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fought, they su�ered and they paid. But they won.
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Abstract

Wireless communications have gone through an exponential growth in the last several

years and it is forecast that this growth will be sustained for the coming decades. This

ever-increasing demand for radio resources is now facing one of its main limitations: inter-

user interference, arising from the fact of multiple users accessing the propagation medium

simultaneously which limits the total amount of data that can be reliably communicated

through the wireless links. Traditionally, interference has been dealt with by allocating

disjoint channel resources to distinct users. However, the advent of a novel interference

coordination technique known as interference alignment (IA) brought to the forefront the

promise of a much larger spectral e�ciency.

This dissertation revolves around the idea of linear interference alignment for a net-

work consisting of several mutually interfering transmitter-receiver pairs, which is com-

monly known as interference channel. In particular, we consider that each of the nodes is

equipped with multiple antennas and exploits the spatial dimension to perform interference

alignment. This work explores the problem of linear spatial domain interference alignment

in three di�erent facets.

Our �rst contribution is to analyze the conditions, i.e., number of antennas, users and

streams, under which IA is feasible. For this task, we distinguish between systems in which

each user transmits a single stream of information (single-beam systems) and those in

which multiple streams per user are transmitted (multi-beam systems). For single-beam

systems, the problem translates into determining the feasibility of a network �ow problem.

We show that this problem admits a closed-form solution with a time-complexity that is lin-

ear in the number of users. For multi-beam systems, we propose a numerical feasibility test

that completely settles the question of IA feasibility for arbitrary networks and is shown to

belong to the bounded-error probabilistic polynomial time (BPP) complexity class.

The second contribution, consists in generalizing the aforementioned feasibility results

to characterize the number of existing IA solutions. We show that di�erent IA solutions

can exhibit dramatically di�erent performances and, consequently, the number of solu-

tions turns out to be an important metric to evaluate the ability of a system to improve its

performance in terms of sum-rate or robustness while maintaining perfect IA. Again, we

provide a closed-form expression for the number of solutions in single-beam systems, high-

lighting interesting connections with classical combinatorial and graph-theoretic problems.

For multi-beam systems, we approximate the number of solutions numerically by means of

Monte Carlo integration.

Finally, our contributions conclude with the design of two algorithms for the computa-

tion of IA solutions. The �rst of them, based on a numerical technique known as homotopy

continuation, is theoretically guaranteed to converge to any optimum solution (provided

that it exists) and can systematically compute di�erent IA solutions in parallel. The sec-
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ond, essentially a Gauss-Newton method, can be used to reliably compute IA solutions with

computation times that are remarkably shorter than those required by the fastest available

algorithm at the time of writing.

In view of the results provided by the proposed algorithms, we explore the possibility

of computing a small subset of solutions and picking the best one according to a certain

metric. For example, our numerical results show that the sum-rate performance obtained

by picking the best out of a small number of solutions rivals that obtained by the best-

performing state-of-the-art algorithm.



Resumen extendido

A lo largo de las últimas decadas, el trá�co global de datos ha experimentado un crecimiento

dramático. Hace aproximadamente 20 años, la red Internet transportaba aproximadamente

100 GB de trá�co al día. Diez años más tarde, el trá�co total sumaba 100 GB de datos por

segundo, para sobrepasar los 28 000 GB por segundo a �nales de 2013. Se prevé que para

2016 hayamos entrado en la era zetabyte, es decir, más de 1 billón de GB serán transmiti-

dos anualmente a lo largo del globo. Se estima que la mayor parte de este crecimiento sea

sostenido por un trá�co móvil creciente que, entre 2013 y 2018, espoleado por el denomi-

nado efecto smartphone, habrá crecido tres veces más rápido que su equivalente cableado.

El número de dispositivos móviles excederá la población mundial antes de �nales de 2014.

Es obvio, por tanto, que los sistemas de comunicaciones inalámbricos se estén encon-

trando a día de hoy con una de sus grandes limitaciones: la interferencia inter-usuario. Esta

interferencia proviene del hecho de que múltiples usuarios acceden simultáneamente al me-

dio de propagación, lo cual limita la tasa de datos que puede ser transmitida de manera �able

a través de los enlaces inalámbricos. Tradicionalmente, el problema de la interferencia se

ha gestionado asignando recursos de canal disjuntos a los diversos usuarios. Sin embargo,

no ha sido hasta 2008 cuando la llegada de una nueva técnica de gestión de interferencias

conocida como alineado de interferencias demostró que las alternativas tradicionales hacen

un uso ine�ciente de los recursos y sentó las bases para un mejor aprovechamiento de los

mismos. La idea básica del alineado de interferencias consiste en con�nar las señales inter-

ferentes que afectan a un nodo en un espacio de dimensión más reducida, dejando a éste

más libertad para recibir su señal deseada.

Esta tesis gira en torno a la idea de alineado de interferencias lineal en redes donde va-

rios pares transmisor-receptor se comunican simultáneamente; escenario conocido como

canal de interferencia. En particular, se considera el caso en el que cada nodo (ya sea trans-

misor o receptor) está equipado con varias antenas y hace uso de la dimensión espacial

para llevar a cabo el citado alineado de interferencias. Como se muestra en el Capítulo 2,

los límites de capacidad para el canal de interferencia son aún desconocidos (incluso para

el caso más simple de dos usuarios). Esto ha llevado a los investigadores en teoría de la

información a considerar una métrica conocida con el nombre de grados de libertad, que

actúa como aproximación de primer orden de la capacidad en alta relación señal a ruido.

Esta métrica rinde cuenta del número de �ujos de información que pueden ser transmitidos

simultáneamente a través de la red. La revisión en el Capítulo 3 muestra que alineado de

interferencias ha resultado ser óptimo en términos de grados de libertad en multitud de

escenarios, especialmente, en aquellos donde los nodos están equipados con múltiples an-

tenas. Esto signi�ca que, en gran variedad de escenarios, el número de óptimo de �ujos de

información simultáneos se alcanza coordinando los transmisores para efectuar un �ltrado

espacial apropiado y así conseguir alineado de interferencias.
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Este trabajo explora el problema de alineado espacial de interferencias desde tres puntos

de vista diferentes:

Resolubilidad
En primer lugar, en el Capítulo 4 se analizan las condiciones (número de antenas, usua-

rios y �ujos de información enviados) bajo las cuales es posible encontrar una estrategia

de alineado de interferencias. En este caso, se dirá que el problema de alineado de inter-

ferencias es resoluble. Para el caso de redes en las que los usuarios comparten un único

�ujo de información, se concluye que la existencia de una solución de alineado se reduce a

comprobar la existencia de un �ujo válido en una red de oferta y demanda (supply-demand
network). Cuando se considera el problema de esta manera, su solución se reduce a evaluar

un conjunto de condiciones simples, tantas como usuarios haya en la red. Para escenarios en

los que más de un �ujo de información es enviado por cada usuario, este mecanismo sólo

permite derivar condiciones necesarias (pero no su�cientes). Una respuesta concluyente

require la utilización de herramientas matemáticas más so�sticadas.

De esta manera, combinando técnicas de geometría algebraica y topología diferencial,

se consigue dar una respuesta de carácter numérico al problema, aplicable a canales de in-

terferencia completamente arbitrarios (incluyendo los casos con conectividad parcial). En

particular, para modelar el problema se considera un conjunto de entrada (espacio projec-

tivo de las matrices de canal), un conjunto de salida (variedad de Grassmann de los �ltros

transmisores y receptores) y una variedad solución (canales y �ltros cumpliendo las con-

diciones de alineado de interferencias). Utilizando este marco matemático, se prueba que

el problema de alineado de interferencias es resoluble cuando la dimensión algebraica de

la variedad solución es mayor o igual que la dimensión del espacio de entrada y, simultá-

neamente, la transformación lineal entre los espacios tangentes a las variedades algebraicas

dadas por la primera proyección es sobreyectiva. De este resultado se desprende, natural-

mente, un test simple para comprobar si un sistema es resoluble que consiste en comprobar

si el rango de una determinada matriz (dependiente de la topología de la red) es completo

o no. En particular, se proponen dos posibles implementaciones del mismo test: en coma

�otante y en aritmética exacta. De hecho, la segunda opción demuestra que el problema de

comprobar la resolubilidad del problema pertenece a la clase computacional BPP (bounded-
error probabilistic polynomial time). La solución aquí propuesta ha tenido una buena acogida

por parte de la comunidad internacional avalada por el elevado número de visitas recibidas

en la versión web del citado test, que se encuentra públicamente disponible en la siguiente

dirección: http://gtas.unican.es/IAtest

Número de soluciones
En el Capítulo 5, los resultados anteriores son generalizados para calcular el número de so-

luciones existentes. En este caso, no sólo estamos interesados en determinar si el problema

de alineado de interferencias tiene solución o no, sino que también nos interesa conocer

cuántas soluciones existen. En esta tesis se muestra experimentalmente que diferentes so-

luciones pueden exhibir resultados dramáticamente diferentes. El número de soluciones

actúa como una métrica de diversidad en el sentido de que da una idea de la capacidad de

una red para mejorar su rendimiento en términos de tasa suma, robustez o cualquier otra

http://gtas.unican.es/IAtest


xv

métrica, a la par que se garantiza una supresión de interferencias perfecta. En este trabajo

se demuestra que el número de soluciones es �nito y constante para cualquier realización

de canal fuera de un subconjunto de medida nula y viene dado por una fórmula integral. De

manera más concreta, el número de soluciones es una media escalada del determinante al

cuadrado de la matriz utilizada en el test mencionado con anterioridad. Resulta interesante,

que si bien el determinante sirve para comprobar si el sistema es resoluble, su media dé el

número de soluciones al problema.

De nuevo, para el caso de un �ujo de información por usuario se propone una fórmula

cerrada para el número de soluciones que, además, permite establecer interesantes cone-

xiones con problemas clásicos en combinatoria y teoría de grafos. Puesto que evaluar di-

cha fórmula puede resulta computacionalmente costoso para redes grandes, el crecimiento

asintótico del número de soluciones es también analizado. El caso en el que los usuarios

transmiten varios �ujos de información resulta, una vez más, complicado y se recurre a

aproximar el número de soluciones por medio de integración de Monte Carlo.

Cálculo de soluciones
Por último, una vez que se ha caracterizado el número de soluciones, cabe preguntarse cómo

obtener las mismas. Los métodos utilizados hasta la fecha son variados pero habitualmente

poco robustos y lentos. Por esta razón, en este trabajo se proponen dos algoritmos para

la obtención rápida de soluciones de alineado de interferencias recogidos en los Capítu-

los 6 y 7, respectivamente. El primero de ellos, basado en un método numérico conocido

como continuación homotópica, es teóricamente completo en el sentido de que garantiza

la convergencia a un mínimo global. Adicionalmente, cuando se inicializa el algoritmo en

tantos puntos diferentes como soluciones existen, es capaz de obtener todas las soluciones

distintas al problema. Nuestros resultados numéricos demuestran que el algoritmo puede

ser utilizado para calcular de una manera �able múltiples soluciones de alineado de inter-

ferencias en un tiempo mucho más corto que el requerido por los algoritmos más rápidos

hasta la fecha.

En esta línea, se propone un segundo algoritmo del tipo Gauss-Newton como una par-

ticularización del primero. Aunque no se ha podido demostrar de manera rigurosa, pero sí

validar numéricamente, este segundo algoritmo converge a un mínimo global a un ritmo

cuadrático independientemente del punto de inicialización. Esto le convierte en órdenes de

magnitud más rápido que otros algoritmos encontrados en la literatura. Mediante la eje-

cución reiterada del citado algoritmo desde diferentes puntos de inicialización, se pueden

obtener distintas soluciones de alineado y seleccionar, posteriormente, la mejor de ellas de

acuerdo a cualquier métrica. Por ejemplo, nuestros resultados muestran que la tasa suma

obtenida seleccionando la mejor solución entre una veintena de ellas, rivaliza con la solu-

ción obtenida por el mejor algoritmo para la maximización de la tasa suma hasta la fecha.

Por último, cabe decir que se ha realizado un esfuerzo para integrar todos los métodos

propuestos en esta tesis (y otros métodos disponibles en la literatura) en un paquete de soft-
ware que se ha puesto a disposición pública para el bene�cio de la comunidad investigadora

a través del siguiente enlace:

http://gtas.unican.es/IAbox

Esperamos que estas herramientas constituyan un útil recurso para futuras investigaciones.

http://gtas.unican.es/IAbox




Notation and Acronyms

Notation

a Vector (lowercase boldface)

A Matrix (uppercase boldface)

A[i, j] Entry in the i-th row and j-th column of matrix A. For short,

and where no ambiguity is possible, A[i, j] will be equivalently

denoted as aij . Submatrices will be denoted as A[i1 : i2, j1 :j2]

det(A) Determinant of matrix A

per(A) Permanent of matrix A

A−1
Inverse of matrix A

AT
Transpose matrix of matrix A

A∗ Complex conjugate matrix of matrix A

AH
Conjugate transpose (Hermitian) matrix of matrix A

A† Moore-Penrose pseudoinverse of matrix A

null(A) Nullspace of matrix A

span(A) Subspace spanned by the column of matrix A

rank(A) Rank of matrix A

Blkdiag(A1,A2, . . . ,AN) Block diagonal matrix built from blocks A1,A2, . . . ,AN

Diag(a) Diagonal matrix having a as its main diagonal

tr(A) Trace (sum of elements in the main diagonal) of matrix A

‖A‖F Frobenius norm of matrix A

eigveci(A) Eigenvector associated to the i-th largest eigenvalue of matrix

A

vec(A) Column-wise vectorization of matrix A

1m,n All-ones (unit) matrix of dimensions m× n
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0m,n All-zeros (null) matrix of dimensions m× n
In Identity matrix of dimensions n× n
Km,n Commutation matrix of dimensions mn × mn. Satis�es

Km,n vec(A) = vec(AT ) where A is any m× n matrix

Ji,jm,n Single-entry matrix of dimensions m × n. The element in the

i-th row and j-th column is one and the rest of the elements are

zero.

A⊗B Kronecker product of matrices A and B

A ◦B Hadamard (element-wise) product of matrices A and B

N Set of natural numbers (non-negative integers)

Z Integer ring

R Real �eld

C Complex �eld (if the origin is excluded, C∗ = C \ {0})
Am×n Set of m× n matrices with entries in A

|a| If a ∈ C, it denotes the absolute value. If a is a set, it denotes

the number of elements in that set, i.e., the cardinality of the set

<(a),=(a) Real and imaginary part of a complex number a

bac Largest integer not greater than a ∈ R
dae Smallest integer not less than a ∈ R
a mod b Modulo operation: remainder of a/b where a, b ∈ Z
log, log2, log10 Base e, 2 and 10 logarithms, respectively

min(a, b) Minimum value among two real numbers a and b

max(a, b) Maximum value among two real numbers a and b

a∗ Conjugate partition of partition a

a∗∗ I-restricted conjugate partition of partition a

1(P ) Indicator function, 1(P ) = 1 if P is true, 0 otherwise

Gn×p Complex Grassmann manifold: the set of all p-dimensional lin-

ear subspaces in Cn

Un×p Complex Stiefel manifold: the set of all orthonormal k-frames

in Cn (i.e., the set of all orthonormal n× p matrices)

Un Unitary group: set of unitary n× n matrices or Un×n
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P(A) Projective space: the set of lines passing through the origin of a

vector space A or the space that is invariant under the group of

general linear homogeneous transformation in A

Vol(X) Volume of manifold X

N (µ,Σ) Multivariate normal distribution with mean µ and covariance

matrix Σ

CN (µ,Σ) Multivariate circularly symmetric complex-normal distribution

with mean µ and covariance matrix Σ

Beta(a, b) Beta distribution with shape parameters a and b

E[x] Mathematical expectation of random variable x
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Commonly used symbols

K Set of users (K = {1, . . . , K})
l, k Transmitter and receiver indexes, respectively (both k, l ∈ K)

Tl Graph node representing the l-th transmitter

Rk Graph node representing the k-th receiver

Ml, Nk Number of transmit and receive antennas, respectively

dk Number of streams sent from the k-transmitter to the k-th re-

ceiver

Hkl Channel matrix between the l-th transmitter and the k-th re-

ceiver (dimensions Nk ×Ml)

Vl Precoding matrix at the l-th transmitter (dimensions Ml × dl)
Uk Decoding matrix at the k-th receiver (dimensions Nk × dk)

Φ Set of interference links

s Dimension of the solution variety (di�erence between the num-

ber of variables and equations)

S Number of interference alignment solutions



xxi

Acronyms
MIMO Multiple-input multiple-output

MU-MIMO Multi-user MIMO

SISO Single-input single-output

TDMA Time-division multiple access

FDMA Frequency-division multiple access

CDMA Code-division multiple access

TDD Time-division duplex

FDD Frequency-division duplex

IA Interference alignment

AWGN Additive white Gaussian noise

DOF Degrees-of-freedom

BPP Bounded-error probabilistic polynomial time

KKT Karush-Kuhn-Tucker

SD Steepest-descent

AM Alternating minimization

GN Gauss-Newton

HC Homotopy continuation

MP Moore-Penrose

ODE Ordinary di�erential equation

IC Interference channel

IMAC Interference multiple-access channel

IBC Interference broadcast channel

XN X network

SVD Singular value decomposition

SNR Signal-to-noise ratio

SINR Signal-to-interference-plus-noise ratio

IOT Internet of Things

M2M Machine-to-machine

WSN Wireless sensor network

MANET Mobile ad hoc network

COMP Coordinated multipoint

CSI Channel state information

DAS Distributed antenna system

DPC Dirty paper coding

ZFBF Zero-forcing beamforming

BD Block diagonalization

BC Broadcast channel

MAC Multiple-access channel

PDF Probability density function

MSE Mean square error

MMSE Minimum mean square error
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Chapter1
Introduction

Over the past few decades, the total data tra�c around the world has experienced a dramatic

growth. Around twenty years ago, global Internet networks carried approximately 100 GB

of tra�c per day. Ten years later, the total tra�c amounted to 100 GB per second. As of the

end of 2013, the Internet tra�c surpassed 28 000 GB per second. Cisco [Cis14] forecasts we

are entering the zettabyte era by the end of 2016, that is, 1 trillion GB will be transmitted

through global data networks annually.

It is forecast that this spectacular growth will be sustained by an increasing mobile

tra�c which, from 2013 to 2018, is expected to grow three times faster than its �xed coun-

terpart with a number of connected devices that is exceeding world’s population before

the end 2014. Since the inception of the smart devices, which gave rise to the so-called

smartphone e�ect, data consumption has turned more demanding both in data rate and

mobility requirements. Traditionally, mobile networks have been deployed as cellular net-

works where mobile users within a certain geographical area are considered to belong to

a cell and are served by a base station which manages its access to channel resources and

coordinates with other base stations to enable users mobility.

In the future, human-centric devices are expected to be surpassed between 10- and 100-

fold [Eri13] by new communicating machines that constitute the Internet of Things (IoT)

paradigm. Examples of these connected things include tra�c lights, vehicles, environmen-

tal sensors, waste bins, industrial equipment, surveillance cameras, medical devices, etc.,

which are planned to be deployed in smart-cities, smart-homes or industries, basically any-

where where a connection can be of any bene�t. Machine-to-machine (M2M) communi-

cations are expected to experiment a compound annual growth rate of 80 percent in the

coming years [Cis14] and, because of its nature, these devices are being deployed as au-

tonomous and �exible ad hoc networks without any established infrastructure, e.g., mobile

ad hoc networks (MANETs) or wireless sensor networks (WSNs).

Irrespective of whether the data consumption is human or machine driven, in a cellular

or ad-hoc network, it is clear that current wireless communication systems are approaching

a bottleneck. To satisfy user demands, network operators have reacted by using better mod-

ulation schemes, multi-antenna technologies and, ultimately, a wider spectrum. However,

the scarcity of spectral resources has evidenced that the most e�ective solution comes from

reducing cell sizes, thus making an e�cient spatial reuse of the spectrum. Industry leaders

advocate a heterogeneous network (HetNet) based cost-e�ective solution which aims to

provide the required performance by mixing di�erent technologies and cell-sizes.
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Generally, users in a properly planned cellular system are unfairly served since those

on cell edges experience large interference from bordering cells. Therefore, as a user in the

center of the cell experiences a good performance, those in the cell edges are convicted to

operate in an interference-limited regime. It is believed that the performance of the network

as a whole can be greatly improved by using the appropriate interference management

techniques, specially, when cell sizes are small and, consequently, users operate in a high

signal-to-noise ratio (SNR) regime.

