X̃T
1 X̃2

X̃T
2 X̃1 0

] [

X̃T
1α1

X̃T
2α2

]

= λ

[

X̃1 0
0 X̃2

] [

X̃T
1 X̃1 0

0 X̃T
2 X̃2

] [

X̃T
1α1

X̃T
2α2

]

. (D.12)

At this point the kernel matrices Ki = X̃iX̃
T
i can be introduced, for i, j = 1, 2, which

are calculated as Ki(m, n) = κ(xi[m], xi[n]). This reduces the GEV to

1

2

[

0 K1K2

K2K1 0

] [

α1

α2

]

= λ

[

K2
1 0

0 K2
2

] [

α1

α2

]

. (D.13)

However, for “rich enough” kernel functions κ such as the Gaussian kernel, the mod-
eling capacity of the corresponding RKHS is so high that it allows to find perfect
correlation between any two data sets. This overfitting can be avoided by regulariz-
ing the complexity of the solutions in feature space through ridge regression, which
converts the energy constraints into

{

αT
1 K2

1α1 + cαT
1 K1α1 = 1

αT
2 K2

2α2 + cαT
2 K2α2 = 1.

(D.14)

The corresponding GEV is obtained as

1

2

[

0 K1K2

K2K1 0

] [

α1

α2

]

= λ

[

K1(K1 + cI) 0
0 K2(K2 + cI)

] [

α1

α2

]

. (D.15)
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Similar to the linear case, the solutions of this GEV can also be obtained by solving

1

2

[

0 K2

K1 0

] [

α1

α2

]

= λ

[

K1 + cI 0
0 K2 + cI

] [

α1

α2

]

, (D.16)

which requires slightly less operations to construct. An interesting GEV can also be

obtained by adding 1
2

[

K2
1 0

0 K2
2

] [

α1

α2

]

to both sides of equation (D.15), which yields

1

2

[

K2
1 K1K2

K2K1 K2
2

] [

α1

α2

]

=

[

1
2 K2

1 + λK2
1 + λcK1 0

0 1
2 K2

2 + λK2
2 + λcK2

] [

α1

α2

]

= (λ+
1

2
)





K2
1 +

λc
λ+ 1

2

K1 0

0 K2
2 +

λc
λ+ 1

2

K2





[

α1

α2

]

.

By substituting λ′ = λ+ 1
2 and introducing c′ = λc

λ+ 1
2

, this problem reduces to

1

2

[

K2
1 K1K2

K2K1 K2
2

] [

α1

α2

]

= λ′
[

K1(K1 + c′I) 0
0 K2(K2 + c′I)

] [

α1

α2

]

, (D.17)

whose solutions are also found by solving

1

2

[

K1 K2

K1 K2

] [

α1

α2

]

= λ′
[

K1 + c′I 0
0 K2 + c′I

] [

α1

α2

]

. (D.18)

Therefore, by introducing a regularization term c′ only in the right hand side of
(D.18), we are imposing a regularization term c = c′

1− λ′2
onto the norm of the CCA

solution in feature space. Finally, note that (D.17) can be extended for multi-variate
problems in a straightforward fashion thanks to its symmetry, similar to what was
done for (D.10).



AppendixE
Deduction of Spectral Clustering

from Graph Theory

E.1 Mincut and Normalized Cut

Although several algorithms for spectral clustering exist, they are all based on an
eigenvector problem posed on the similarity matrix. This basic algorithm can be
obtained in few different ways, for instance by describing the partitioning problem as
a graph cut problem or a random walks optimization problem [von Luxburg, 2006].
In this appendix we will deduce spectral clustering from graph theory, following the
analysis presented in [Alzate and Suykens, 2006].

Given an undirected graph G = (V , E) where V is the set of N nodes and E is
the set of edges, the problem of graph bipartitioning consists in separating the graph
into two sets A, B by eliminating edges connecting the two sets. The sets should be
disjoint such that: A ∪ B = V and A ∩ B = ∅. The total weight of the edges that
have to be eliminated is called the cut:

cut(A,B) = ∑
a∈A,b∈B

w(a, b), (E.1)

where w(a, b) is the weight between nodes a ∈ A and b ∈ B. In general, we will
denote the weight between the nodes with indices i and j as wi j.

E.1.1 Mincut

One of the most elementary criteria to perform graph bipartitioning is the mincut
criterion [Fiedler, 1975], which is formulated as follows:

min
q

Jmincut = cut(A,B) = 1

2 ∑
i, j

wi j(qi − q j)
2, (E.2)

where qi is a cluster membership indicator:

qi =

{

1, if i ∈ A
−1, if i ∈ B.

(E.3)
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By defining D = diag(d1, . . . , dN), where di = ∑ j wi j is the sum of the weights for all
edges that connect to node i, and W as the symmetric kernel matrix with i j-th entry
equal to wi j, we can write the minimization problem (E.2) as

min
q

Jmincut = qT(D−W)q (E.4)

s.t. q ∈ {−1,+1}N .