1.1 Scope
This dissertation focuses on the recently conceived idea of interference alignment (IA)

which emerged as a promising breakthrough for interference management in wireless net-

works. IA is a technique which enables the interference-free transmission of the maximum

number of simultaneous data streams in a multi-cell wireless network. By aligning the in-

terference impinging on a user in a lower-dimensional subspace, the receiver can easily

separate it from the desired signal. This way, the pernicious e�ects of interference can be

completely removed.

Although multiple �avors of interference alignment have been proposed, in this work

we will focus on spatial domain IA for the multiple-input multiple-output (MIMO) K-user

interference channel (IC). TheK-user MIMO IC is an information-theoretical abstraction of

a network that consists ofK multi-antenna transmitter-receiver pairs, where each receiver

is only interested in the data from its associated transmitter, but receives a superposition of

the signals from all K transmitters as well as additional background noise. We investigate

an idealized scenario where SNR is high (background noise can be ignored), propagation

channels are narrowband, static, and can be estimated perfectly.

Under this assumptions it is reasonable that, in order to maximize the network through-

put, all users collaborate (by using their multi-antenna capabilites) with the purpose of sup-

pressing every little chunk of inter-user interference. We refer to this approach as perfect
interference alignment.

This document aims to be a complete study of the perfect interference alignment prob-

lem, analyzing the problem in its three di�erent facets:

• We explore the conditions (number of antennas, users, and transmitted data streams)

under which perfect interference alignment is possible, and provide a numerical test

to answer this question.

• When at least a solution is shown to exist, we study the number of distinct interfer-

ence alignment solutions. Since di�erent solutions can provide remarkably di�erent

performances, the actual number of solutions acts as an interesting network-wide

diversity metric.

• Once the number of solutions is known, it is natural to ask how to compute all of

them or, at least, a large subset of them. We also shed some light on this problem

by providing two distinct algorithms which outperform other state-of-the-art algo-

rithms in terms of convergence speed. Remarkably, the �rst one (which is based in a
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numerical technique known as homotopy continuation) has the additional theoreti-

cal bene�ts of a guaranteed convergence and the possibility of computing all distinct

solutions.

We also discuss the di�culties found when extending our results to more complex net-

work topologies, other than the IC. Given the satisfactory results presented in this docu-

ment with respect to other state-of-art methods, it is envisioned that, after some technical

obstacles are overcome, the extension of the results herein can be fruitful and an interesting

matter for further consideration.

1.2 Outline and contributions
This dissertation is structured in three parts:

• Part I consists of Chapters 1, 2 and 3 where we introduce the basic ideas motivat-

ing this dissertation and provide introductory material on multi-cell networks with a

special focus on the recently conceived idea of interference alignment. As numerous

works have shown, interference alignment is a technique that can potentially revo-

lutionize the way cooperative communications operate. In practice, however some

interference alignment schemes are rather complex and di�cult to implement. For

that reason, we will elaborate on a class of strategies that are more amenable for a

practical implementation in networks where users are equipped with multiple anten-

nas: linear signal space interference alignment precoding and decoding. Our e�orts

concentrate on static channels and spatial domain techniques, i.e., in order to align

the interference we only exploit the fact that nodes are equipped with multiple an-

tennas.

Chapter 2 provides an introduction to basic information-theoretical concepts such as

capacity, rate, and degrees-of-freedom (DoF). Due to the scarcity of capacity results

for multi-user systems we will speci�cally focus on the degrees-of-freedom idea as a

high signal-to-noise ratio approximation of the capacity. It is worth mentioning that

interference alignment is known to be degrees-of-freedom optimal in a vast majority

of scenarios, even when restricted to linear schemes. Two of the most studied and

representative scenarios are the interference channel and the X network for which

system models are provided. Although we will focus on systems where proper sig-

naling is used and channels are time and frequency invariant, the particularities of

more complex scenarios (with time or frequency varying channels, and other signal-

ing strategies) will be also discussed in Chapter 2.

Chapter 3 presents the interference alignment concept with particular emphasis on

linear spatial domain interference alignment, for which a thorough overview of ex-

isting degrees-of-freedom results and algorithms is provided.

Subsequent chapters will concentrate on the interference channel within the linear

spatial domain interference alignment framework mentioned above.
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• Our goal is to conduct a comprehensive analysis of the interference alignment prob-

lem in arbitrary interference channels and we will study the problem in its main

facets. More speci�cally, Part II focuses on answering two fundamental questions:

1. What are the conditions under which interference alignment is feasible in a multi-

antenna interference channel? Or more explicitly, given an interference channel

with a certain number of users, each equipped with a speci�c number of anten-

nas, answering the question of whether the alignment problem is feasible or not.

This problem is studied in Chapter 4 and gave rise to a journal article and two

conference papers:

[GSB12] Ó. González, I. Santamaría, and C. Beltrán, “A General Test to Check the

Feasibility of Linear Interference Alignment”, in 2012 IEEE International Sym-
posium on Information Theory Proceedings (ISIT), Cambridge, MA, USA, Jul.

2012, pp. 2481–2485.

[GLV+13] Ó. González, C. Lameiro, J. Vía, C. Beltrán, and I. Santamaría, “Comput-

ing the Degrees of Freedom for Arbitrary MIMO Interference Channels”, in

2013 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Vancouver, Canada, May 2013, pp. 4399–4403.

[GBS14] Ó. González, C. Beltrán, and I. Santamaría, “A Feasibility Test for Linear In-

terference Alignment in MIMO Channels with Constant Coe�cients”, IEEE
Transactions on Information Theory, vol. 60, no. 3, pp. 1840–1856, Mar. 2014.

2. If certain con�guration is determined to be feasible, how many possible interfer-

ence alignment solution exist? Note that this question is, in fact, a generalization

of the �rst, which can be rephrased as determining whether the number of solu-

tions is equal to zero or not. This is the problem considered in Chapter 5, which

originated one conference paper and one journal paper (under second review at

the time of this writing):

[GSB13] Ó. González, I. Santamaría, and C. Beltrán, “Finding the Number of Feasible

Solutions for Linear Interference Alignment Problems”, in 2013 IEEE Inter-
national Symposium on Information Theory (ISIT), Istanbul, Turkey, Jul. 2013,

pp. 384–388.

[GBS13] Ó. González, C. Beltrán, and I. Santamaría, “On the Number of Interference

Alignment Solutions for the K-User MIMO Channel with Constant Coef-

�cients”, submitted to IEEE Transactions on Information Theory (2nd review
round), Jan. 2013 arXiv: 1301.6196.

Our analysis found substantial di�erences between the single-beam case and the

multi-beam case. For the �rst one, consisting of those scenarios in which all users

transmit a single stream of information, we are able to provide closed-form solutions

for both the problem of feasibility and the number of solutions. We characterize the

asymptotic growth of the number of solutions, showing that it grows exponentially

with the size of the system.

Multi-beam scenarios present fundamental technical challenges derived from the fact

that multiple streams travel through the same channel. In this case, we provide a

numerical test to evaluate the feasibility of a network and a Monte Carlo procedure

to compute the number of solutions. Quite remarkably, based on the proposed test we

http://arxiv.org/abs/1301.6196
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have been able to conjecture a closed-form formula (which has been partially proved

recently) for the maximum number of DoF in symmetric networks. Additionally, the

problem of testing interference alignment feasibility is shown to belong to a bounded-

error probabilistic polynomial time (BPP) complexity class.

• Part III deals with the design of interference alignment transceivers. Naturally, once

the number of solutions for a given scenario is known, one may wonder how to com-

pute all of them or, if that happens to be impossible, a su�ciently large subset of them.

In order to answer this question we provide two algorithms. The �rst one, based on

a numerical technique known as homotopy continuation, is theoretically complete

and, thus, provides guaranteed convergence and the possibility to systematically ob-

tain every single solution to the problem. From a practical point of view, it is shown

to outperform the current state-of-the-art algorithms in terms of computation time as

we show in Chapter 6. The following conference papers are derived from Chapter 6:

[GS11] Ó. González and I. Santamaría, “Interference Alignment in Single-Beam MIMO

Networks Via Homotopy Continuation”, in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May

2011, pp. 3344–3347.

[GFS14] Ó. González, J. Fanjul, and I. Santamaría, “Homotopy Continuation for Vector

Space Interference Alignment in MIMO X Networks”, in 2014 IEEE International
Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, Italy,

May 2014, pp. 6232–6236.

On the other hand, Chapter 7 presents a di�erent algorithm which can be regarded

as a particularization of the �rst. It is based on the classical Gauss-Newton algorithm

and, from our numerical results, it seems to converge globally (regardless of the ini-

tialization point). Although we have not been able to provide a rigorous proof, some

preliminary observations suggesting that behavior are provided. To the best of our

knowledge, this is the only interference alignment algorithm that converges super-

linearly (quadratically) to the optimal solution and, as such, it is orders of magnitude

faster than other algorithms found in the literature. On the other hand, it has the dis-

advantage of being a centralized algorithm but, based on other recent results found

in the literature, we are hopeful a decentralized implementation might be possible.

The work in Chapter 7 led to the following journal letter:

[GLS14] Ó. González, C. Lameiro, and I. Santamaría, “A Quadratically Convergent

Method for Interference Alignment in MIMO Interference Channels”, IEEE Sig-
nal Processing Letters, vol. 21, no. 11, pp. 1423–1427, Nov. 2014.

Finally, Chapter 8 summarizes the main conclusions and proposes some lines for further

work. For convenience, the overall structure of the document and the publications derived

from the work leading to this monograph are depicted in Figure 1.1.
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Legend:

Assume we are given an interference channel characterized by the number of users, the

number of transmit/receive antennas that each user is equipped with, and a set of channel

matrices. Then, we can set out the following problems:

What is the maximum achievable DoF? Or, in other words, what is the DoF tuple

achieving the maximum sum-DoF?

If we focus on a particular DoF tuple, is that DoF tuple feasible/achievable?

How many transceiver designs are able to achieve the aforementioned DoF tuple?

How do we compute one or several of these transceiver designs?

In this dissertation we propose solutions to the four preceding problems. Whether

the solution is analytical or numerical is indicated in the diagram above.

Figure 1.1: Overall structure of the document detailing studied problems, its location within the
document, and publications on which presented solutions are based.



Chapter2
Interference Management in

Wireless Networks

The wireless channel renders two key challenges that designers have to deal with in mo-

bile communication systems: fading and interference. Fading limits coverage and reliability

of any point-to-point wireless connection. On the other hand, interference constrains the

reusability of any spectral resource (time, frequency, code) in space, which limits the spec-

tral e�ciency of a system. Given current dense deployments, interference is everywhere.

In cellular environments, the interference can come from two sources: other users in the

same cell (intra-cell interference), and other users from other cells (inter-cell interference).

In ad hoc networks, such a distinction is irrelevant, since co-channel interference is coming

from every other node in the network and can, thus, be regarded as intra-cell interference.

Consequently, for the sake of generality, we will proceed with cellular systems.

Early wireless systems designs found a tradeo� between the e�cient use of the spectral

resources and simple control of interference by adopting a technique known as fractional

frequency reuse. The main idea behind this technique is forcing adjacent cells to operate

in di�erent frequencies. Cells operating in the same frequency are su�ciently apart such

that the inter-cell interference is kept su�ciently low. This way, interference management

is relegated to a per-cell basis. At the receiver side, inter-cell interference is treated as noise

and is handled by robust point-to-point mechanisms such as e�cient coding and, in some

cases, multiple-input multiple-output (MIMO) systems.

It is worth noting that while fractional frequency reuse is acceptable as an inter-cell in-

terference control mechanism, it is ine�cient in terms of spectral utilization since each cell

is only allowed to use certain parts of the available spectrum. The current view on wireless

networks design advocates a paradigm-shift towards universal frequency reuse where all

cells have the potential to use all available resources. However, universal frequency reuse

comes at the expense of a more pronounced inter-cell interference that cannot be treated

as noise at the receiver side. Furthermore, the situation is specially critical at cell-edges

where path-loss and strong inter-cell interference coalesce to hinder any communication

opportunity.
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2.1 Multi-cell MIMO cooperative networks
In order to mitigate the inter-cell interference problem two cooperative solutions have re-

cently emerged. The �rst one makes use of relay nodes, while in the second cooperation

between base stations is exploited.

Relay-based techniques mitigate the e�ect of adverse propagation conditions by routing

the communication from a transmitter to a receiver through a third-party device. This

device, the so-called relay, acts by amplifying or decoding and forwarding the received

signal. Relays can be used to improve the quality of service to cell-edge users by increasing

their received signal power.

The second approach, involves tighter cooperation and is usually referred to as coor-

dinated multipoint (CoMP). The underlying concept of CoMP is simple: di�erent cell base

stations no longer operate independently but instead coordinate the precoding and decod-

ing of signals based on the available channel state information (CSI) and the amount of

signaling allowed over the backhaul links among the base stations. With respect to current

networks, CoMP, requires the deployment of the aforementioned backhaul network which,

although represents a fairly small change of infrastructure, may be costly.

Depending on the extent of cooperation taking place between cells (possibly through

the backhaul network), CoMP systems can be broadly classi�ed in two categories [GHH+10;

MF11]: joint signal processing and interference coordination.

2.1.1 Joint signal processing
When base stations are linked by high-capacity practically delay-free links, base stations

can share both channel state information and the full data intended to their respective users.

In this scenario, the concept of an individual serving base station for one terminal dilutes,

since a group of cells is now serving the users. The entire group of cells can be viewed

as a single cell with a distributed antenna array at the base-station. Distributed antenna

systems (DASs) [SRR87] can be regarded as MIMO systems with per-antenna-group power

constraints. Consequently, all the multi-user MIMO (MU-MIMO) single-cell uplink and

downlink results apply [BCC+07].

In particular, it is well-known that dirty paper coding (DPC) [Cos83] achieves the ca-

pacity region for the MIMO broadcast channel (BC) [CS03; WSS06]. However due to its

high-complexity implementation involving nonlinear encoding and decoding, DPC remains

as a theoretical benchmark. Linear processing solutions, such as zero-forcing beamform-

ing (ZFBF) and block diagonalization (BD) [ML03; SSH04], are preferable because they are

easier to implement and achieve sum-rate performances close to the sum-capacity of the

network.

The capacity region of the uplink multiple-access channel (MAC) is achieved by su-

perposition coding and successive decoding [CT91]. However, in order to implement this

technique, the cooperating base stations need to share their sequence of observed symbols

which requires an enormous backhaul capacity.
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2.1.2 Interference coordination
If, instead of being connected by high-capacity links, the base stations are connected by

limited capacity links (sometimes called feedback links), they can still share CSI of both

desired and interference links. This level of coordination requires a modest amount of

backhaul communication which is enough for the stations to coordinate their strategies in

aspects such as power allocation and beamforming directions.

If interference is weak, then the interfering signals can be treated as noise. The avail-

ability of CSI allows the transmitters to adapt to the channel state in a joint manner by

coordinated resource allocation or by beamforming/precoding. Resource allocation in a

coordinated way across cells can bring bene�ts over conventional per-cell allocation. A

particularly interesting problem is the power control and scheduling problem which is that

of deciding which users should be served and how much power should be used to commu-

nicate with each of them. Additionally, when the base stations are equipped with multiple

antennas, spatial dimension can be used to mitigate interference and improve the network

performance. This technique is known as coordinated beamforming.

Another way to mitigate the e�ect of interference is by properly encoding the trans-

mitted signals so that they can be detected at neighboring cells (where they are considered

inter-cell interference) and then subtracted from the received signal. This idea is motivated

by the well-known result by Carleial [Car75; Sat81] showing that strong interference does

not a�ect the capacity of a network consisting of two transmitter-receiver pairs (i.e. the

2-user interference channel). For all other cases, the best known achievable region is due to

Han and Kobayashi [HK81]. Their strategy involves splitting the transmitted information

of both users in two parts: a private message to be decoded only at the intended receiver

and a common message that can be decoded at both receivers. By decoding the common

information, part of the interference can be canceled o�, while the remaining private in-

formation from the other user is treated as noise.

Finally, when the interference strength is comparable to the desired signal strength, the

traditional solution has been orthogonalizing the use of channel resources. This is the ba-

sic technique employed for intra-cell interference management in current cellular systems

when multiple access techniques such as time-division multiple access (TDMA), frequency-

division multiple access (FDMA) and code-division multiple access (CDMA) are employed.

The same e�ect, but at an inter-cell level, is achieved when frequency reuse is utilized. By

orthogonalizing, resources are shared in a cake-cutting fashion, so that each user is only

allowed to enjoy a part of the available resources whose size is inversely proportional to

the number of served users. Fortunately, a novel idea called interference alignment (IA)

was recently proposed [CJ08] to deal with this problem, showing that, for a broad class of

wireless networks and even when there are more than two users, everyone can get half

the cake. In order to achieve so, transmitters need to coordinate with each other by shar-

ing their CSI only (no data is shared between the base stations). Additional details on the

interference alignment technique are relegated to Chapter 3.
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2.2 Information-theoretic characterization of multi-
user networks

The fundamental limits of communication systems are described using information theory.

In this section we present a brief summary of the information theoretic aspects concern-

ing multi-user wireless networks as well the main system models that will be used in this

dissertation.

2.2.1 Capacity
The seminal work by Shannon [Sha48] established that there exists a non-negative channel

capacity associated with any discrete memoryless channel such that any data rate below the

capacity is achievable with arbitrarily low error probability. Additionally, his channel coding
theorem states that the channel capacity can be computed by determining the probability

density function (PDF) of the input random variables of the channel that maximizes the

mutual information between the input and output random variables.

For example, consider a point-to-point additive white Gaussian noise (AWGN) channel

where the input x and output y are related through

y = h · x+ n, (2.1)

where h ∈ C denotes the channel gain and n denotes an AWGN complex noise with vari-

ance σ2
. The capacity, in bits per second, of this channel can be shown to be

C = log2 (1 + η) , (2.2)

where η denotes the signal-to-noise ratio (SNR), i.e., η = |h|2
σ2 . In this case, the PDF of x that

maximizes the mutual information is a complex circularly-symmetric (proper) Gaussian

distribution.

The de�nition of capacity can be readily extended to multi-user systems by consid-

ering that, in this case, instead of being just a number, it is should be regarded as a K-

dimensional capacity region, C(η), de�ned as the set of all achievable rate tuples R =
(R1(η), R2(η), . . . , RK(η)), where Ri(η) denotes the rate achieved in the i-th communica-

tion link of the system for an SNR η. The sum-rate achieved at any point of the capacity

region is de�ned as SR ,
∑K

k=1 Rk.

2.2.2 Degrees of freedom
In spite of its simple de�nition, the determination of the capacity region for many represen-

tative scenarios has been found to be rather involved. In particular, a full characterization

of the K-user interference channel (which we describe in Section 2.4) has eluded informa-

tion theorists for many decades, even in the simplest 2-user interference channel [Kra06].

As a consequence, a lot of focus has been put on characterizing a related concept known as

degrees-of-freedom (DoF) of the channel. The DoF region is interesting because it serves

as a �rst order approximation of the capacity, which essentially captures the growth of the
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capacity with the logarithm of the SNR. More formally, the DoF region can be de�ned as

follows:

D =

{
(d1, d2, . . . , dK) ∈ RK+ | ∀(w1, w2, . . . , wK) ∈ RK+ ,

K∑

k=1

wkdk ≤ lim sup
η→∞

[
sup
R∈C

1

log2 η

K∑

k=1

wkRk

]}
.

(2.3)

We can also de�ne the sum-DoF (or simply DoF) of the system as

D = max
(d1,d2,...,dK)

K∑

k=1

dk. (2.4)

The sum-DoF can be regarded as the high-SNR slope, or pre-log factor, of the sum-rate.

Consequently, this �gure of merit corresponds to the maximum number of concurrent

interference-free transmissions that can be carried out simultaneously, and is sometimes

referred to as the multiplexing gain of the network. In a multi-user network we are gener-

ally interested in maximizing the number of co-channel links that can coexist with accept-

able quality of service. In the high-SNR regime this �gure of merit is precisely the number

of degrees of freedom. As a �nal remark, it is worth mentioning that in a network with D
DoF, the sum-rate scales approximately as D more bits per channel use for every 3 dB of

SNR increase.

In the following we present the system model for the two main information-theoretic

abstractions of multi-user network topologies that we will use along this dissertation: the

MIMO IC and the MIMO X network (XN). For completeness, we also include a brief review

of the MIMO point-to-point channel.

2.3 MIMO point-to-point channel
From an information-theoretic point of view, a MIMO point-to-point channel is modeled

as a point-to-point channel with multidimensional inputs and outputs. It models, for ex-

ample, one base station serving a user without any interference from other transmitting

base stations when both of them are equipped with multiple antennas. Throughout this

dissertation we will assume that the number of antennas at the transmit end of any com-

munication link is denoted by the letter M and the number of antennas at the receive side

is denoted by N . The input to the channel is denoted by the vector x ∼ CN (0N,1,Q).

Under these assumptions, the channel output is modeled as

y = Hx + n, (2.5)

where H ∈ CN×M describes the narrowband complex-valued equivalent baseband MIMO

channel between the transmitter and the receiver, and n ∼ CN (0N,1, σ
2IN) is some AWGN.

When the channel is constant and known perfectly at the transmitter and receiver, the

capacity is given by

C = max
Q:tr(Q)=1

log2 det(IN + HQHH), (2.6)
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where the optimization is carried out over the input covariance matrices Q = E[xxH ] of

all unitary power vectors x.

The capacity of the MIMO channel is achieved by imposing a covariance structure on

the Gaussian input vector x that satis�es two conditions [Tel99]. First, the signal has to be

transmitted along the right eigenvectors of the channel, i.e., if the singular value decom-

position (SVD) of the channel is H = FΣGH
, then V = G. This operation decomposes

the MIMO channel into a set of parallel non-interfering channels commonly referred to as

the eigenmodes of the channel. The number of parallel channels is equal to the rank of the

channel matrix which, for arbitrary channel matrices is min(M,N). Second, given that

the parallel channels are of di�erent quality, a water-�lling algorithm needs to be used to

optimally allocate power over them.

At high SNR, the water-�lling algorithm allocates approximately equal power to each

the channel eigenmodes and, consequently, a �rst order approximation of the capacity is

C ≈ min(M,N) log2(η) + O(1), where the constant term depends on the singular values

of H [FG98]. This approximation shows that the DoF of the point-to-point MIMO channel

are min(M,N) which leads to an increase of approximately min(M,N) bit/s/Hz in spectral

e�ciency for every increase of 3 dB in the SNR (or the transmit power).

A fundamental advantage of the decomposition of the MIMO channel into parallel non-

interfering channels presented above is that it is achieved by simple linear precoding and

decoding techniques. This way, the decoding complexity is only linear in the rank of the

channel. When it is not possible to perform such a decomposition (e.g. when the transmit-

ter does not have perfect knowledge of the matrix H), the maximum-likelihood decoding

complexity is typically exponential in the rank of the channel.

In more realistic scenarios and, speci�cally, in multi-user systems, linear schemes are

not necessarily optimal. However, when properly designed, they can approach the system

capacity with the bene�t of a simpler practical implementation. That is the reason why

linear precoding and decoding techniques have been traditionally considered as appropriate

alternatives to the optimal strategy [SSB+02; ML03]. Similarly, encoding on a �nite number

of channel uses has demonstrated advantages in multi-user networks featuring time or

frequency-varying channels or when combined with asymmetric complex signaling, also

termed improper signaling. As we will see below, proper complex signaling is not always

optimal from a DoF perspective [CJW10]. For that reason, improper signaling schemes have

also been the focus of recent increased interest.

2.3.1 Channel structure, genericity and diversity order
Typically, dimensions of the input vector x represent spatial dimensions that stem from

the use of multiple antennas, but the dimensions may also describe a combined space-time-

frequency signal space. In this section we will brie�y review the most appealing general-

izations: a �nite number of channel extensions and improper signaling. The basic idea is

that both of them endow the channel matrix with certain structure.

Recently, Sun and Luo [SL13] provided an appropriate framework for the characteriza-

tion of channel matrices by extending the concept of channel diversity order introduced in

[ZT03]. A channel is said to have a diversity order L if its channel matrix H ∈ CN×M is a
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linear combination ofL �xed matrices, say A1, . . . ,AL ∈ CN×M : H = τ1A1 +· · ·+τLAL,

where A1,A2, . . . ,AL are algebraically independent and the coe�cients in τi are generic.

Phrased simply, generic means they are independently drawn from a continuous random

distribution. The term is borrowed from the algebraic geometry literature [CLO05] where a

property is said to hold generically when it holds on a dense open set. A choice of open sets

for a space is called a topology. For example, in the Zariski topology, the only closed sets are

the algebraic sets, which are the zeros of polynomials. Conversely, the set of points which

are not the zeros of polynomials is called a Zariski open set. Consequently, a property is

generic if it holds over a Zariski open set.

Going back to our channel H, we can claim that the property “is full rank” holds for

generic τ = (τ1, τ2, . . . , τL). To prove this, we must �nd a set of polynomials f(τ) (or simply

a polynomial f(τ)), whose nonvanishing implies the desired property. It is easily seen that

the sought polynomial is f(τ) = det(H) since det(H) 6= 0 implies that H is full rank and

holds given that the coe�cients of A1,A2, . . . ,AL are algebraically independent.

Finally, we describe some of the most representative channel models:

• A constant MIMO channel with no channel extensions where the transmitter has M
antennas and the receiver has N antennas has a diversity order MN . The channel

matrix can be built by choosing Ai = J
((i−1) mod N)+1,b(i−1)/Nc+1
N,M and generic τi for

i = 1, 2, . . . , NM , where Jn,mN,M denotes the N ×M single-entry matrix, i.e., a matrix

where a single element (the one in the n-th row and m-th column) is one and the

rest of the elements are zero. Throughout this dissertation we will mainly focus on

this type of channel and will, indistinctly, refer to it as structureless or unstructured

channel.

• A N ×M constant MIMO channel with T generic channel extensions (in either time

or frequency) is modeled by a NT ×MT block diagonal matrix, i.e.,

H = Blkdiag(H1,H2, . . . ,HL), (2.7)

where the Blkdiag(. . .) operator builds a block diagonal matrix from the blocks

passed as argument. It is easy to see that it has a diversity order NMT . It is also

possible to have T constant extensions. In that case, H1 = H2 = . . . = HT and the

diversity order is NM .

• If improper signaling is used, the diversity order doubles with respect to its proper

counterpart. Take as an example a single-input single-output (SISO) point-to-point

channel h ∈ C with input x ∈ C and noise n ∈ C. The channel output is given by

y = hx+ n ⇔
[
<(y)
=(y)

]
=

[
<(h) −=(h)
=(h) <(h)

]
+

[
<(n)
=(n)

]
, (2.8)

where <(. . .) and =(. . .) denote the real and imaginary part of a complex number,

respectively. In general, for a N × M MIMO channel, this very same structure is

repeated for all NM elements of the channel. Analogously, if T generic channel

extensions are considered, the channel is endowed with the block diagonal structure

described above. The channel diversity order, in this case, is 2NMT .
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2.4 Interference channel
This section presents the system model for an interference channel. An interference chan-

nel is a information-theoretic abstraction which models a simple, but representative, inter-

ference scenario: two or more mutually-interfering transmitter-receiver pairs. In practice,

an IC can be found in multiple situations, for example, in the uplink of a cellular system

with no cooperation between base stations or in ad hoc networks.

Consider a MIMO IC consisting of K transmitter-receiver pairs, that we will refer to

as users, with transmitter l ∈ K = {1, . . . , K} sending dl independent data streams to

its corresponding receiver, l, and causing interference over the rest of receivers k 6= l.
Let Hkl ∈ CNk×Ml

be a generic matrix that represents the MIMO channel matrix from

transmitter l to receiver k where Ml and Nk denote the number of antennas at transmitter

l and receiver k, respectively. The received signal at receiver k is given by

yk =
K∑

l=1

Hklxl + nk, (2.9)

where xl is an Ml × 1 column vector that represents the l-th user transmitted signal and

nk ∼ CN (0Nk,1, σ
2I) is a zero mean AWGN vector at the k-th receiver.

We note that throughout this dissertation, except where speci�cally indicated, we will

focus on linear vector space IA. This means that, in order to transmit the symbol vector

sl, transmitter l uses a precoding matrix Vl ∈ CMl×dl
, i.e. xl = Vlsl and, therefore, the

received signal can be written as

yk =
K∑

l=1

HklVlsl + nk. (2.10)

Expression (2.10) can be rewritten to explicitly state that the received signal is composed

of a desired signal part and an interference part, i.e.,

yk = HkkVksk +
K∑

l=1
l 6=k

HklVlsl + nk. (2.11)

The second addend is entirely made of unintended interference coming from the transmitter

no associated to receiver k. It is important to regard it as coordinated interference since it

is caused by transmitter that may coordinate to minimize its e�ect. Once the precoders are

designed, and assuming that each receiver treats signals from all other users as noise, the

instantaneous rate achieved by the k-th user is

Rk = log2 det


INk +


σ2INk +

K∑

l=1
l 6=k

Qkl




−1

Qkk


 , (2.12)

where Qkl denotes the covariance matrix of the signal traveling from the l-th transmitter

to the k-th receiver. That is,

Qkl = HklVlV
H
l HH

kl. (2.13)
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Consequently, the sum-rate of the whole network is given by

SR =
K∑

k=1

Rk. (2.14)

Notice that the instantaneous sum-rate is important because it summarizes the total net-

work throughput in a single scalar. However, recall that it assumes ideal nonlinear decoding

of the multiple streams in the desired signal.

We will continue by assuming that suboptimal linear receivers are employed. The de-

sign of high-performance linear receivers is out of the scope of this work. Consequently,

we will consider the k-th receiver obtains an estimate, ŝk, of the transmitted symbols by

projecting yk onto the column space of a decoding matrix Uk ∈ CNk×dk , that is

ŝk = UH
k yk =

K∑

l=1

UH
k HklVlsl + UH

k nk. (2.15)

Note that the only desired signal at receiver k is that traveling through Hkk and the rest of

them constitute inter-user interference. Then, the received signal can be decomposed as

ŝk = UH
k HkkVksk︸ ︷︷ ︸
Desired signal

+
K∑

l=1
l 6=k

UH
k HklVlsl

︸ ︷︷ ︸
Interference

+ UH
k nk︸ ︷︷ ︸

Noise

. (2.16)

After applying the receive �lter Uk, the receiver jointly decodes the symbols in ŝk. Then,

the achievable rate of the k-th user is

R′k = log2 det


INk +


σ2INk +

K∑

l=1
l 6=k

Pkl




−1

Pkk


 , (2.17)

where Pkl now denotes the covariance matrix of the signal traveling from the l-th trans-

mitter to the k-th receiver after the receive �lter is applied. That is,

Pkl = UH
k HklVlV

H
l HH

klUk. (2.18)

It is readily seen that there is no capacity loss in (2.17) with respect to (2.12) when the

optimal minimum mean square error (MMSE) receive �lter is applied, i.e.,

Uk =


σ2INk +

K∑

l=1
l 6=k

Qkl




−1

HkkVk. (2.19)
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T1

T2

TK

R1

R2

RK

Figure 2.1: Representation of a fully connected K-user interference channel as a bipartite graph.
Do�ed and solid edges represent interference links and desired links, respectively.

2.4.1 Special cases and naming conventions
The results in this dissertation will, in general, apply to arbitraryK-user interference chan-

nels. That is, ICs withMk andNk antennas at the transmitter and receiver side, respectively,

and where each user wishes to send dk streams of data. For the sake of convenience we will

refer to this system as

∏K
k=1(Mk × Nk, dk), using the shorthand notation introduced in

[YGJ+10].

We will also distinguish between multi-beam systems and single-beam systems. An IC

is said to be a single-beam system if and only if dk = 1 ∀k ∈ K and, consequently, can be

denoted as

∏K
k=1(Mk ×Nk, 1).

Usually, it is reasonable to assume that all transmitters (receivers) are equipped with

the same number of antennasM (N ) and all of them transmit the same number of streams,

i.e., dk = d,∀k ∈ K. In this case, the system is called symmetric and denoted as (M ×
N, d)K . If, in addition, M = N , the system is termed square symmetric and represented as

(M ×M,d)K .

2.4.2 Partially connected interference channels
So far, we have considered fully connected scenarios where each receiver is hearing, not

only the signal coming from its associated transmitter, but also interfering signals coming

from every other transmitter. In practice, however, it is common to have partially connected

scenarios where a receiver is interfered by only a subset of the transmitters. This section is

devoted to formalize the partial connectivity model and provide some de�nitions that will

be necessary to understand forthcoming results.

Any single-hop network consists of two disjoint sets of nodes: transmitters, T =
(T1, . . . , TK), and receivers, R = (R1, . . . , RK) where Tl and Rk denote the l-th trans-

mitter and the k-th receiver, respectively. The nodes in T and R can be regarded as the

nodes of a bipartite graph G = (T × R,E) where E denotes the set of edges of the graph

(see Figure 2.1). Nodes Tl and Rk are connected by an edge if and only if the signal from Tl
can reach Rk, that is, Hkl is not zero. More formally, the set E is de�ned as

E = {(Tl, Rk) | Hkl 6= 0Nk,Ml
}. (2.20)
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The network connectivity described by E can also be uniquely represented by the biadja-

cency matrix of G which is nothing else than a binary matrix, B, in which bkl = 1 if and

only if (Tl, Rk) ∈ E or, equivalently, Hkl 6= 0Nk,Ml
. For short, we will refer to B as the

connectivity matrix of the network.

On the other hand, communication demands are encoded in what we denote as the

demands matrix, D. Its entries, dkl, are de�ned as the number of streams that the l-th
transmitter wishes to send to the k-th receiver. Since, by de�nition, in an IC the only

intended signal is that traveling from the k-th transmitter to the k-th receiver, the demands

matrix will always be a diagonal matrix, i.e., D = Diag(d) where d = [d1, d2, . . . , dK ]T .

Once the connectivity and the demands of a network are known, it is possible to obtain

the interference graph as the subset of edgesE in the network graphGwhich are traversed

by interfering signals. Again, this graph is uniquely represented by its biadjacency matrix

or interference connectivity matrix, Φ. The entries of the binary matrix Φ are given by

φkl = 1 if and only if bkl = 1 and djl 6= 0 for some j 6= k, j ∈ K. The set of interference

links, Φ, is simply the set of indexes of the non-zero entries of Φ, i.e.,

Φ = {(k, l) | φkl = 1}. (2.21)

An alternative matrix representation of the interference graph is given by its incidence

matrix, C. The incidence matrix of a graph [Die10] is a binary matrix which has a row

for each edge and a column for each node in the graph. Its entries, cij = 1 if and only if

edge i and node j are incident. Its de�nition varies depending upon the ordering of nodes

and edges. In this dissertation, edges (k, l) will be picked in lexicographic order
1

whereas

nodes will be ordered as follows: (R1, R2, . . . , RK , T1, T2, . . . , TK). The above de�nitions

are now illustrated by means of some basic examples.

Example 2.1. Consider a fully connected (2×2, 1)3
system, that is, a 3-user IC where every

user is equipped with 2 transmit and receive antennas and wants to send one data stream.

The demands matrix and the network connectivity matrix are, respectively

D =




1 0 0
0 1 0
0 0 1


 and B =




1 1 1
1 1 1
1 1 1


 . (2.22)

Consequently, the interference connectivity matrix is given by

Φ =




0 1 1
1 0 1
1 1 0


 , (2.23)

and the associated incidence matrix by

C =




1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0



. (2.24)

1
Also known as dictionary order.
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T1

T2

TL

R1

R2

RK

Figure 2.2: Representation of a fully connected L×K X network as a bipartite graph. Note that,
in this case, edges act as interference links and desired links at the same time.

Both are equivalent representation the set of interference links:

Φ = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. (2.25)

2.5 X network
We now introduce the system model for a more general network, the so-called X network.

The purpose is to instruct the reader on the similarities and di�erences of this system model

with that of the IC in Section 2.4. Although it is not instrumental for the understanding of

the main results in this dissertation, it is included for completeness and to provide a clear

view on the di�culties of extending the results in this work to X networks.

An XN is single-hop communication network consisting of L transmitters and K re-

ceivers
2

in which transmitter l has a message for each receiver k, where l ∈ {1, 2, . . . , L}
and k ∈ {1, 2, . . . , K}. Transmitters and receivers are equipped with Ml and Nk antennas,

respectively. We assume transmitter l intends to send dkl independent streams to receiver

k using a precoding matrix Vkl ∈ CMl×dkl
. We recall that all dkl are arranged in a K × L

matrix that we refer to as demands matrix, D. For the sake of convenience, the sum along

the k-th row of the demands matrix is denoted as dk, i.e., dk =
∑L

l=1 dkl.
The received signal at the k-th receiver can be modeled as

yk =
L∑

l=1

HklVklskl +
L∑

l=1

K∑

j=1
j 6=k

HklVjlsjl + nk, (2.26)

where skl ∈ Cdkl contains the information symbols that transmitter l wishes to send to

receiver k, Hkl ∈ CNk×Ml
is the constant �at-fading MIMO channel from transmitter l to

receiver k and nk ∈ CNk is the AWGN at receiver k.

2
If K = L the network is usually referred to as a K-user X channel.
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T1

T2

T3

R1

R23

1

2

1

Figure 2.3: Representation of the network described in Example 2.2. Do�ed lines represent
interference links and solid lines, desired links. A combined line stroke (solid-do�ed) denotes
links that carry both interference and desired signal. The numbers indicate the number of streams
traversing each link.

At the k-th receiver side, a linear �lter Uk ∈ CNk×dk is applied. Consequently, the

received signal after projection onto the column space of Uk is given by

ŝk = UH
k

L∑

l=1

HklVklskl

︸ ︷︷ ︸
Desired signals

+ UH
k

L∑

l=1

∑

j 6=k
HklVjlsjl

︸ ︷︷ ︸
Interference

+ UH
k nk︸ ︷︷ ︸

Noise

. (2.27)

From the system model above it is clear that, as opposed to what happens in an interference

channel, both signal and inter-user interference now travel through the same MIMO chan-

nel. As we will see in subsequent chapters, this is the main di�erentiating factor between

an IC and an XN. For certain applications, it is possible that this subtle di�erence poses

new technical challenges. For example, the application of the CJ scheme to this scenario

requires a slight modi�cation with respect to its original formulation [SGJ13].

Finally, it is worth noting that any arbitrary single-hop network can be seen as a par-

ticular case of an XN. That is the case of the BC, the MAC and the mutually interfering

downlink or uplink cellular systems, namely, interference broadcast channel (IBC) and in-

terference multiple-access channel (IMAC). These and many other models can be obtained

by imposing structural constraints on the demands matrix. Additionally, if the appropriate

partial connectivity is considered, the XN can be particularized to any of the two models

introduced by Wyner [Wyn94] for cellular networks: one with cells arranged in a line, and

the other as a hexagonal array in the plane.

Example 2.2. In order to see how XNs generalize to arbitrary single-hop topologies consider

the system in Figure 2.3. It de�nes a 3 × 2 partially connected XN with partial demands.

The 5 active links

E = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}, (2.28)

are represented by the connectivity matrix

B =

[
1 1 1
1 1 0

]
, (2.29)

and the partial demands, by the following demands matrix:

D =

[
0 2 3
1 0 1

]
. (2.30)
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Given B and D, it is straightforward to compute the variables de�ned in Section 2.4.2.

First, we calculate the interference connectivity matrix

Φ =

[
1 0 1
0 1 0

]
, (2.31)

and the associated set of interference links Φ = {(1, 1), (1, 3), (2, 2)}, which are depicted

with dotted lines in Figure 2.3. Finally, the incidence matrix for the interference graph Φ is

given by

C =




1 0 1 0 0
1 0 0 0 1
0 1 0 1 0


 . (2.32)



Chapter3
Interference Alignment

In this chapter we present the interference management technique that will be the main

focus of this document: interference alignment (IA). We will �rst give a general overview of

the concept and its di�erent forms in Section 3.1. Section 3.2 will present the most notable

degrees-of-freedom (DoF) results achieved with IA which are, in many cases, proven to

be optimal. Finally, a review of the di�erent algorithms used to achieve perfect IA and

approximate solutions is presented in Section 3.3.

3.1 The interference alignment concept
Multiple-input multiple-output (MIMO) systems theory [Tel99] shows that, in a network

with K transmitters and K receivers equipped with a single antenna each, a total of K
non-interfering signaling dimensions can be created if the transmitters or the receivers are

able to jointly process their signals under perfect channel state information (CSI) [CS03].

The number of interference-free signaling dimensions in a network is commonly termed

degrees-of-freedom (DoF). For single antenna systems, it has been traditionally [HN05;

CJW10] believed that, if distributed processing at transmitters and receivers is required,

it is only possible to resolve one interference-free signaling dimension or DoF, even under

perfect CSI. For that reason, orthogonalization approaches such as time-division multiple

access (TDMA), frequency-division multiple access (FDMA) and code-division multiple ac-

cess (CDMA) have been in common use. By orthogonalizing, each user is allowed to access

1/K of the channel resources.

The advent of a technique called interference alignment (IA) changed that common

belief by showing that, in fact, a much larger DoF can be achieved. IA refers to the con-

�nement of multiple interfering signals in a reduced-dimensionality subspace. In general,

the tighter the con�nement, the more available dimensions for the desired signal. The idea

originated out of the studies of the DoF of the 2-user X channel [JS08; MMK08] although,

recently, it has been connected to the index coding problem from computer science [BK98;

Jaf14].