Here, q is a vector that contains all qi values, and the matrix D−W is the Laplacian
of the graph. We will denote this matrix as L = D−W.

The original mincut problem is NP-hard due to the constraint on q [Chung, 1997].
However, a suboptimal solution can be found by relaxing this constraint and letting
q take real values. The solution to the relaxed problem is found by solving the
eigenvalue problem

Lq̄ = λq̄, (E.5)

with the constraint q̄Tq̄ = 1. The suboptimal solution q̄ is the eigenvector cor-
responding to the second smallest eigenvalue (also called the Fiedler vector). The
cluster membership indicator qi is obtained by binarizing q̄i using a suitable threshold
θ:

qi = sign(q̄i −θ), i = 1, . . . , N. (E.6)

Due to the fact that there are no restrictions in (E.2) related to the cluster size, the
mincut criterion tends to separate small sets of points. In the following we discuss a
criterion that imposes a simple size restriction on the clusters.

E.1.2 Normalized cut

In [Shi and Malik, 2000], a graph bipartitioning criterion was introduced that nor-
malizes the cost of the cut relative to total weight of each cluster, called normalized
cut. It is defined as:

min
q

Jncut =
cut(A,B)

dA
+

cut(A,B)
dB

, (E.7)

where dA = ∑i∈A di. Due to this normalization, the normalized-cut criterion penal-
izes small sets or isolated points.

Once again, the solution to this problem is NP-hard, but if q can take real val-
ues then Jncut is minimized by the eigenvector corresponding to the second smallest
eigenvalue of the following generalized eigenvalue (GEV) problem:

Lq̄ = λDq̄. (E.8)
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E.2 NJW Algorithm

By pre-multiplying the normalized-cut criterion (E.8) by D−
1
2 , we obtain

D−
1
2 (D−W)q̄ = λD−

1
2 q̄. (E.9)

Defining q̂ = D
1
2 q̄ leads to

D−
1
2 (D−W)D−

1
2 q̂ = λq̂ (E.10)

(I−D−
1
2 WD−

1
2 )q̂ = λq̂ (E.11)

D−
1
2 WD−

1
2 q̂ = λ̂q̂, (E.12)

where λ̃ = 1− λ. By combining (E.12) with the norm constraint on q̂, we obtain the
eigenvalue problem used in the Ng-Jordan-Weiss (NJW) algorithm [Ng et al., 2001]:

D−
1
2 WD−

1
2 q̂ = λ̃q̂. (E.13)

E.3 Spectral Clustering as Weighted Kernel PCA

By defining an N × N weight matrix V, the standard procedure of kernel PCA can
be extended to into a weighted kernel PCA algorithm [Alzate and Suykens, 2006] that
allows to lower the influence of outliers or emphasize certain points. Formally, the
weighted kernel PCA problem is defined as

VWα = λα, (E.14)

where W is the kernel matrix. By choosing V = D−1 and α = D−1/2q, we obtain
the standard formulation of the eigenvalue problem (E.13) from the NJW algorithm.
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AppendixF
Calculation of the Connectivity

Kernel

The Dijkstra shortest path algorithm [Dijkstra, 1959] is a graph search algorithm that
calculates the shortest path between one vertex of a graph and every other vertex.
With a slight modification, the Dijkstra algorithm can be used to calculate the effective
distance needed for the connectivity kernel.

By the effective distance d̄i, j between two vertices i and j we denote the length
of the weakest link of the best path between these vertices. In this definition, the
weakest link refers to the longest edge, and the best path is the path whose longest
edge is the shortest among all paths. Whereas the original Dijkstra algorithm calcu-
lates the total distance between two vertices, the effective distance only requires the
maximum edge length. This can be obtained by simply replacing the summation of
distances with a max operation in the original algorithm. The resulting algorithm
is found below. It returns the effective distances between one vertex of a graph and
every other vertex. Finally, the connectivity kernel can be obtained by calculating the
Gaussian kernel using the effective distance.

Algorithm F.1 Modified Dijkstra Algorithm for Connectivity Kernel Calculation.
Given the nodes x1, . . . , xN ∈ X and the distances di, j between all node pairs.
for all i do

Initialize effective distances d̄i,i = 0 and d̄i, j = ∞, for all j 6= i.
Set node i as current node c.
Mark al nodes as “unvisited”.
repeat

for all unvisited nodes n neighboring current node do

Effective distance on current path: d̄
p
i,n = max(d̄i,c, dc,n).

Update effective distance: d̄i,n = min(d̄i,n, d̄
p
i,n).

end for
Mark current node as visited.

until all nodes are visited.
end for
Output the connectivity kernel κ(xi, x j) = exp(−d̄2

i, j/2σ2).
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Figure: Relationship of the techniques used in this thesis. The core techniques, least-squares regression (LS) and principal
component analysis (PCA), were introduced in chapter 2. The methods on the left-hand side are supervised, while on the
right-hand side we find blind techniques. The arrows indicate relationships between the different techniques. Dashed arrows
stand for a loose relationship.
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