Every interference alignment scheme proposed since its inception can be classi�ed into

two broad categories: vector space IA and signal space IA.



24 Interference Alignment

3.1.1 Signal vector space interference alignment
Spurred by the success of IA in the 2-user X channel, the idea was quickly generalized to

other networks with a special focus on linear schemes. Interference alignment as a general

principle was established by Cadambe and Jafar [CJ08] where both non-asymptotic and

asymptotic schemes were introduced, based on whether the size of the linear precoding

vector space required to approach the optimal DoF value is �nite or in�nite, respectively.

From a theoretical point of view, the latter have lead to the most surprising results.

Cadambe and Jafar [CJ08] introduced the so-called CJ scheme which allows to align an

arbitrarily large number of interferers (within an asymptotically large number of chan-

nel uses) thus showing that interference networks are not essentially interference limited.

Later, the CJ scheme was also extended to X networks with an arbitrary number of users

[CJ09a; SGJ13], joint-processing networks [AEV12], cognitive networks [WS13] and even

applied to di�erent problems such as the design of distributed storage exact repair codes

[CJM+13].

On the other hand, non-asymptotic schemes typically su�ce when the number of spa-

tial dimensions (antennas) is su�ciently large relative to the number of alignment con-

straints (which is related to number of users in the system). This is the case of the 3-user

MIMO interference channel [CJ08] and numerous con�gurations of the general K-user in-

terference channel (IC) [WSJ14]. As these schemes will be the focus of this dissertation, we

will provide additional details below (cf. Section 3.2).

3.1.2 Signal scale interference alignment
A distinct idea for IA in signal scale using lattice codes stemmed from the deterministic

layered erasure channel model [ADT11], and crystallized when applied to many-to-one

interference channel [BPT10] and fully connected interference networks [CJS09].

The underlying idea is that by using lattice codes it is possible to decode the sum of

interference codewords (the sum of a points from a lattice is again a point in the lattice)

even when they cannot be decoded independently. Bresler et al. [BPT10] �rst applied this

idea to constant channels, a scenario where signal vector space schemes are sometimes

unable to provide the maximum DoF. The concept was sophisticated by Motahari et al.
[MOM+14]. Their main insight was that integer lattices scaled by rationally independent

factors are separable, almost surely, at high signal-to-noise ratio (SNR).

Finally, many other di�erent �avors of IA have been introduced. The interested reader

can �nd a good historical overview in the introductory paper by Cadambe and Jafar [CJ09b].

3.2 Existing DoF characterizations
Interference alignment, in any of its forms, has been of paramount importance to obtain the

DoF of many networks. In the following, we review the most representative DoF results

with special emphasis put on those concerning MIMO ICs and linear IA schemes. How-

ever, for the sake of completeness, we will occasionally mention some general information-

theoretic results, that are useful to bound the DoF performance achieved by linear schemes.
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Interestingly, for most of the scenarios, linear schemes su�ce to achieve the best possible

DoF in the network.

The DoF are currently known for a limited number of network setups. First, the DoF

for point-to-point MIMO link are well-known [Fos96; FG98; Tel99] to be

D = min(M,N), (3.1)

where M and N denote the transmit and receive antennas, respectively. The DoF of the

2-user MIMO interference channel with arbitrary number of antennas at each node, i.e.,

(M1 ×N1, d1)(M2 ×N2, d2), were characterized by Jafar and Fakhereddin [JF07]:

D = min(M1 +M2, N1 +N2,max(M1, N2),max(M2, N1)). (3.2)

Shortly afterwards, the DoF for the 3-user square MIMO interference channel were de-

scribed by Cadambe and Jafar in their celebrated paper [CJ08]. In that work, they showed

that for time-varying or frequency selective channels with unbounded diversity, a total of

K
2

DoF are achievable by using basic linear schemes only. In spite of the e�ort devoted to

elucidate the implications that a bounded diversity has on the ability of a system to align

interference [BT09; SL13], the answer still remains unclear. For that reason, most of subse-

quent works, have focused on spatial domain IA (also called one-shot alignment) where no

time or frequency symbol extensions are allowed.

Under this framework, the analysis of the 3-user IC was completed in several parallel

works by Wang et al. [WGJ14] and Bresler et al. [BCT14] showing that a (M × N, d)3

system (with M ≤ N ) is feasible if and only if the linear DoF per user ful�lls the following

condition:

d ≤
⌊

min

(
M

2− 1/κ
,

N

2 + 1/κ

)⌋
, (3.3)

where κ =
⌈

M
N−M

⌉
. The su�ciency of these results was also shown independently by Khalil

et al. [KEN12]. The di�erence between [WGJ14] and [BCT14] is that the outer bounds of

Bresler et al. are restricted to linear feasibility without channel extensions whereas those

obtained by Wang et al. are information theoretic outer bounds that are also applicable

to non-linear schemes, channel extensions are allowed and channels may be time-varying.

Since information theoretic bounds imply linear outer bounds, the results of Bresler et al.
can be recovered as special cases of the bounds by Wang et al. In any case, both upper and

lower bounds coincide in a normalized DoF sense and, therefore, the statements by Wang et
al. are subject to the validity of the spatial invariance conjecture, which, essentially states

that time, frequency and space dimensions are equivalent from a DoF perspective. More

speci�cally, it means that if the number of antennas at every node is scaled by a certain

factor, then the information theoretic DoF will also scale by the same factor.

For K > 3, Wang et al. [WSJ14] introduced the genie chains approach to leverage

the computation of information theoretic outer bounds, not only for interference channels,

but also for many other network topologies such as interference broadcast channels (IBCs)

[LY13a], XNs, etc. Besides outer bounds, Wang et al. provided linear signal space alignment

achievability results for certain regimes. In fact, linear beamforming at the transmitters and

zero-forcing at the receivers su�ce to achieve the DoF outer bounds. More details on the

DoF results in [WSJ14] are provided in Section 4.4.4 of this dissertation.
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The following outer bound for the total number of DoF was proved in [GJ10]

D ≤ K min(M,N) 1 (K ≤ R)

+K
max (M,N)

R + 1
1 (K > R) , (3.4)

where 1 (·) represents the indicator function and R = bmax (M,N) /min (M,N)c. When

lattice-based alignment schemes are used, the DoF of ICs with real and constant coe�cients

have been studied in [GMK10; EO09; WSV11].

Nevertheless, the exact DoF is known for some particular scenarios. That is the case of

the square symmetricK-user IC, i.e., (M×M,d)K , for which the DoF are given by [BCT14]

D =

⌊
2M

K + 1

⌋
K, (3.5)

or the symmetric (M×N, d)K scenario when d divides eitherM orN [RLL12], whose DoF

are given by

D =

⌊
M +N

K + 1

⌋
K. (3.6)

Additionally, Razaviyayn et al. [RLL12] also showed that, in general, in a (M × N, d)K

scenario the number of streams per user, d, is upper bounded as

d ≤ M +N

K + 1
. (3.7)

From the aforementioned results it is clear that DoF closed-form formulas only exist for

systems endowed with certain symmetry, i.e., equal number of antennas at both sides of the

link and at every user, or equal stream transmission demands. The problem of determining

the maximum DoF of an arbitrary network is still open. Some researchers, motivated by

the results of Razaviyayn et al. [RSL12], are inclined to think that a simple and e�ciently-

computable solution to such a problem cannot exist. Speci�cally, Razaviyayn et al. proved

that for a given channel, not only the problem of �nding the maximum achievable DoF

is NP-hard, but also the problem of checking the achievability of a given tuple of DoF,

(d1, . . . , dK), is NP-hard when there are at least 3 antennas at each node.

However, we believe that the appropriate way to tackle this problem (which is closer

to what one would expect in the real world) is by considering generic channels instead

of specially crafted channel realizations. Using this approach, we provide a feasibility test

(Section 4.4) which shows that the problem of determining the feasibility of a given DoF

tuple belongs to the bounded-error probabilistic polynomial time (BPP) complexity class.

Consequently, we are still hopeful that the maximum DoF problem admits an e�ciently-

computable solution even if P 6= NP.

Finally, it is worth a mention that similar DoF characterizations exist for XNs [JS08;

CJ09a; SGG+12; SGJ13] including rank-de�cient setups [AV12], and cellular systems [SW11;

LY13a; LY13b; JS14; SY14]. Since this dissertation will center upon interference channels,

we will not enter into more details. The interested reader can �nd the most relevant recent

results on this topic in the references provided in this paragraph.



3.3 Algorithms for interference alignment 27

3.3 Algorithms for interference alignment
So far, we have presented mostly information-theoretical results focused on the maximum

number of DoF achievable with IA in interference networks. Nothing has been said on

how to design the appropriate transceivers for the extraction of the promising bene�ts

announced since the advent of the IA technique.

The seminal paper by Cadambe and Jafar [CJ08] introduced the �rst explicit solution for

such design in a symmetric square 3-user IC, i.e., (2d× 2d, d)3
, which we detail in the fol-

lowing. We recall that under the assumptions of linear signal space IA, each receiver in the

network obtains an estimate, ŝk, of the symbol it is willing to decode which is contaminated

by both noise and inter-user interference. That is,

ŝk = UH
k HkkVksk︸ ︷︷ ︸
Desired signal

+
∑

l:(k,l)∈Φ

UH
k HklVlsl

︸ ︷︷ ︸
Interference

+ UH
k nk︸ ︷︷ ︸

Noise

. (3.8)

In a high SNR regime, the optimal strategy involves canceling every interfering signal con-

tribution at the same time the desired signal is guaranteed to preserve the required dimen-

sionality. More formally, this amounts to satisfying the following conditions:

rank(UH
1 H11V1) = d, UH

1 H12V2 = 0d, UH
1 H13V3 = 0d, (3.9)

UH
2 H21V1 = 0d, rank(UH

2 H22V2) = d, UH
2 H22V3 = 0d, (3.10)

UH
3 H31V1 = 0d, UH

3 H32V2 = 0d, rank(UH
3 H33V3) = d. (3.11)

Cadambe and Jafar proved that the above 9 conditions are satis�ed simultaneously, thus

achieving what we will denote as perfect interference alignment, if the precoders and de-

coders are designed as follows:

• The precoder for user 1, V1, is formed by taking any subset of d eigenvectors of the

following 2d× 2d matrix:

E = H−1
31 H32H

−1
12 H13H

−1
23 H21. (3.12)

• The precoders for users 2 and 3, V2 and V3, are obtained respectively as

V2 = H−1
32 H31V1 (3.13)

and

V3 = H−1
23 H21V1, (3.14)

At the receiver side, simple zero-forcing decoders are designed, i.e.,

U1 ∈ null([H12V2 H13V3]H), (3.15)

U2 ∈ null([H21V1 H23V3]H), (3.16)

U3 ∈ null([H31V1 H32V2]H), (3.17)
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which concludes the closed-form solution for (2d× 2d, d)3
scenarios.

Other closed-form solutions are available for a limited set of scenarios [TGR09; LD10;

SY14], but no general solution is available so far. That is the reason why, over the course

of the last years, the IA community has devoted a considerable e�ort to design iterative

algorithms for interference alignment. Although this dissertation will concentrate on the

achievement of perfect interference alignment, many other noteworthy alternatives are

available at the time of writing. In certain situations such as low SNR conditions, imper-

fect/insu�cient CSI, strict fairness/robustness requirements, etc., non-perfect interference

alignment algorithms are able to provide remarkably good performance and even compete

with perfect interference alignment solutions.

In this section we will overview the most notable advances along this line, emphasizing

the di�erent �gures of merit used for the design of IA algorithms. The goal of the following

lines is providing the reader with the appropriate ideas and terminology required to under-

stand the rest of this document. We are certainly not aiming to establish a comparison

among the available algorithms since each of them has been developed with di�erent as-

pirations. The interested reader can �nd a thorough comparison of a remarkable subset of

methods in [SSB+13]. Additionally, computer implementations of many of the algorithms

herein are available as part of the Interference Alignment MATLAB
®

Toolbox (IAbox) at

http://gtas.unican.es/IAbox

3.3.1 Objective functions
IA algorithms can be classi�ed according to several criteria. Most of them obtain transceiver

designs by optimizing some utility function or �gure of merit and can, thus, be categorized

according to the metric they optimize.

Interference leakage

In the high SNR regime, to improve the overall system performance, it is reasonable to

minimize the total interference power in the network, a quantity known as interference
leakage. The alternating minimization (AM) method was proposed in [GCJ11; PH09] as

a numerical means for determining if a given IC is feasible or not and was based in the

minimization of the interference leakage, which is de�ned as

IL ,
∑

(k,l)∈Φ

‖UH
k HklVl‖2

F . (3.18)

The algorithm proceeds by optimizing alternatively Uk and Vl as shown in Algo-

rithm 1. First, Vl is chosen at random and Uk is obtained as the eigenvectors asso-

ciated to the dk smallest eigenvalues of the matrix

∑
l:(k,l)∈Φ HklVlV

H
l HH

kl . Then, Vl

is obtained as the eigenvectors associated to the dl smallest eigenvalues of the matrix∑
k:(k,l)∈Φ HH

klUkU
H
k Hkl. As shown in [SSB+13] the updates can be done sequentially or

in parallel.

The same cost function has been used to obtain solutions for structured channels

[LGS13; MNM11] and convolutional channels [GLV+12]. Also, a message-passing imple-

mentation of the minimum interference leakage criterion with improved convergence speed

http://gtas.unican.es/IAbox
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Algorithm1:Minimum leakage alternating minimization algorithm with parallel up-

dates for interference channels.

Input: Channel matrices, {Hkl}; interference leakage objective ε
Output: Set of precoders {Vl} and decoders {Uk}
begin

Start with arbitrary precoders {Vl} such that VH
l Vl = Idl ∀l ∈ K

repeat
foreach k ∈ K do

Uk = eigvecNk−dk+1,...,Nk


 ∑

l:(k,l)∈Φ

HklVlV
H
l HH

kl




foreach l ∈ K do

Vl = eigvecMl−dl+1,...,Ml


 ∑

k:(k,l)∈Φ

HH
klUkU

H
k Hkl




until IL < ε

is shown in [GRM14]. In [RX10], an additional summand is added to the interference leak-

age objective function rewarding a high desired signal power. Its performance is highly

dependent on the weighting factor. The simple solution of using excess antennas for im-

proving desired signal power is proposed in [EEK13]. A lower complexity version of the AM

algorithm is also presented in [RLW13], where redundant optimization variables are elim-

inated from the precoders and decoders. Additionally, the deterministic annealing frame-

work has been used in combination with the variational mean �eld method [BGF14] to

obtain a distributed iterative algorithm that has the algorithms in [GCJ11; PH09] as special

cases.

A slightly di�erent approach is followed by Papailiopoulos and Dimakis [PD12] who,

instead of minimizing the `2-norm of the interference singular values (as dictated by the

interference leakage cost function), use the `1-norm as the cost function. The algorithm was

later extended to make use of the information provided by the direct channels in [DRS+13].

Another series of alternating optimization algorithms seeking for perfect interference

alignment have also been proposed [YS10; YSK+12; LYS13]. Unfortunately, when relatively

large network setups are considered they fail to converge to an IA solution stagnating in

local minima or violating rank or power constraints.

Both steepest descent and alternating minimization methods seeking to minimize the

distance between interference subspaces have also been proposed in [BDU12; ZGL+12].

Although, for some scenarios, these methods seem to converge faster than the conventional

AM algorithm, for others, they stagnate in local minima. Steepest descent methods have

also been proposed in [GP11] to minimize the interference leakage cost function.
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Signal-to-interference-and-noise ratio

The AM algorithm makes no attempt at maximizing the signal power within the desired

signal subspace and hence its sum-rate performance is poor especially at the noise-limited

regime. Mainly for this reason, Gomadam et al. [GCJ11] proposed the maximum signal-

to-interference-plus-noise ratio (SINR) algorithm (MaxSINR) that jointly designs precoders

and decoders for each stream to maximize its received SINR. In particular, the alternating

optimization procedure of [GCJ11] was utilized to sequentially optimize the SINR at each

of the dk streams of a hypothetical k-th receiver. More speci�cally, the SINR of the r-th
stream of the k-th receiver is

Uk[:, r]
HHkkVk[:, r]Vk[:, r]

HHH
kkUk[:, r]

Uk[:, r]HBkrUk[:, r]
, (3.19)

where

Bkr =
∑

l:(k,l)∈Φ

dl∑

d=1

HklVl[:, d]Vl[:, d]HHH
kl −HkkVk[:, r]Vk[:, r]

HHH
kk + σ2INk . (3.20)

The MaxSINR algorithm is inspired by the SINR duality in the multiple-access channel

(MAC) and the broadcast channel (BC). Although, this duality does not hold for interference

networks, the MaxSINR algorithm is able to provide quasi-optimal performance in single-

stream systems. For multi-beam systems, in [SGH+10; PSP10], it is observed that without

an additional orthogonalization step, the algorithm yields linearly dependent beamforming

vectors causing a substantial sum-rate loss.

The fact that SINR duality does not hold for interference networks has also delayed the

development of a convergent MaxSINR algorithm. A convergent version of the MaxSINR

algorithm was �nally proposed in [WV13] where a sum power constraint across all users

is imposed and the problem is solved by implementing a power control step.

We recall that the MaxSINR method described above considers inter-stream interference

and solves precoders and decoders one column at a time, however, distinct approaches are

possible. Peters and Heath [PH11] proposed optimizing a �gure of merit termed global SINR
and de�ned as the ratio of the sum of all users’ desired powers and the sum of all user’s

received interference plus noise powers. Simulation results suggest that both algorithms

(the ones in [GCJ11] and [PH11]) perform similarly on average. The main di�erence is that

the maximum global SNR can be proved to converge (although not to the global optimum).

Sum-rate

Another possible approach for improved performance in noise-limited scenarios is maxi-

mizing the user rates described in (2.12). In [SGH+10] we proposed combining the AM al-

gorithm with an additional step in the direction of the sum-rate gradient in the Grassmann

manifold. This algorithm evidenced the huge performance di�erences in terms of sum-rate

among di�erent IA solutions and motivated the need to design speci�c rate maximization

algorithms. Since all the user rates cannot be optimized simultaneously, a weighted sum-
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rate is usually considered. That is, the quantity to maximize is given by

wSR =
K∑

k=1

wkRk, (3.21)

where wk ∀k ∈ K denotes the set of weights that are chosen depending on fairness or

quality of service requirements.

Weighted sum-rate alternating optimization has later been considered in [SM12;

ZDG+12; RSL12]. Gradient-based approaches to weighted sum-rate maximization are also

available [SPL+10; NSG+10b] including algorithms on manifolds [RG12].

Occasionally, it is convenient to quantify how the good the network performance is by

de�ning a subjective utility function (not required to be equal to the sum-rate) which is

chosen so that it is easier to optimize. This is the approach followed by numerous works

among which we highlight [SRL+11] and the interference pricing approaches introduced in

[BH06], applied to multi-antenna networks [SSB+09b] and proved to converge in [SBH09].

As a �nal remark, it is worth mentioning that a connection between weighted sum-rate

optimization and weighted sum mean square error (MSE) exists. This connection was �rst

pointed out by Christensen et al. [CAC+08] for the broadcast channel and, recently, it has

been extended to IBCs by Shi et al. [SRL+11].

Mean square error

Let MSEk be the MSE at the k-th receiver, i.e.,

MSEk = E[|ŝk − sk|2], (3.22)

and let MSE denote the sum MSE across users

MSE =
∑

k∈K
MSEk. (3.23)

The MSE is a common metric to account for noise and other spurious e�ects in receivers. In

a point-to-point MIMO, it is well-known that a linear zero-forcing receiver simply inverts

the channel and causes coloring and ampli�cation of noise. A minimum mean square error

(MMSE) receiver, on the contrary, �nds a balance between the e�ect of noise and that of

channel inversion. A similar idea can be applied to multi-user networks performing IA. In

this case, the MMSE receiver balances the need for keeping the desired signal level above

the noise with that of performing IA.

Although MMSE designs for point-to-point and broadcast channel have been studied

for decades, it has been quite recently when this concept was extended to interference

networks in [PH11; SLT+10; AP13]. Some authors, given the connection pointed out above

between the weighted sum-rate and the weighted MSE criteria, have proposed minimum

weighted MSE algorithms [SSB+09a; SRL+11].
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3.3.2 Other metrics
So far we have mentioned some of the most important aspects to take into account when

designing IA algorithms. Nevertheless, there are many other less-studied characteristics

concerning stream or user fairness [YZA13], power control [YZA13; WV13], automatic

rank discovery [RSL12; GKB+14] or user admission without a�ecting the network sum-rate

[NAH12], which are also of relevance. The interested reader can �nd additional information

in these papers and references therein.

3.3.3 Channel state acquisition and distribution
In this section we distinguish the algorithms according to the amount of information they

need to acquire and/or share.

Channel state information

IA is a communication a strategy in which a tight cooperation between nodes is required.

Usually, IA designs depend on all the channel matrices in the scenario. In this sense, full

network-wide channel knowledge is required. However, most of the algorithms circumvent

this limitation by iteratively designing node transceivers with the only need of local CSI.

There are two basic methods to acquire channel channel state information: reciprocity and

feedback.

The main advantage of time-division duplex (TDD) systems over frequency-division du-

plex (FDD) systems is the possibility to exploit channel reciprocity. If channel reciprocity

holds, propagation conditions in both directions match exactly. Then, the transmitters can

infer the structure of the interference they cause by looking at the interference they receive.

Due to the di�erent transceiver circuitries in the transmit and receive path, the reciprocity

principle is not generally ful�lled at the digital baseband interfaces. However, if transmit

and receive chains are designed and calibrated appropriately the channel reciprocity as-

sumption may hold. Most of the algorithms enumerated above could take advantage of the

reciprocity assumption. Still, reciprocity may not be enough for all interference manage-

ment algorithms. For example, one of the algorithms in [PH11] considers uncoordinated

interference. Given that uncoordinated interference is not reciprocal a di�erent approach

is required.

The second approach to obtain CSI is using feedback. In this case, the transmitters send

training sequences which are used by the receivers to estimate the forward channels. The

receivers proceed analogously by sending training sequences to the transmitters so that

they can estimate the reverse link. Then, they both need to share the acquired information

with each other through feedback links. Feedback introduces distortion of the CSI usu-

ally through quantization of the channel state. Designing good quantization schemes is

a di�cult yet important task. Also, the amount of feedback grows superlinearly with the

network size. Even worse, CSI is not su�cient for SNR-aware schemes such as maximum

sum-rate, minimum MSE or maximum SINR, which also need to estimate noise variances

at each receiver antenna.

In order to avoid the problem of sharing quantized CSI and estimated noise variances,

Shi et al. have proposed to share scalar quantities known as interference prices [SSB+09c;
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SSB+09a]. Other alternatives to mitigate the need for global CSI involves organizing users

in small alignment clusters [NGA+13].

Distributed / centralized operation

In terms of distribution of the CSI we can distinguish between centralized and distributed

algorithms. In a centralized algorithm the K users estimate all direct and interference link

channel matrices (and, possibly, noise variances at each receiver) and send this information

to a central controller through signaling links. The central controller solves the optimiza-

tion problem and sends the transceiver designs back to the corresponding network nodes. In

contrast, in a distributed algorithm each node updates its transceiver design autonomously

based on acquired CSI.

3.3.4 Convergence properties
The AM method, which became specially well-known because of its simplicity and relia-

bility, is shown to converge monotonically. Note that this implies that it converges to, at

least, a local optimum but not necessarily to the global optimum. However, it has been

experimentally observed that the AM algorithm �nds the global solution, attaining zero in-

terference leakage, in all feasible scenarios. To the best of our knowledge, a rigorous proof

for this fact has not been provided yet.

The AM method has given rise to a myriad of variants such as [LGS13; GLV+12;

SGH+10; MNM11; PD12; AP13; DRS+13; EEK13; ZDG+12; YZA+13] which provide per-

formance improvements at the expense of a higher computational complexity or number

of iterations. The convergence analyses of these algorithms are typically limited to prove

its monotonicity, leaving aside many other aspects such as convergence speed or the dis-

tinction between local and global convergence that are key for the practical applicability of

the method.

An iterative method is said to converge globally if it converges regardless of the initial-

ization point. In contrast, the method is said to be locally convergent if it converges when

the initial approximation is already close enough to the solution. Most of the IA algorithms

for which a convergence proof exists are globally convergent, irrespective of whether they

converge to a local or global optimum.

A less studied property of IA algorithms is the speed at which the variables approach

its convergence value which is called the convergence rate. Suppose that certain algorithm

converges to a solution vector x?. Then, a sequence of vectors {xn} is said to converge to

x? with order α if

lim
n→∞

‖xn+1 − x?‖
‖xn − x?‖α = c , (3.24)

with 0 ≤ c <∞.

Alternating optimization methods and steepest descent algorithms are known to con-

verge q-linearly (that is, α = 1) with 0 ≤ c < 1 (see [BH03; AMS08; NW06]). Consequently,

for any initial vector x0, the sequence {xn} generated by the algorithm converges to x? sat-

is�es

‖xn+1 − x?‖ ≤ cn ‖x0 − x?‖ . (3.25)
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In words, this means that the distance ‖xn+1 − x?‖ decays exponentially. Examples of IA

papers which have explored this exponential decay are [PSP10; YZA13].

Still, IA algorithms require a relatively large number of iterations (that seem to increase

with the dimensions of the system) which inevitably raises the question of the associated

overhead. Despite the plethora of IA schemes showing q-linear convergence, this major

issue has not been properly addressed yet.

Chapters 6 and 7 of this dissertation present two q-quadratic (i.e. α = 2) algorithms

addressing this problem.

3.4 Summary
This dissertation focuses on the perfect IA problem which can be interpreted as the global

optimum of an interference leakage minimization procedure (i.e., a perfect alignment solu-

tion is achieved if and only if the interference leakage function is identically zero).

In subsequent chapters we will study the conditions under which the problem is solvable

(Ch. 4), how many solutions exist (Ch. 5) and how to compute them (Chaps. 6 and 7).

For the solution of this problem we will consider centralized solutions involving global

CSI. Channel estimates are assumed to be fed back to a central controller which computes

the solution and sends the results back to the communicating entities. Our methods are

SNR agnostic meaning that the noise variance information is not used as an input of the

optimization procedure. This is consistent with a high SNR situation in which perfect IA is

the optimal transmission technique.

In particular, taking advantage of the centralized operation of our methods, q-quadratic

convergence is achieved. Neither power control nor user or stream admission is conducted.

Our algorithms operate on a �xed power budget, where each user has a preassigned DoF

requirement. Since stream or user fairness is irrelevant at high SNR, no e�ort is conducted

along this line.

Among all the methods presented in this chapter, AM is the only method which sys-

tematically obtains a solution (when it exists) achieving the maximum DoF in interference

channels. For that reason, AM will serve as our comparison baseline in terms of both con-

vergence speed and reliability. In terms of sum-rate, we will also show that the proposed

algorithms provide competitive results when compared with other state-of-the-art algo-

rithms.
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Feasibility of Interference

Alignment

The main focus of this chapter will be to analyze the feasibility of linear vector space in-

terference alignment (IA) in structureless multiple-input multiple-output (MIMO) interfer-

ence channels (ICs). That is, no channel extensions or asymmetric complex signaling are

allowed. Admittedly, this constitutes a set of assumptions that substantially simpli�es the

analysis. Still, as we will see throughout the chapter, the required mathematical machin-

ery and arguments are rather involved. The di�culties in extending the analysis herein to

di�erent schemes such as X networks (XNs) will be commented when appropriate.

This chapter is structured as follows. Sections 4.1 and 4.2 present the problem and re-

view some of the most signi�cant results on the topic, respectively. Section 4.3 explores an

alternative interpretation of the IA feasibility problem as a network �ow problem providing

a closed-form solution to the feasibility problem for arbitrary single-beam ICs. The feasibil-

ity of multi-beam system is studied in Section 4 where a fully general numerical feasibility

test is proposed. The aforementioned test is then used in Section 4.5 as the main building

block of an algorithm developed to compute the maximum degrees-of-freedom (DoF) of

arbitrary networks whose results are shown in Section 4.6. The contents of this chapter are

mainly based on our publications [GSB12; GLV+13; GBS14].

4.1 IA as a system of polynomial equations
The IA problem consists in designing the set of decoders and precoders, {Uk} and {Vl}, in

such a way that the interfering signals at each receiver fall into a reduced-dimensionality

subspace and the receivers can then extract the projection of the desired signal that lies in

the interference-free subspace.

To this end, it is required that the following polynomial equations [GCJ11; YGJ+10]

Ekl : UT
kHklVl = 0dk×dl , ∀(k, l) ∈ Φ, (4.1)
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are satis�ed
1
, while the signal subspace for each user must be linearly independent of the

interference subspace and must have dimension dk, that is

rank(UT
kHkkVk) = dk, ∀k ∈ K. (4.2)

We recall that all matrices Hkl (including direct link matrices, Hkk) are generic, that is,

their entries are drawn from a continuous probability distribution and are independent of

each other (independence among di�erent links also holds). Consequently, (4.2) is satis�ed

almost surely provided that Uk and Vl are full-rank. In general, this does not hold for XNs.

The equations in (4.1) form a system of polynomial equations in the variables of {Uk}
and {Vl}. More speci�cally, (4.1) is a set of bilinear equations, i.e. the equations are linear

in each of its arguments (the elements of the sets {Uk} and {Vl}). We will use the notation

Ekl[m,n] to denote the equation involving the m-th stream of transmitter l and the n-th

stream of receiver k, which can be written as

Ekl[m,n] : Uk[:, n]THklVl[:,m] = 0 ∀(k, l) ∈ Φ, 1 ≤ m ≤ dl and 1 ≤ n ≤ dk,
(4.3)

where it is clear that the polynomial coe�cients are given by the entries, Hkl[i, j], of the

MIMO channel matrices involved and are, consequently, generic.

As most of the polynomial systems arising in engineering and science, the system (4.3),

besides being generic, is also sparse and highly structured. These features cause systems to

have fewer solutions than would, a priori, be expected and, quite oftenly, makes it harder

to analyze its solvability. Although both of them can be used indistinctly, the IA literature

has preferred the term feasibility over solvability when referring to the analysis of the con-

ditions under which the system is solvable (feasible) or not (infeasible). Hereinafter we will

adhere to this convention.

4.1.1 Preliminary observations and definitions
Before presenting the results in the IA literature concerning feasibility, we will compile, for

the sake of convenience and completeness, some basic properties and de�nitions concern-

ing polynomial systems of equations.

A system is said to be overdetermined if the number of equations is larger than the

number of variables. A system is inconsistent (infeasible in IA terminology) if it has no

solutions. It is inconsistent if and only if the contradiction 0 = 1 can be obtained as a

linear combination (with polynomial coe�cients) of the equations (this result is known as

Hilbert’s Nullstellensatz). Most, but not all, overdetermined systems are inconsistent.

On the other hand, if the number of equations is smaller than the number of variables,

the system is said to be underdetermined and is either inconsistent or has in�nitely many

solutions. The latter are referred to as positive-dimensional systems owing to the fact that

the algebraic variety of the solution has a positive dimension of, at least, the di�erence

between the number of variables and equations. The dimension is minimal generically, i.e.,

when the system coe�cients are chosen at random.

1
In this chapter, for mathematical reasons and without loss of generality, we will prefer to use UT

k instead

of UH
k .
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Finally, if the number of equations is equal to the number of variables the solution set

can be either empty or zero-dimensional, i.e. the algebraic variety has dimension zero or,

in plain words, the system has a �nite number of isolated solutions.

It can be noted that the properties just listed do not provide a conclusive answer on the

feasibility of a given system and each particular case must be considered separately. If we

are interested in a conclusive answer on whether a given polynomial system is solvable or

not, we need to calculate its Gröbner basis [CLO97, Chapter 4, Section 1]. If the Gröbner

basis is {1}, then the system is inconsistent, otherwise it is not. Buchberger’s algorithm

[Buc76] is commonly used to compute a Gröbner basis. It includes two fundamental algo-

rithms as special cases. In the case of a single variable polynomials, Buchberger’s algorithm

reduces to Euclid’s algorithm for computing the greatest common divisor of the polynomi-

als. In the case of degree-one polynomials, Buchberger’s algorithm reduces to Gauss’ tri-

angularization method. The main drawback of the Gröbner basis approach is that, even for

rather small polynomial systems, it is computationally prohibitive both in terms of memory

and time, which grows doubly-exponentially with the number of variables in the system.

4.2 Prior results on IA feasibility
The main theoretical investigation pertaining to IA feasibility was conducted by Yetis et al.
[YGJ+10] who �rst studied the necessary conditions for IA feasibility. We have previously

shown how the linear interference alignment problem can be described by a set of bilin-

ear equations which correspond to the zero-forcing conditions at each receiver. Yetis et al.
classi�ed IA systems as either improper or proper, depending on whether or not the num-

ber of equations exceeds the number of variables in each subsystem of equations. In the

following we provide the main ideas leading to this distinction which will be instrumental

to understand the rest of this thesis.

First, start by considering the equations in (4.1). It is clear that (4.1) consists of a total of

|Φ| matrix equations, one per interference link. The matrix equation corresponding to the

link (k, l), where l and k denote the transmitter and receiver index, respectively; is made

up of the dkdl scalar equations, as shown in (4.3). For the sake of convenience we de�ne

the set of scalar equations as

E = {Ekl[m,n] | (k, l) ∈ Φ, 1 ≤ m ≤ dl, 1 ≤ n ≤ dk}, (4.4)

and, consequently, the total number of equations to be satis�ed in the network is

|E| =
∑

(k,l)∈Φ

dkdl. (4.5)

Calculating the number of variables is less straightforward since special care has to

be taken not to count super�uous variables. The key observation for counting variables

appropriately is realizing that the IA conditions, (4.1) and (4.2), are invariant to right-

multiplications of the precoders and decoders by an invertible matrix. Let Ql be a dl × dl
matrix, then any new precoder V′l = VlQl lies in the linear subspace spanned by Vl, which

we will de�ne as span(Vl). Obviously, the same applies for Uk. Note that, this invariance
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means that the satis�ability of the IA conditions does not depend on the actual values of

Vl and Uk but on the linear subspace they live in. More formally, this means that each

precoder/decoder should not be regarded as simply a matrix but as a representative of its

corresponding linear subspace:

Vl is a class representative of span(Vl) ∈ GMl×dl and

Uk is a class representative of span(Uk) ∈ GNk×dk ,

where Gn×p denotes the Grassmann manifold or the set of all p-dimensional complex sub-

spaces ofCn. The number of free complex variables parametrizing the Grassmann manifold

Gn×p equals its complex dimension which is p(n− p) [AMS08]. A convenient way to visu-

alize this is picking Ql = (Vl[1 :dl, 1:dl])
−1

and Qk = (Uk[1 :dk, 1:dk])
−1

(i.e. the inverse

of the submatrix formed by the �rst dl or dk rows of Vl and Uk, respectively) which give

rise to the class representatives

Vl =

[
Idl
Ṽl

]
and Uk =

[
Idk
Ũk

]
, (4.6)

where the submatrices Ṽl and Ũk are, now, entirely formed by free, non-super�uous, vari-

ables. For the l-th user precoder this makes dl(Ml − dl) free variables. Likewise, the actual

number of variables to be designed for the interference suppression �lter at the k-th user

is dk(Nk − dk). As a result, the total number of variables to be designed in an IC is

| var(E)| =
∑

k∈K
dk(Mk +Nk − 2dk). (4.7)

This leads us to the formal de�nition of a proper system.

De�nition 4.1. (De�nition 1 in [YGJ+10]) The system
∏K

i=1(Mi × Ni, di) is proper if and
only if

∀S ⊆ E , |S| ≤
∣∣∣∣∣
⋃

E∈S
var(E)

∣∣∣∣∣ . (4.8)

In words, the number of variables involved in every subset of equations must be at least

as large as the number of equations in that subset. Note that identifying a system as either

proper or improper is computationally cumbersome because it requires to test all subsets

of scalar equations. That is checking an exponentially large number of conditions, 2|E|− 1.

To make �gures more amenable, in a symmetric network (M × N, d)K it would require

checking 2K(K−1)d2 − 1 conditions.

Resorting to classical results of algebraic geometry such as Bernstein’s Theorem, Yetis

et al. [YGJ+10] were able to establish a rigorous connection between properness and feasi-

bility for single-beam systems only. By relying on Bernstein’s Theorem they are implicitly

restricting the solutions to (C∗)n where C∗ is de�ned as the complex plane excluding the

origin, i.e. C∗ = C\{0}, which means that no variable is allowed to take a zero value. Quite

recently, Sun and Luo [SL13] have formalized the proof of Yetis et al. Their main concern

was evaluating if there is loss of generality by restricting the solutions to (C∗)n. It hap-

pens that, when channel matrices are structureless, any solution in Cn can be mapped to
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a solution in (C∗)n with a unitary transformation that does not a�ect the genericity of the

channel. The same arguments does not hold for structured channels and a more profound

analysis is required [SL13].

For multi-beam systems, Yetis et al. conjectured (based on numerical experiments) that

improper systems were infeasible. Although, at �rst glance, such a result may seem obvious,

we recall that overdetermined polynomial systems are not necessarily unsolvable. This

conjecture was later settled in the positive by the concurrent works of Razaviyayn et al.
[RLL12], Bresler et al. [BCT14] where having more variables than equations was shown

to be a necessary condition for feasibility. Besides, su�cient conditions for a variety of

symmetric scenarios were also given.

Now, we will discuss each of these results separately:

Theorem 4.2. [RLL12, Theorem 1] Consider a K-user �at fading MIMO IC where the chan-
nel matrices {Hkl} are generic. Assume no channel extension is allowed. Then any tuple of
degrees of freedom (d1, d2, . . . , dK) that is achievable through linear interference alignment
must satisfy the following:

min(Mk, Nk) ≥ dk, ∀ k, (4.9)

max(Ml, Nk) ≥ dl + dk ∀ (k, l) ∈ Φ, (4.10)

∑

l:(k,l)∈φ
(Ml − dl)dl +

∑

k:(k,l)∈φ
(Nk − dk)dk ≥

∑

(k,l)∈φ
dldk ∀φ ⊆ Φ. (4.11)

The �rst two conditions of this theorem are rather obvious and can be checked in poly-

nomial time. In particular, (4.9) involves checking that the multiplexing gain of the K
desired links does not exceed the DoF bounds of a point-to-point link [FG98; Tel99], which

amounts checking a total of K conditions. Evaluating (4.10) requires checking a total of

|Φ| conditions or, more speci�cally, K(K − 1) conditions in a fully connected IC. These

conditions allow each Vl to lie in the nullspace of UH
k Hkl. However, the number of eval-

uations required to assess (4.11) is 2|Φ| − 1 which, for a fully connected scenario, grows

exponentially with K , i.e. 2K(K−1) − 1. Nevertheless, although (4.11) brings a substantial

complexity reduction with respect to (4.1), they are both asymptotically equivalent.

Theorem 4.3. [BCT14, Theorem 1] Fix and integer K and integers dk, Mk, and Nk for k ∈
K = {1, . . . , K} and suppose the channel matrices Hkl are generic. If, for any subset A ⊆ K,
the quantity

sA :=
∑

k∈A
((Mk − dk)dk + (Nk − dk)dk)−

∑

k,l∈A
(k,l)∈Φ

dldk (4.12)

is negative, then there are no feasible strategies. Moreover, if there are feasible strategies, then
s := sK is the dimension of the variety of solutions.

Note that (4.12) is very similar to (4.11), the only di�erence being the number of con-

ditions that we need to check in (4.12) when compared to (4.11). In the former, the total

number of conditions to check are 2K − 1, still exponential, but a subset of the 2K(K−1)− 1
conditions in (4.11). However, the scenarios (if any) in which Theorem 4.3 is weaker than

Theorem 4.2 remain unclear. At this point, the best necessary conditions for IA feasibility
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have a time-complexity that grows exponentially with the number of users which makes

them not-so-desirable for a practical use. Fortunately, in some cases these conditions are

also su�cient and even simplify notably.

Given that the study of IA feasibility is intimately related to that of the determining

the maximum DoF of the network, additional feasibility results can be deducted from DoF

results in the literature (cf. Section 3.2). We recall that the former consist in answering

the question of whether a given DoF tuple is feasible given a set of system parameters:

number of users, K , and antennas per user, {Mk} and {Nk}. The second is computing the

maximum sum-DoF,

∑K
k=1 dk for the same set of system parameters: K , {Mk} and {Nk}.

4.3 A network flow approach to interference alignment
In this section we provide an alternative interpretation of the set of conditions (4.11) in

Theorem 4.2,

∑

l:(k,l)∈φ
(Ml − dl)dl +

∑

k:(k,l)∈φ
(Nk − dk)dk ≥

∑

(k,l)∈φ
dldk, ∀φ ⊆ Φ, (4.13)

as a �ow in a bipartite network which will show that its evaluation can be done in polyno-

mial time.

Consider the bipartite graph presented in Section 2.4 that mirrors the network topology

at hand, that is, two disjoint sets of nodes

T = {T1, . . . , TK}, R = {R1, . . . , RK}, (4.14)

representing the transmitters and receivers, respectively, and a set of edges

E = {(Tl, Rk) : (k, l) ∈ Φ}, (4.15)

representing each of the interference links. Now, edge (Tl, Rk) can also be thought of as

a matrix equation involving precoder Vl and decoder Uk. Now, impose a non-negative

capacity ckl to every edge (Tl, Rk).

Let S andD be to distinguished new nodes (S=source,D=drain) as shown in Figure 4.1.

The source node will provide the l-th node of T with a non-negative supply al and the drain

will demand a non-negative amount bk from the k-th node of R. Under these constraints,

a non-negative integral �ow from S to D is feasible if it satis�es the demands bk for the

supplies al and the edges are traversed by an integral �ow within their capacity limit, i.e.,

fkl ≤ ckl. More formally, a �ow is feasible if and only if

K∑

l=1

fkl ≥ bk, (4.16)

K∑

k=1

fkl ≤ al, (4.17)

subject to fkl ≤ ckl.
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Figure 4.1: Bipartite graph mirroring the network topology with additional source (S) and drain
(D) nodes. Supplies al, demands bk and edge capacities, ckl, are also depicted.

The conditions for the existence of a feasible �ow are given by the Supply-Demand

Theorem originally due to Gale [Gal57] and, more comprehensively, covered in the book

by Ford and Fulkerson [FF62, Theorem 1.1]. However, for bipartite graphs it is more conve-

nient to directly apply the version by Mirsky [Mir68, Theorem 4]. According to his version

a feasible �ow will exist if and only if

∑

k∈B
bk −

∑

l∈Ā
al ≤

∑

k∈B
l∈A

ckl, ∀A,B ⊆ K, (4.18)

where Ā denotes the complement of the set A, i.e., Ā = K \ A.

The similarity of (4.18) and (4.13) is clear and, indeed, (4.13) can be identi�ed with (4.18)

as follows. First, de�neB andA as the �rst and second projection of the set φ, respectively.

We then have

∑

l∈A
(Ml − dl)dl +

∑

k∈B
(Nk − dk)dk ≥

∑

k∈B
l∈A

ckl, ∀A,B ⊆ K, (4.19)

where ckl = dkdl ∀(k, l) ∈ Φ and ckl = 0 otherwise. Recall that given that (k, k) ∈ Φ, we

will always have ckk = 0, regardless of the set of interfering links Φ. Now, we use this fact

to rewrite the right hand side of (4.19) as

∑

l∈A
(Ml−dl)dl+

∑

k∈B
(Nk−dk)dk ≥

∑

l∈K
dl
∑

k∈B
dk−

∑

k∈B
d2
k−
∑

k∈B
l∈Ā

ckl, ∀A,B ⊆ K, (4.20)

which, after substitutingA by its complement Ā = K\A and some algebraic manipulation

leads to

∑

k∈B
dk

(∑

l∈K
dl −Nk

)
−
∑

l∈Ā
(Ml − dl)dl ≤

∑

k∈B
l∈A

ckl, ∀A,B ⊆ K. (4.21)

At this point, it is clear that (4.21) represents the conditions for a �ow to exist in a bipar-

tite network with supplies al = (Ml−dl)dl, demands bk = dk
(∑

l∈K dl −Nk

)
and capacity
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constraints ckl = dkdl ∀ (k, l) ∈ Φ and ckl = 0 otherwise. Note, however, that bk can take

negative values whenNk >
∑

l∈K dl which will violate our non-negativity assumptions on

bk. We claim that the demands can be changed to bk = dk max
(∑K

l=1 dl −Nk, 0
)

without

loss of generality. The rationale behind this is simple. First, consider a scenario (either fea-

sible or infeasible) where Nk =
∑

l∈K dl for some k. In practice, this means that the k-th

receiver has enough antennas to accommodate every stream in the network (overlapping

the interfering signals is not even required). Now consider that this receiver is equipped

with additional antennas so that the new number of antennas isN ′k > Nk. From a practical

point of view, it is clear that the feasibility of the system is not a�ected by the addition of

these antennas and, therefore, it does not make sense to consider the antennas exceeding∑
l∈K dl.
This allows us to state the following theorem.

Theorem 4.4. Consider an IC
∏K

k=1(Mk×Nk, dk) with a set of interference links Φ and sup-
pose the channel matrices Hkl ∀ (k, l) ∈ Φ are generic. Consider also a bipartite transport net-
work with the same connectivity Φ, supplies (Ml−dl)dl, demands dk max

(∑K
l=1 dl −Nk, 0

)

and capacity constraints ckl = dkdl ∀ (k, l) ∈ Φ and ckl = 0 otherwise. Also assume

min(Mk, Nk) ≥ dk, ∀ k, (4.22)

max(Ml, Nk) ≥ dl + dk ∀ (k, l) ∈ Φ, (4.23)

hold. If the maximum �ow, F , in the transport network does not ful�ll the aggregate demand,
i.e.,

F <
K∑

k=1

dk max

(
K∑

l=1

dl −Nk, 0

)
, (4.24)

then there are no feasible strategies.

We have already shown that the complexity of evaluating (4.22) and (4.23) is polyno-

mial. Fortunately, the maximum �ow in a network can also be computed by a variety of

polynomial-time algorithms. The most famous one is the Ford-Fulkerson algorithm [FF56],

in particular, its variant by Edmonds and Karp [EK72] which has the advantages of a �nite

number of iterations and runtime independent of the maximum �ow value. As of today, one

of the most e�cient algorithms is due to Goldberg [Gol08] which runs in timeO(m2
√

(n))
where m and n denote the number of nodes and edges in the network, respectively. In a

fully connected network (m = 2K,n = K(K − 1)), the time-complexity is then O(K3),

thus showing that the complexity of evaluating the conditions in Theorem 4.4 and, equiva-

lently, in Theorem 4.2, is polynomial in the number of users. Needless to say that algorithms

exploiting the bipartiteness of the network can be more e�cient, but the design of such an

algorithm is left for future consideration.

Example 4.1. Consider the system (4×2, 1)(2×2, 1)2(2×4, 1) and calculate the maximum

�ow solution, which is shown in Figure 4.2. The supplies a = (a1, a2, a3, a4) = (M1 −
1,M2 − 1,M3 − 1,M4 − 1) = (3, 1, 1, 1), demands b = (b1, b2, b3, b4) = (4 − N1, 4 −
N2, 4−N3, 4−N4) = (2, 2, 2, 0) and edge capacities are depicted in regular face. Since the

maximum �ow solution (in boldface) does not satisfy the demands, we can conclude the

system is infeasible.
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Figure 4.2: Maximum flow solution for the (4× 2, 1)(2× 2, 1)2(2× 4, 1) system.
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Figure 4.3: Maximum flow solution for the (4× 4, 1)(2× 2, 1)3 system.

Example 4.2. Now consider the system (4×4, 1)(2×2, 1)3
, which is built from the previous

one by simply moving two antennas from the fourth to the �rst receiver. In this case, the

supplies are a = (a1, a2, a3, a4) = (M1 − 1,M2 − 1,M3 − 1,M4 − 1) = (3, 1, 1, 1) and

the demands are b = (b1, b2, b3, b4) = (4 − N1, 4 − N2, 4 − N3, 4 − N4) = (0, 2, 2, 2).

Its maximum �ow is shown in Figure 4.3 but, despite the demands being satis�ed by the

maximum �ow solution, we cannot claim the system is neither infeasible nor feasible. We

will see in Section 4.3.1 that this system is indeed feasible.

4.3.1 Single-beam systems: a particularly nice scenario
In this section the interpretation of Theorem 4.2 as a �ow feasibility problem is taken a

step further by exploiting the special characteristics of single-beam systems. The �rst con-

sequence of restricting to single-beam networks is that the conditions in Theorem 4.2 are,

not only necessary, but also su�cient. This fact was proven by Razaviyayn et al. [RLL12].

Additionally, in Section 4.3 we have shown how a graph-theoretic interpretation allowed

us to evaluate the exponential number of conditions in Theorem 4.2 in polynomial-time.

The second consequence of considering single-beam networks is that the complexity of

evaluating these conditions can be further reduced to checking K scalar inequalities. This

gives rise to a new theorem.

In order to state the theorem we will �rst need some de�nitions. A partition a =
(a1, a2, . . . , am) of a positive integer n into m parts is a way of writing n as a sum of m
positive integers, i.e.,

∑m
i=1 ai = n. Many theorems about partitions can be proved by rep-

resenting them as a diagram of dots, known as a Ferrers diagram. Each part is represented

in this diagram as a row of dots, with as many dots as the part value is. Sometimes it is more
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Figure 4.4: Two equivalent representations of the partition (5, 4, 2, 1). Le�: Ferrers diagram; right:
Young diagram.
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Partition: a =

Conjugate partition:
a∗ =

Figure 4.5: Graphical calculation of the conjugate partition of (5, 4, 2, 1) by means of a Young
diagram. The resulting partition is read by columns as (4, 3, 2, 2, 1).

convenient to use squares instead of dots and the diagram is called a Young diagram. Both

have several possible conventions; here, we use English notation, with diagrams aligned in

the upper-left corner. For example, the partition (5, 4, 2, 1) of 12 is represented by any of

the diagrams of Figure 4.4.

The partition we get by reading the diagrams by columns instead of rows is called the

conjugate of the original partition a = (a1, . . . , ak) and denoted by a∗ = (a∗1, . . . , a
∗
p). The

conjugate of (5, 4, 2, 1) is (4, 3, 2, 2, 1) which is another partition of 12 as shown in Figure

4.5. The relationship is symmetric. More formally, the conjugate of a partition a is the

partition a∗ where a∗i is the number of j such that aj ≥ i.
Now, let C be a binary matrix. The C-restricted conjugate partition is obtained when

elements in the ij-th position of the Ferrers diagram are not allowed if C[i, j] = 1. A notable

example of restricted partition is the I-restricted conjugate partition, usually denoted as a∗∗.
The I-restricted conjugate partition of (5, 4, 2, 1) is (3, 2, 2, 2, 2, 1) as shown in the diagram

of Figure 4.6.

These de�nitions are enough to understand the following theorem which settles the

feasibility of IA in arbitrary fully connected single-beam ICs.

Theorem 4.5. Consider a fully connected IC
∏K

k=1(Mk ×Nk, 1) where users are sorted such
thatMk ≥Mk+1 and Nk ≤ Nk+1 ifMk = Mk+1. Suppose the channel matrices Hkl ∀ k 6= l
are generic. Then, interference alignment in this network is feasible if and only if

k∑

i=1

max(K −Ni, 0)∗∗ ≥
k∑

i=1

(Mi − 1), ∀ k ∈ K, (4.25)

where b∗∗i denotes the i-th element of the I-restricted conjugate partition of b = (b1, . . . , bK).

Proof. See Appendix B.1.
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Figure 4.6: Graphical calculation of the I-restricted conjugate partition of (5, 4, 2, 1) by means of
a Young diagram. The resulting partition is read by columns as (3, 2, 2, 2, 2, 1).

Note that the above theorem establishes that, in order to evaluate the feasibility of a

single-beam scenario, we need to verify K scalar inequalities only, thus proving that the

complexity of deciding whether a system is feasible or not is linear with the number of

users. The fact that the system of polynomial equations for single-beam networks is generic

or, in di�erent terms, there is a correspondence between proper and feasible systems, is

instrumental for the proof of Theorem 4.5. Consequently, the lack of such a correspondence

in multi-beam systems, hinders the extension of this results until a good understanding of

the gap between proper and feasible systems is reached.

Example 4.3. Consider again the system (4 × 2, 1)(2 × 2, 1)2(2 × 4, 1). First calculate the

supplies a = (a1, a2, a3, a4) where ai = Mi − 1, i.e., a = (3, 1, 1, 1), and the demands

b = (b1, b2, b3, b4) where bi = K − Ni, i.e., b = (2, 2, 2, 0). The I-restricted conjugate

partition of b is b∗∗ = (2, 2, 2, 0).
2

According to Theorem 4.5 the system is feasible if and only if b∗∗ majorizes a or, in other

words, every partial sum of �rst k terms of b∗∗ is greater than or equal to the corresponding

partial sum on a. In this case, the partial sums of b∗∗ and a are given by (2, 4, 6, 6) and

(3, 4, 5, 6), respectively. It is clear that

(2, 4, 6, 6) � (3, 4, 5, 6),

and, consequently, the system is infeasible.

Example 4.4. Now, think of the system (4 × 4, 1)(2 × 2, 1)3
, with supplies a = (3, 1, 1, 1)

and demands b = (0, 2, 2, 2). The I-restricted conjugate partition of b is b∗∗ = (3, 2, 1, 0).

Since the partial sums of b∗∗ and a are given by (3, 5, 6, 6) and (3, 4, 5, 6), respectively, and

(3, 5, 6, 6) ≥ (3, 4, 5, 6), (4.26)

the system is feasible.

4.4 A feasibility test for arbitrary systems
In this section we present a fully general feasibility result in the form of a feasibility test

whose applicability extends beyond those scenarios covered by Theorem 4.5. The test gives

2
Partitions which have themselves as conjugate are said to be self-conjugate.
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a conclusive answer for the relationship between dk,Mk, Nk and K such that the linear

alignment problem is feasible. Furthermore, the proposed test will also be useful to answer

the following questions: for givenK and dk, which collections ofMk, Nk make the problem

feasible (for every possible choice of generic matrices Hkl), or for given K and Mk, Nk,

which are the greatest values for dk that can be achieved? Note that the answer to the later

is the maximum sum-DoF of the system.

We start by presenting the base assumptions on top of which we will build our results.

First, it is well-known that the number of streams transmitted by all users must satisfy the

point-to-point DoF bounds,

min(Nk,Mk) ≥ dk ≥ 1, ∀ k ∈ K. (4.27)

Note that we can exclude the case that some dk = 0 without any loss of generality, because

it is equivalent to a user not participating in the network. Formally, it amounts to removing

all pairs containing the index k from Φ. From a mathematical point of view, in the general

(not necessarily fully connected) case, the natural substitute of (4.27) is the following:

1 ≤ dk ≤ Nk, 1 ≤ dl ≤Ml, ∀(k, l) ∈ Φ. (4.28)

We want to state absolutely general results, which leads us to consider the two following

sets:

ΦR = {k ∈ {1, . . . , K} : ∃ l ∈ {1, . . . , K}, (k, l) ∈ Φ}, (4.29)

ΦT = {l ∈ {1, . . . , K} : ∃ k ∈ {1, . . . , K}, (k, l) ∈ Φ}. (4.30)

Note that ΦR (ΦT ) is the �rst (second) projection of the set Φ. In words, ΦR indicates the set

of receivers which su�er interference from at least one transmitter, whereas ΦT contains

the set of transmitters which provoke interference to at least one receiver. Then, (4.28) is

equivalent to

1 ≤ dk ≤ Nk, ∀ k ∈ ΦR, 1 ≤ dl ≤Ml, ∀ l ∈ ΦT . (4.31)

Equations (4.27) and (4.31) are equivalent if each user causes interference to, at least, one

user and it is interfered by, at least, one user, that is if ΦR = ΦT = K. In particular, they

are equivalent in the fully-connected case. Note also that if l 6∈ ΦT then the precoder Vl

does not appear in the equations and plays no role in the problem, thus it consists of free

variables. We deem that it is more appropriate not to consider these free variables as part

of the problem. Hence, if for example we say that the problem has �nitely many solutions

we mean that the number of solutions of the non-free variables is �nite (although, if there

is some l 6∈ ΦT , there will be in�nitely many ways to choose Vl). The same can be said if

k 6∈ ΦR for some k.

Additionally, note that if the l-th user transmits all possible streams according to its

point-to-point bound, dl = Ml (which implies that Ml ≤ Nl); then, it is not possible for

user k 6= l, with (k, l) ∈ Φ, to also reach its point-to-point bound with equality and thus

receive dk = Nk desired streams (with Nk ≤Mk). This stems from the fact that receiver k
has to leave at least a one-dimensional subspace for the interference, otherwise the desired
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signal subspace would not be free of interference. In other words, the two users of an

interference link cannot reach their point-to-point bounds simultaneously. Formally, this

condition can be stated as the following set of necessary conditions

NkMl > dkdl, ∀(k, l) ∈ Φ, (4.32)

which complement the direct link conditions in (4.31). To derive our results we only assume

that both (4.31) and (4.32) hold. As shown in Section 3.2 there are many other necessary

conditions for feasibility that involve two or more users but we will not consider them in

our derivations.

Our techniques for proving the main results will come from algebraic geometry and dif-

ferential topology. Our arguments are sometimes similar to those in [BCT14; RLL12], with

the di�erence that not only the algebraic nature of the objects is used, but also their smooth

manifold structures, as well as the key property of compactness. We are greatly inspired

by Shub and Smale’s construction for polynomial system solving, see [SS93] or [BCS+98].

Some basic knowledge of smooth manifolds is assumed. More advanced results on di�er-

ential topology that will also be used during the derivations are relegated to Appendix A.

To formally state the IA feasibility problem, it is convenient to �rst de�ne three tuples:

H , U and V . H denotes the collection of all Hkl, (k, l) ∈ Φ and, similarly, U and V denote

the collection of Uk, k ∈ ΦR and Vl, l ∈ ΦT , respectively. Even though for the system

model described in (2.15) we have used the symbols Hkl, Uk and Vl for complex matrices,

in the following we will show that to solve the problem is more convenient to let them

live in di�erent spaces that take into account the invariances of (4.1) and therefore we will

use a di�erent notation. If (H,U, V ) satis�es (4.1) then we can scale each Hkl in H by

a nonzero complex factor and (4.1) will still hold. Thus, it makes sense to consider our

matrices as elements of the projective space of matrices, i.e., we can think ofHkl as a whole

line in CNk×Ml
. Similarly, we can think of each Uk (equiv. Vl) as a subspace spanned by

the columns of a Nk × dk (equiv. Ml × dl) matrix. From a mathematical point of view,

this consideration permits us to use projective spaces and Grassmannians (which are both

compact spaces) instead of non-compact a�ne spaces.

Thus, we consider the projective space of complex channel matrices, P(CNk×Ml), and

the Grassmannians formed by the decoders and precoders. These are the elements will

refer to as Hkl and Uk, Vl, respectively. More formally, given |Φ| elements

Hkl ∈ P(CNk×Ml), (k, l) ∈ Φ,

to solve the IA problem one would like to �nd a collection of subspaces

Uk ∈ GNk×dk , k ∈ ΦR, Vl ∈ GMl×dl , l ∈ ΦT

such that the polynomial equations (4.1) are satis�ed. The (generic) IA feasibility problem

consists on deciding whether, given K,Mk, Nk, dk and Φ, all or almost all choices of Hkl

will admit suchUk, Vl. We have already pointed out that the IA equations given by (4.1) hold

or do not hold independently of the particular chosen a�ne representatives of (H,U, V ),

that is, ({Hkl}, {Uk}, {Vl}).
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As in [BCT14], the proof of our main theorems will follow from the study of the set

{(H,U, V ) | (4.1) holds}. More precisely, consider the following diagram:

V
π1 ↙ ↘ π2

H S

where

H =
∏

(k,l)∈Φ

P(CNk×Ml) (4.33)

is the input space of interference MIMO channels (here,

∏
holds for Cartesian product),

S =

(∏

k∈ΦR

GNk×dk

)
×
(∏

l∈ΦT

GMl×dl

)
. (4.34)

is the output space of decoders and precoders (i.e. the set where the possible outputs exist)

and

V = {(H,U, V ) ∈ H × S : (4.1) holds} (4.35)

is the so–called solution variety. V is given by certain polynomial equations, linear in each

of the Hkl, Uk, Vl and therefore is an algebraic subvariety of the product spaceH× S .

Note that, given H ∈ H, the set π−1
1 (H) is a copy of the set of U, V such that (4.1)

holds, that is the solution set of the linear interference alignment problem. On the other

hand, given (U, V ) ∈ S , the set π−1
2 (U, V ) is a copy of the set of H ∈ H such that (4.1)

holds. The feasibility question can then be restated as, is π−1
1 (H) 6= ∅ for a generic H?

4.4.1 Characterizing the feasibility of linear IA
In this section we present a theorem that characterizes the feasibility of linear interference

alignment for MIMO channels with constant coe�cients for any number of users, anten-

nas and streams per user. This characterization will allow us to provide a polynomial-

complexity test of feasibility for this problem which will be detailed in Section 4.4.

First, let us �x dj,Mj, Nj and Φ satisfying (4.31) and (4.32) and de�ne s ∈ Z such that

s =

(∑

k∈ΦR

Nkdk − d2
k

)
+

(∑

l∈ΦT

Mldl − d2
l

)
−
∑

(k,l)∈Φ

dkdl (4.36)

which accounts for the di�erence between the number of variables and the number of equa-

tions in the system of polynomial equations (4.1), as de�ned in Theorem 4.3. In Theorems

4.3 and 4.2, it has been proved that if s < 0 then, for every choice of Hkl out of a zero-

measure subset, the system of polynomial equations (4.1) has no solution and, therefore,

the IA problem is infeasible. On the other hand, when s ≥ 0, which is the scenario of in-

terest for this work, the IA problem can be either feasible or infeasible. The same applies

to the partially connected case.
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Remark 4.1. In [YGJ+10], systems were classi�ed as either proper or improper. A system was

deemed proper if and only if for every subset of equations in (4.1) the number of variables

is at least equal to the number of equations in that subset. As we have shown in Section

4.2, this evaluation may be computationally demanding with the additional limitation that

properness is necessary [BCT14; RLL12] but not su�cient for a system to be feasible. For

that reason, here we will follow a simpler convention that classi�es a system as proper
when s ≥ 0, which only considers the total set of equations. Our reasoning to de�ne s is

based on dimensionality counting arguments whose proof is similar to the ones presented

in [BCT14, Lemma 10] and which we have omitted herein to avoid repetitions.

When s ≥ 0 the following result suggests a practical test to distinguish if, for a choice

of dj,Mj, Nj,Φ, the corresponding linear IA problem is feasible or infeasible.

Theorem 4.6. Fix dj,Mj, Nj and Φ satisfying (4.31) and (4.32). Let s be de�ned by (4.36)

and assume that s ≥ 0. Then, the following two cases appear

1. for every choice of Hkl out of a zero-measure subset, the system (4.1) has no solution
and, therefore, the IA problem is infeasible; or

2. for every choice of Hkl there exists at least one solution to (4.1) and for every choice of
Hkl out of a zero–measure set the set of solutions of (4.1) is a smooth complex algebraic
submanifold; therefore, the IA problem is feasible. In this situation, the following claims
are equivalent:

(a) The system (4.1) has solution for every choice of Hkl.

(b) For almost every choice of Hkl, and for any choice of Uk,Vl satisfying (4.1), the
linear mapping

θ :
∏

k∈ΦR

CNk×dk ×
∏

l∈ΦT

CMl×dl →
∏

(k,l)∈Φ

Cdk×dl

({U̇k}k∈ΦR , {V̇l}l∈ΦT ) 7→
{

U̇T
kHklVl + UT

kHklV̇l

}
(k,l)∈Φ

(4.37)

is surjective (i.e. it has maximal rank, equal to
∑

(k,l)∈Φ dkdl).

(c) There exist a Hkl and a choice of Uk,Vl satisfying (4.1), such that the linear map-
ping (4.37) is surjective.

Proof. See Appendix B.4.

4.4.2 Geometrical insight behind Theorem 4.6
A clear understanding of Theorem 4.6 comes from considering the solution variety already

de�ned as

V = {(H,U, V ) | (4.1) holds}.
Consider the projection π1 into the �rst coordinate H . Then, an instance H has a solution

if and only if π−1
1 (H) is nonempty. It turns out that both the set H of inputs H and the
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set V are smooth manifolds. The case s < 0 will correspond to the dimension of V being

smaller than that ofH, which intuitively implies that the projection of V cannot cover the

greatest part of H. The case s ≥ 0 will correspond to the dimension of V being greater

than or equal to that of H. A naive approach should then tell us that the projection of V
will cover “at least a good portion” (i.e. an open subset) of H. Indeed, the algebraic nature

of our sets and classical results from di�erential topology imply that if an open set ofH is

reached by the projection, then the wholeH is. This will be the case of item 2) of Theorem

4.6. But there is another, counterintuitive thing that can happen: if the whole set V projects

intoH in a singular way (more precisely, if every point of V is a critical point of π1, namely

the tangent space above does not cover the tangent space below), it will still happen that

the image of V is a zero–measure subset of H, which will produce the case 1) of Theorem

4.6. Geometrically, the reader may imagine V as a vertical line and H as a horizontal line:

the projection of V intoH is just a point, thus a zero–measure set, although both manifolds

have the same dimension. This setting looks such a particular situation that it is hard to

imagine it happening in real–life examples, but indeed it does happen for many choices

of Mj, Nj, dj, K that are in case 1). The good news is that the particular case that all of V
projects intoH in a singular way, can be easily detected by linear algebra routines involving

the mapping (4.37) which is related to the derivative of this projection. This analysis will

produce the feasibility test proposed herein.

Extensions and discussion of related results

Let us point out that the model we have used for our derivations, i.e. diagram (4.4), is

similar to that used by Bresler et al. [BCT14]. The only di�erence is that in our case we

let channels live in the projective space of matrices which is a compact space instead of the

non-compact a�ne space used by Bresler et al. The arguments that lead to the proof that

a system is infeasible when s < 0 are based on the dimensionality of the solution variety

[BCT14, Lemma 10].

The fact that either almost every Hkl admits a solution or almost every Hkl does not

admit a solution, was essentially proved by Bresler et al. [BCT14] and Razaviyayn et al.
[RLL12]. The constructions of the Zariski cotangent space in the former, the Jacobian com-

putation in the latter and the matrix built by Ruan et al. [RLW13] are strongly related to

the mapping (4.37). One di�erence is that the derivation of (4.37) does not require any

particularization or partitioning of the factors appearing in the alignment equations (4.1),

as done by Bresler et al. and Razaviyayn et al., respectively. Herein, it has been derived

(independently of the chosen representatives) as a mapping between tangent spaces, which

endows our approach with the simple geometrical interpretation provided in Section 4.4.2.

Furthermore, despite the obvious connections with [BCT14; RLL12; RLW13], the tools

and mathematical framework used in this work allow us to prove also that, if the system

is feasible and s = 0, then the number of IA solutions is �nite and constant for almost all

channel realizations. This is formally stated in the following lemma.

Lemma 4.7. For almost everyH , the solution set in case 2 of Theorem 4.6 is a smooth complex
algebraic submanifold of dimension s. If s = 0, then there is a constant S ≥ 1 such that for
every choice of Hkl out of a proper algebraic subvariety (thus, for every choice out of a zero
measure set) the system (4.1) has exactly S alignment solutions.
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Proof. See Appendix B.4.

A practical consequence of Lemma 4.7 is that alignment solutions (when �nite) are

grouped in S orbits of equivalent solutions spanning the same subspace. This fact is auto-

matically captured by the way we have modeled the output spaceS that considers precoders

and decoders as Grassmannians and therefore enables us to see those orbits as S isolated

solutions.

Remark 4.2. As pointed out by the introduction of (4.29), if some k0 satis�es k0 6∈ ΦR or

some l0 satis�es l0 6∈ ΦT , then any solution ({Uk}k∈ΦR , {Vl}l∈ΦT ) can be complemented

with any choice of Uk0 and Vl0 and still be a solution of (4.1), just because the variables

Uk0 and Vl0 do not appear in (4.1). When we say that the number of solutions is a �nite

number S, we are not counting these in�nitely many possible choices for Uk0 and Vl0 . We

trust that this convention is clear and natural enough to avoid confusion.

4.4.3 Proposed feasibility test
A floating-point arithmetic test of feasibility

We now construct a test for checking whether a given choice of dj,Mj, Nj,Φ de�nes a

feasible alignment problem or not. To develop this test, we �rst have to choose a point

Hkl,Uk,Vl such that (4.1) holds. An arbitrary set of channels, decoders and precoders

satisfying the IA equations (4.1) can be obtained very easily by solving what we call the

inverse IA problem; that is, given a set of arbitrary (e.g. random) decoders and precoders,

Uk,Vl, �nd a set of MIMO channels such that (4.1) holds. This is totally di�erent from (and

much easier to solve than) the original IA problem, which is given channel matrices Hkl,

�nd elements Uk,Vl that solve (4.1). Since the polynomial equations (4.1) are linear in Hkl

the inverse IA problem is completely solved by the following Lemma.

Lemma 4.8. Fix any choice of dj,Mj, Nj,Φ satisfying (4.31) and (4.32), and let (U, V ) ∈ S
be any element. Then, the set

π−1
2 (U, V ) = {H ∈ H | (H,U, V ) solve (4.1) } ⊆ H

is a nonempty product of projective vector subspaces and a smooth submanifold ofH of complex
dimension equal to 

 ∑

(k,l)∈Φ

NkMl − dkdl


− |Φ|.

In particular, this quantity is greater than or equal to 0.

Proof. See Appendix B.6.

Lemma 4.8 shows that we may �x our U and V to be the ones of our choice and there

always exists H forming a valid element (H,U, V ) ∈ V . If, for that choice, the linear

mapping de�ned in (4.37) is surjective, then the alignment problem is generically feasible

by item 2.(c) of Theorem 4.6. If for generic H that mapping is not surjective the alignment

problem is not generically feasible, namely it can be solved just for a zero–measure set of

Hkl. The proposed feasibility test then has to perform two tasks:
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1. Find an arbitrary Hkl,Uk,Vl such that (4.1) holds. We will detail later a simple choice

for these elements.

2. To check whether the matrix Ψ (in any basis) de�ning the linear mapping (4.37)

satis�es det(ΨΨH) 6= 0 (which is equivalent to mapping θ de�ned in (4.37) being

surjective) or not.

Now, we detail the two stages of the proposed IA feasibility test.

Finding an arbitrary IA solution The �rst stage requires �nding arbitrary Uk,Vl and

their corresponding MIMO channels Hkl such that (4.1) holds. Lemma 4.8 allows us to

choose any Uk and Vl of our choice. Thus, we will consider precoders and decoders given

by

Vl =

[
Idl

0(Ml−dl),dl

]
, Uk =

[
Idk

0(Nk−dk),dk

]
, (4.38)

and MIMO channels with the following structure

Hkl =

[
0dk,dl Akl

Bkl Ckl

]
, (4.39)

which trivially satisfy UT
kHklVl = 0dk,dl and therefore belong to the solution variety.

We claim that essentially all the useful information about V can be obtained from the

subset of V consisting on triples (Hkl,Uk,Vl) of the form (4.38) and (4.39). The reason

is that given any other element (H′kl,U
′
k,V

′
l) ∈ V , one can easily �nd sets of orthogonal

matrices Pk and Ql satisfying

Uk = PkU
′
k, Vl = QlV

′
l,

and

0dk,dl = U′
T
kH′klV

′
l = UT

k

(
PH
k

)T
H′klQ

H
l Vl.

That is, the transformed channels Hkl = (Pk)
∗H′klQ

H
l have the form (4.39), and the trans-

formed precoders Vl and decoders Uk have the form (4.38).

Checking the rank of the linear mapping θ For a particular element of the solution

variety chosen as in (4.38) and (4.39), the linear mapping θ reduces to

θ : ({U̇k}k∈ΦR , {V̇l}l∈ΦT ) 7→
{

U̇T
kBkl + AklV̇l

}
(k,l)∈Φ

, (4.40)

where U̇k, V̇l have dimensions (Nk−dk)×dk and (Ml−dl)×dl, respectively. The mapping

θ can also be written in matrix form as

Ψw, (4.41)

where w is a column vector of dimension

∑
k∈ΦR

(Nk − dk)dk +
∑

l∈ΦT
(Ml − dl)dl, built

by stacking all columns of {U̇T
k }k∈ΦR and {V̇T

l }Tl∈ΦT
, and Ψ is a block matrix with |Φ| row
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Column partition

Interference

link

Row

partition

1 2 3 4 5 6

(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)

1
2
3
4
5
6




Ψ
(A)
12 0 0 0 Ψ

(B)
12 0

Ψ
(A)
13 0 0 0 0 Ψ

(B)
13

0 Ψ
(A)
21 0 Ψ

(B)
21 0 0

0 Ψ
(A)
23 0 0 0 Ψ

(B)
23

0 0 Ψ
(A)
31 Ψ

(B)
31 0 0

0 0 Ψ
(A)
32 0 Ψ

(B)
32 0




(4.43)

partitions (as many blocks as interfering links) and 2K column partitions (as many blocks

as precoding and decoding matrices). Checking the feasibility of IA then reduces to check

whether matrix Ψ is full rank or not. Vectorization of the mapping (4.40) reveals that Ψ is

composed of two main kinds of blocks, Ψ
(A)
kl and Ψ

(B)
kl , i.e.

vec(U̇T
kBkl + AklV̇l) = (Akl ⊗ Idk)K(Nk−dk),dk︸ ︷︷ ︸

Ψ
(A)
kl

vec(U̇k) + (Idl ⊗BT
kl)︸ ︷︷ ︸

Ψ
(B)
kl

vec(V̇l), (4.42)

where⊗ denotes Kronecker product and Km,n is themn×mn commutation matrix which

is de�ned as the matrix that transforms the vectorized form of an m × n matrix into the

vectorized form of its transpose. Block Ψ
(B)
kl has dimensions dldk × dl(Ml − dl), whereas

block Ψ
(A)
kl is dldk × dk(Nk − dk). For a given tuple (k, l), Ψ

(B)
kl and Ψ

(A)
kl are placed in the

row partition that corresponds to the interference link indicated by the tuple (k, l). Ψ
(B)
kl is

placed in the l+K-th column partition, whereas Ψ
(A)
kl occupies the k-th column partition.

The rest of blocks are occupied by null matrices. The dimensions of Ψ are therefore

∑

(k,l)∈Φ

dkdl ×
∑

k∈ΦR

(Nk − dk)dk +
∑

l∈ΦT

(Ml − dl)dl,

whereas its structure is exactly the same as the incidence matrix of the network connectivity

graph (as de�ned in Section 2.4.2). Remarkably, in the particular case of s = 0, Ψ is a square

matrix of size

∑
(k,l)∈Φ dkdl.

Taking the 3-user IC as an example, Ψ is given as in (4.43), where the blocks Ψ
(B)
kl and

Ψ
(A)
kl are given by (4.42).

Once Ψ has been built, the last step is to check whether the mapping is surjective and,

consequently, the interference alignment problem is feasible. This amounts to check if

the rank of Ψ is maximum, that is, equal to

∑
(k,l)∈Φ dkdl. A simple method consists of

generating a random element b ∈ C
∑

(k,l)∈Φ dkdl
, computing the least squares solution of

Ψw = b and checking if ‖Ψw− b‖ is below a given threshold µ. With a high probability

in the choice of b this test will determine if θ is a surjective mapping.

At this point, two questions regarding the practical implementation of this method

may arise. The �rst one is related to the scalability of the proposed method. It is obvious
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that both the computational and storage requirements grow with the number of antennas,

streams and users in the system. However, matrix Ψ presents two characteristics which

limit, to some extent, these requirements.

• First, Ψ is a very sparse matrix with only

∑
(l,k)∈Φ(Nk − dk)dldk +

∑
(k,l)∈Φ(Ml −

dl)dkdl non-zero entries, thus limiting both the computational and the storage re-

quirements. Sparsity can be exploited by computing the least squares solution of

Ψw = b from the sparse QR factorization of Ψ, for which e�cient algorithms exist

[Dav11].

• Recall also that the matrix-vector product Ψw is completely characterized by the en-

tries of submatrices Akl and Bkl in (4.39). Black box iterative algorithms [PS82] are

able to solve the least squares problem by solely performing matrix-vector products,

i.e. computing the linear transformation de�ned by the matrix Ψ. The main conse-

quence of this is that Ψ does not even need to be explicitly constructed thus reducing

even further the storage requirements.

These considerations allowed us to evaluate the feasibility of systems whose resulting Ψ
is of dimensions up to 40000 × 40000. As a rule of thumb, we could say that symmetric

systems with a productKd up to 200 are computable. As an example, we were able to check

that the system (86× 139, 25)8
is feasible. This operating range allowed us to extensively

verify the feasibility of a wide variety of scenarios and even establish a new conjecture

regarding the DoF of symmetric ICs which is described in detail in Section 4.4.4.

The second question refers to the reliability of the numerical results. Floating-point

algorithms are always prone to round-o� errors, hence, determining something as simple

as the rank of a matrix may not be that easy, especially for very large systems. The choice of

the threshold µ determines in the end to which extent our results are reliable. To eliminate

this ambiguity, in Section 4.4.5 we present a Turing machine, exact arithmetic, version of

the proposed test and prove that checking the IA feasibility belongs to the complexity class

of bounded-error probabilistic polynomial time (BPP) problems. From a practical point of

view, however, the �oating point version of the test described in this section was found to

provide always robust and consistent results when the entries in Akl,Bkl and w were drawn

from a complex normal distribution with zero mean and unit variance, and the decision

threshold was set to µ = 10−3
.

4.4.4 A conjecture on the maximum DoF of symmetric networks
By using the aforementioned test it is possible to extensively verify conjectures, disprove

them or provide additional insights on how the DoF for general ICs should behave. One

such example is the number of linear DoF of the symmetric K-user M × N MIMO IC,

(M × N, d)K , which is unknown for K ≥ 4. For convenience, we use the concept of

spatially-normalized degrees of freedom, d?, introduced in [WGJ14]. When d? is an integer,

we have an exact DoF characterization. In general it will be a rational number and the

actual DoF without spatial extensions can be obtained from it as d = bd?c. To understand

the concept of spatially-normalized DoF, let us express d? in its rational form p/q. Then,
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scaling the number of antennas by q, we have a qM × qN MIMO IC, for which the value

d? = p is achievable.

We must point out that for the particular case of K = 3 the linear DoF have been

recently obtained [WGJ14; BCT14]. In particular, the DoF characterization comprises a

piece-wise linear mapping with in�nitely many linear intervals over the range of the pa-

rameter γ = M/N where M ≤ N is assumed without loss of generality. Speci�cally, the

linear DoF are depicted in Fig. 4.7 and are described by the following expression:

d? =





p

2p− 1
M, γ′(p) ≤ M

N
≤ γ(p)

p

2p+ 1
N, γ(p) ≤ M

N
≤ γ′(p+ 1)

p ∈ Z+, (4.44)

where γ′(p) = p−1
p

and γ(p) = 2p−1
2p+1

.

When K ≥ 4 the exact number of linear DoF is unknown. However, from an informa-

tion theoretic perspective, and not being restricted to any particular alignment scheme, the

DoF have been almost completely characterized by Wang et al. [WSJ12] as

dIT =





M, 0 ≤ M

N
<

1

K
,

N

K
,

1

K
≤ M

N
≤ 1

K − 1
,

(K − 1)M

K
,

1

K − 1
≤ M

N
≤ K

K2 −K − 1
,

(K − 1)N

K2 −K − 1
,

K

K2 −K − 1
≤ M

N
≤ K − 1

K(K − 2)
,

MN

M +N
,

K − 2

K2 − 3K + 1
≤ M

N
≤ 1,

(4.45)

but they are still unknown in the excluded interval, i.e.
M
N
∈
(

K−1
K(K−2)

, K−1
K2−3K+1

)
, where

they are believed to be
MN
M+N

as conjectured in [WSJ12]. Obviously, the information theo-

retic DoF is a, sometimes tight, upper bound of the linear DoF without symbol extensions

but the extent to which they di�er remains unclear.

In order to shed some light on this issue we have extensively executed our test for all

the scenarios with M,N ∈ [1, 100] and K ≥ 3. Our results show two di�erent operat-

ing regimes depending on whether
MN
M+N

≥ M+N
K+1

or not. In other words, the regime of

operation depends on whether the ratio γ = M/N is above or below a threshold value

λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
. As an example, Fig. 4.8 shows the linear DoF values

per user normalized byN versus the ratio γ = M/N forK = 4. Now, we describe the DoF

behaviour for these two regimes in detail for general K .

1. Regime 1 (Piecewise linear DoF), γ ≤ λ:

(a) We have veri�ed that the linear DoF are given by (4.45) when 0 ≤ γ ≤ (K−1)
K(K−2)

which con�rms that in this case the information theoretic DoF can be achieved

by linear alignment without symbol extensions.
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Piecewise linear DoF

Figure 4.7: Linear degrees of freedom for the 3-user IC as proved in [WGJ14]: d?/N as a function
of γ = M/N . This figure is included to illustrate the analogy with the results for K ≥ 4 depicted
in Fig. 4.8.
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Figure 4.8: Conjectured linear degrees of freedom for the 4-user IC: d?/N as a function of γ =
M/N . Similar figures are obtained for all K .
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(b) More interestingly, when
(K−1)
K(K−2)

< γ ≤ λ we have been able to �nd sev-

eral counterexamples that exceed the conjectured value of
MN
M+N

, which was

believed to be the information theoretic DoF value. As examples, we enumer-

ate the following feasible systems (11× 29, 8)4
, (44× 117, 32)4

, (19× 71, 15)5

and (29× 139, 24)6
, which clearly exceed the conjectured DoF per user: 7.975,

31.975, 14.989 and 23.994, respectively. In addition, all systems in this interval

seem to follow the same piecewise linear DoF trend described before for the

0 ≤ γ ≤ (K−1)
K(K−2)

region and for the 3-user IC. More precisely, the spatially

normalized DoF can be written analogously to (4.44) as:

d? =





γ(p) + 1

γ(p)(K + 1)
M, γ′(p) ≤ M

N
≤ γ(p)

γ(p) + 1

K + 1
N, γ(p) ≤ M

N
≤ γ′(p+ 1)

p ∈ Z+. (4.46)

where

γ(p) =

(p−1)∑

k=−(p−1)

λk

p∑

k=−p
λk

and γ′(p) = λ

p−2∑

k=0

λ2k

p−1∑

k=0

λ2k

. (4.47)

Intuitively, γ(p) gives the values ofM/N for which there are no antenna redun-

dancies at either side of the link whereas γ′(p) gives those for which there is

maximum redundancy
3
. Both functions get asymptotically closer as p increases

since limp→∞ γ(p) = limp→∞ γ′(p) = λ. Speci�c details on the reasoning lead-

ing to (4.46) are relegated to Appendix B.10.

It is worth pointing out that (4.46) generalizes (4.44) and is also consistent with the

information theoretic bound in (4.45). In fact, for the 3-user channel, λ takes its

maximum value, i.e. λ = 1 meaning that the entire γ range, γ ∈ (0, 1], is covered by

this piecewise linear regime as shown in Fig. 4.7. For K > 3, the value of λ is strictly

lower than 1, approaching to 0 as K tends to in�nity.

2. Regime 2 (Properness-limited DoF), γ ≥ λ: For γ values above the threshold we have

observed that the linear DoF are always given by

d? =
M +N

K + 1
. (4.48)

This means the system is limited by the properness criterion and no proper but in-

feasible scenarios have been found in this regime.

To sum up, our numerical results lead us to conjecture that the linear DoF of the symmet-

ricK-user IC (K ≥ 3) are completely characterized by these two regimes thus generalizing

the existing results for the 3-user channel. Formally, it can be written as follows.

3
If λ 6= 1 (i.e. K 6= 3) both functions can be simpli�ed: γ(p) = λ 1−λ2p−1

1−λ2p+1 and γ′(p) = λ 1−λ2p−2

1−λ2p .
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Conjecture 4.1. For the K-user (K ≥ 3) M × N MIMO IC, the spatially-normalized DoF
value per user achievable with linear IA and without time/frequency symbol extensions is given
by

d? =

{
(4.46), M

N
≤ λ

(4.48), M
N
≥ λ

, (4.49)

where λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
.

It is worth mentioning that, recently, we have been aware of an independent related

work by Liu and Yang [LY13a] on the degrees of freedom of the symmetric MIMO interfer-

ence broadcast channel. Their results for the piecewise-limited regime (
M
N
≤ λ), although

obtained by totally di�erent means, are in perfect agreement with ours. Furthermore, their

results when
M
N
≥ λ are based on the test proposed herein and lead them to conjecture,

as in (4.49), that the properness condition is indeed necessary and su�cient in this regime.

This fact still remains unproved.

4.4.5 Exact arithmetic test and complexity analysis
The test derived after Theorem 4.6 has been programmed in �oating point arithmetic, and

it is thus sensitive to �oating point errors. Although it is robust enough for many examples

and, in fact, has served to derive a conjecture on the DoF of symmetric ICs, a Turing machine

version of this test (that is, a test working in exact arithmetic) is in order. Consider the

following algorithm.

1. For k ∈ ΦR and l ∈ ΦT , consider Hkl as in (4.39). Let Ckl = 0 for all k, l and let the

entries of Akl and Bkl be chosen (i.i.d uniformly) as a +
√
−1b where 0 ≤ a, b < h,

a, b ∈ Z, and

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

Note thus that the entries of Akl,Bkl are complex numbers whose real and imaginary

parts are integers of bounded size, chosen at random.

2. Check, using exact linear algebra procedures (such as the ones available in libraries

IML [CS05] or LinBox [DGG+02]), if the mapping (4.40) is surjective. Then,

• if the mapping is surjective, answer feasible,

• otherwise, answer infeasible.

The following is our second main result.

Theorem 4.9. The algorithm above is a bounded error probability procedure (thus, de-
scribes a BPP Turing machine) whose running time is polynomial in the input parameters
dj,Mj, Nj, |Φ|:

• if the given parameters de�ne a unfeasible alignment problem, answers unfeasible.



4.4 A feasibility test for arbitrary systems 61

• if the given parameters de�ne a feasible alignment problem, with high probability the
algorithm answers feasible, but there is a probability (in the choice of the coe�cients of
Akl,Bkl) of at most 1/4 that the algorithm answers unfeasible.

Proof. See Appendix B.5. Here is an outline of the idea of the proof: if the scenario is

feasible, then for every choice of Hkl out of some zero measure set Z , the mapping (4.40) is

surjective. Of course, it could happen that every choice of Hkl with integer, “small” entries

is in Z . But, for that to happen, Z must have a complicated topology (think for example

in a line that touches all points in the xy-plane with integer coordinates bounded by some

h > 0: the line must have quite a complicated shape). But, the shape of Z is actually

very simple because it is given by a set of multilinear equations of small degree. Thus, Z
cannot contain too many integer points, and as a consequence for “most” integer points,

the mapping in (4.40) must be surjective.

Note that this kind of algorithm (with a bounded error probability just in one direction)

is very common in mathematics (the most famous example is Miller–Rabin test for primality

[Mil76; Rab80]). The use is very simple: if on a given input the algorithm answers feasible
then the alignment is feasible. If the test is run k times and its answer is unfeasible for all

k tries, then we can conclude that the alignment is unfeasible unless an extremely unlikely

event (probability at most 1/4k) happened. The upper bound 1/4 on the error probability

in the one–try test can be changed to any ε < 1 by choosing a di�erent value of h, but

according to the previous discussion, the speci�c value is irrelevant.

Technically, Theorem 4.9 asserts that the problem of deciding if a given choice of

dj,Mj, Nj,Φ is generically infeasible is in the BPP complexity class.

Remark 4.3. Some complexity analysis have recently appeared in the literature claiming

that to check the feasibility of IA problems is strongly NP-hard [RSL12; LDL11]. However,

there is a crucial di�erence between the problem considered in [RSL12; LDL11] and that

considered in this work. The problem in [RSL12] can be restated informally as follows:

Problem 1. Given dj , Mj and Nj , decide whether there exists a linear alignment solution

for a given set of interference MIMO channels Hkl.

However, in this work we are considering a di�erent feasibility problem:

Problem 2. Given dj , Mj and Nj (and a connectivity graph Φ), decide whether there exists

a linear alignment solution for generic interference MIMO channels Hkl.

While Problem 1 is NP-hard, we have just shown that Problem 2 can be solved in poly-

nomial time. The complexity of Problem 1 is due to the fact the authors in [RSL12; LDL11]

consider a given realization of Hkl. In fact, to check whether this channel realization admits

a solution, can indeed be NP-hard. However, by restricting the problem to generic MIMO

channels, e.g., channels with independent entries drawn from continuous distributions, the

IA feasibility problem becomes much easier. Note also that even if checking the feasibility

of IA can be done with polynomial complexity, �nding the actual decoders and precoders

that align the interference subspaces can still be NP-hard when K is large, as proved in

[RSL12].
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4.5 Computing the maximum DoF
The IA feasibility problem considered in this thesis, that is, determining if a given stream

distribution (d1, . . . , dK) can be generically achieved with linear IA is tightly related to

that of �nding the maximum sum-DoF (or the tuple achieving the maximum sum-DoF,∑K
k=1 dk). Although we have shown that the former belongs to the BPP class, the complex-

ity of the latter remains uncharacterized.

Section 4.4.4 showed, that based on the results provided by our feasibility test, it is possi-

ble to conjecture a formula for the maximum sum-DoF in symmetric ICs. In this section we

formalize the procedure used to conduct a search for the best-achieving DoF tuple in arbi-

trary (not necessarily symmetric) networks. Its working principle is conducting an ordered

search inside the region of potential feasible tuples (those which satisfy existing necessary

conditions) until a feasible tuple is found. In principle, the test in Section 4.4 could be used

to obtain the DoF for arbitraryK-user MIMO IC by exhaustively checking the feasibility of

all possible DoF tuples. However, even for simple scenarios, this exhaustive search rapidly

becomes intractable. In this work, we address this problem and propose a much simpler

procedure to �nd the DoF for arbitrary MIMO ICs. As a �rst step, we propose several DoF

upper bounds with di�erent degrees of complexity and tightness. Secondly, a search algo-

rithm is proposed which, exploiting these bounds and using the proposed feasibility test is

able to e�ciently �nd the actual DoF in arbitrary ICs.

The contents of this section are based on the paper [GLV+13].

4.5.1 Some bounds on the maximum DoF
In this section, for the sake of convenience, we introduce some additional notation. De�ne

a = [a1, . . . , aK ]T where ak = Mk +Nk as the column vector containing the total number

of antennas at each user (this includes both transmit and receive antennas). Additionally,

we de�ne the column vector b with entries bk = min(Mk, Nk) and the DoF vector d =
[d1, . . . , dK ]T .

Throughout this section we will also use the di�erence between the number of vari-

ables and equations in the system which was previously de�ned as s in (4.36). For a fully

connected system, it can be rewritten in the form

s =
K∑

k=1

(Mk +Nk)dk − (
K∑

k=1

dk)
2 −

K∑

k=1

d2
k, (4.50)

or, more conveniently,

s = aTd− dT (1K + IK)d, (4.51)

where 1K = 1K,11
T
K,1 denotes the K ×K unit (all-ones) matrix.
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We are interested in obtaining the feasible tuple, d, which maximizes the sum-DoF,

D = 1TK,1d, for an arbitrary MIMO IC,

∏K
k=1(Mk ×Nk, dk). More formally,

P0 : maximize

d
1TK,1d (4.52)

subject to

K∏

k=1

(Mk ×Nk, dk) is feasible,

d ∈ NK .

It is always possible to �nd the global optimizer of P0 by exploring all possible DoF tuples,

checking their feasibility by means of the test in Section 4.4, and selecting the tuple that

maximizes 1TK,1d. However, due to the combinatorial nature of the problem, this approach

may be intractable. In order to diminish the associated computational cost, we will propose

in the following three di�erent relaxations of the original problem. These relaxations will

allow us to �nd outer bounds for the sum-DoF with an increasing degree of tightness.

Analytical bound

The �rst relaxation loosens the two constraints of the original problem, P0. On the one

hand, this new problem formulation replaces the feasibility condition by the total properness
condition, i.e. s ≥ 0, where s is written as in (4.51). On the other hand, the entries of vector

d are not required to be integer but real, i.e.,

P1 : maximize

d
1TK,1d (4.53)

subject to aTd− dT (1K + IK)d ≥ 0,

d ∈ RK .
The objective function for this problem is an unbounded linear function of d and therefore

its maximum is attained when the �rst constraint is active (i.e. s = 0). Consequently,

it can be solved analytically by Lagrangian optimization. The global maximum for this

problem, 1TK,1d
?
, represents an upper bound of the original optimization problem (4.52),

whose solution has to be necessarily an integer. Therefore, the bound is given by

Banalytic =


1TK,1a +

√
K(aTa(K + 1)− (1TK,1a)2)

2(K + 1)

 . (4.54)

Remark 4.4. The expression in (4.54) can be trivially particularized to the case where all

transmitter-receiver pairs have the same total number of antennas. Under this condition,

(4.54) simpli�es to

Banalytic =

⌊ ∑K
k=1(Mk +Nk)

K + 1

⌋
. (4.55)

It must be noticed that this expression generalizes the outer bound given by Jung and Lee

[JL12] for the K-user M ×N MIMO IC, which established the bound

D ≤
⌊
K
M +N

K + 1

⌋
. (4.56)
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Waterfilling-based bounds

In order to improve the tightness of the analytical bound in (4.54), we can add additional

constraints to the optimization problem. For instance, it is well-known that the number of

streams transmitted by each of the users, when considered independently, has to satisfy the

point-to-point bounds, 0 ≤ dk ≤ bk = min(Mk, Nk). This consideration turns P1 into

P2 : maximize

d
1TK,1d (4.57)

subject to aTd− dT (1K + IK)d ≥ 0,

0K,1 ≤ d ≤ b,

d ∈ RK .

When formulated this way, the problem is convex and, hence, can be e�ciently solved

using standard software packages like CVX [GB13]. Furthermore, in this case it is possible

to obtain a water�lling interpretation of the solution. To show this interpretation, let us

�rst write the Lagrangian associated to the current optimization problem

L(d, λ,α,β) = 1TK,1d + (aTd− dT (1K + IK)d)λ+αTd− βT (d− b). (4.58)

Thus, the Karush-Kuhn-Tucker (KKT) conditions for this problem are

1K,1 + (a− 2(1K + IK)d)λ+α− β = 0K,1,

aTd− dT (1K + IK)d ≥ 0, 0K,1 ≤ d ≤ b,

λ ≥ 0, α ≥ 0K,1, β ≥ 0K,1,

λ(aTd− dT (1K + IK)d) = 0,

α ◦ d = 0K,1, and β ◦ (d− b) = 0K,1,

(4.59)

where ◦ denotes the Hadamard (element-wise) product. From the �rst equation in (4.59),

with α = 0K,1 and β = 0K,1, the optimal distribution of streams among users can be

written as

d? =




1

2(K + 1)

(
1

λ?
− 1TK,1a

)

︸ ︷︷ ︸
Variable water level, µ

1K,1 −
(
−a

2

)

︸ ︷︷ ︸
Floor




b

0K,1

. (4.60)

where [•]u` is the element-wise operator min (u,max (`, •)). Therefore, (4.58) admits a wa-

ter�lling interpretation which is as follows (see Figure 4.9):

1. For each of the K users, set up a unit-base vessel with height bk on top of a �oor of

height −ak/2.

2. Pour water keeping a �at water level across all vessels. The available volume of water

is given by s. In other words, s < 0 means that you have exceeded the total amount

of water.
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Figure 4.9: Waterfilling interpretation of the proposed DoF bound. In this particular example,
the point-to-point upper- and lower-bound constraints are active for users 2 and 4, respectively,
yielding the tuple d1 = a1

2 + µ, d2 = b2, d3 = a3
2 + µ and d4 = 0, where µ is the water level.

3. If some vessel over�ows, keep �lling the rest of vessels.

4. When all the available water has been poured or all the vessels have been �lled, the

amount of water in each vessel gives the optimum stream value for that user, d?k.

The total amount of water,

∑
k d

?
k = 1TK,1d

?
, gives us the sought DoF upper bound, BWF1 =⌊

1TK,1d
?
⌋
.

Remark 4.5. The foregoing interpretation shows that the optimal (non-integer) stream pro-

�le is a downshifted version of a/2 (the mean number of antennas per user), which is

element-wise bounded from the top and the bottom by b and 0K,1, respectively.

The previous bound can be further improved by adding, as constraints, the DoF results

for the 2-user IC obtained in [JF07]. In particular, any two users in the channel must satisfy

di + dj ≤ min(Ni +Nj,Mi +Mj,max(Ni,Mj),max(Nj,Mi)). (4.61)

In addition to include all pairs of users, we can also consider groups of users that cooperate

and jointly process their data in such a way that a new 2-user IC is created. In summary,

considering all cooperative 2-user groups gives us a total of 2K −K− 1 new upper bounds

that can be added to our optimization problem. When all these bounds along with the

point-to-point ones are represented by the variables bJ , ∀J ⊆ K, they lead to a convex

optimization problem similar to P2, but with the second constraint substituted by:

0 ≤
∑

k∈J
dk ≤ bJ , ∀J ⊆ K. (4.62)
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Algorithm 2: Computation of the maximum DoF in arbitrary interference channels.

Input: Number of antennas, {Mk} and {Nk} ∀k ∈ K
Output: Maximum DoF, D
begin

Compute a DoF bound B (Banalytic BWF1 , BWF2 or others)

while B > 0 do
foreach d = (d1, d2, . . . , dK) restricted composition of B do

if isFeasible({Mk},{Nk},d) then
return B

B ← B − 1

return 0

Once the optimal solution to this problem is found, a new upper bound of the DoF is ob-

tained by taking the largest previous integer BWF2 =
⌊
1TK,1d

?
⌋
.

4.5.2 An algorithm to compute the maximum DoF
In this section we propose an e�cient algorithm to �nd the actual sum-DoF value. The

algorithm is basically an ordered search that starts from those tuples whose DoF are exactly

any of the outer bounds obtained in Section 4.5.1 and works as follows:

1. Assume that the DoF are bounded above by B (which can be any of the aforemen-

tioned bounds).

2. Generate all the possible tuples of integer numbers adding up exactly B. In number

theory this is usually referred to as computing all the restricted compositions of an

integer B. The term restricted comes from two facts: 1) the number of summands

or parts that the composition is allowed to have is equal to K ; 2) there exist upper

and lower bounds on the values of each part. More speci�cally, each part, dk, must

verify 0 ≤ dk ≤ bk. A great deal of attention has been focused on algorithms that are

able to compute restricted compositions, leading to reasonably fast algorithms with

good time complexity as the ones by Opdyke [Opd10] (O(K) per composition where

K equals the number of parts) and Page [Pag13]. For the interested reader, the �rst

of them also provides closed-form solutions to the problem of counting these doubly

restricted integer compositions.

3. Check only those proper tuples for feasibility by means of the test in Section 4.4. B is

declared as the sum-DoF value of the system as soon as a feasible tuple is found. If no

feasible tuple is found among them, then decrease the value of the bound,B ← B−1,

and start over again.

The overall process is shown in Algorithm 2.
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4.6 Numerical results

4.6.1 Feasibility of arbitrary interference channels
In this subsection, we �rst show that the proposed feasibility test provides consistent results

in agreement with those found in the literature. Moreover, we also discuss scenarios for

which the existing DoF outer bounds are not tight. The feasibility test has been evaluated

on a vast amount of scenarios, including those covered in [BCT14] and [RLL12], and since

its results have always been consistent with all previously known results, here we only

show a selection of the most representative cases. Some additional examples can be found

in [GSB12].

Example 4.1. First, consider the simple (3× 3, 2)2
system, which has been already studied

in [YGJ+10]. Although this system is proper, it is infeasible since it does not satisfy the

2-user outer bound given by (4.61). Our test also shows that this system is infeasible but it

becomes feasible when one stream is switched o�, i.e., (3× 3, 2)(3× 3, 1).

Example 4.2. Consider the symmetric (5×11, 4)3
interference network, which was studied

in [PD12] and is also proper. This scenario is clearly infeasible (in agreement with our test)

because it does not satisfy the outer bound (3.4), which establishes that the maximum total

number of DoF for this network cannot be larger than 11. By shutting o� one beam of the

�rst user, the system (5×11, 3)(5×11, 4)2
could in principle be feasible because it satis�es

the mentioned outer bound. Our test shows that this system is actually feasible and thus

the outer bound (3.4) is tight for this particular scenario. Furthermore, recent results about

the feasibility of the symmetric 3-user scenario [BCT14], [WGJ14] establish that the system

would be infeasible if 4 streams per user are transmitted, which is in agreement with the

result provided by our test.

Example 4.3. Consider the 3-user system

∏3
j=1(7 × 13, dj) where the stream distribution

among users is not speci�ed. The outer bound (3.4) establishes that total number of DoF

cannot exceed 19.5 in this network, whereas the properness condition in [YGJ+10] guaran-

tees that the system is infeasible if more than 5 DoF per user are transmitted (i.e. a total of

15 DoF). However, the results in [BCT14], [WGJ14] provide an even tighter bound which

shows that the system is infeasible if 5 streams per user are transmitted. Our test indicates

that the (7×13, 5)3
system is infeasible whereas the system (7×13, 4)(7×13, 5)2

is feasible,

which allows us to claim that the maximum total DoF for this network is 14.

Example 4.4. The (4 × 4, 2)(5 × 3, 2)(6 × 2, 2) system, which was studied in [NSG+10a],

satis�es (4.61) for all 2-user pairs and satis�es all known outer bounds. The proposed test

establishes that this system is infeasible.

Example 4.5. A controversial example can also be found in [NSG+10a]: the (3 × 4, 2)(1 ×
3, 1)(10×4, 2) system. The test proposed in [NSG+10a] indicates that this system is feasible,

while our test establishes that it is infeasible. In our view, the test in [NSG+10a] gives only

necessary (but not su�cient) conditions for feasibility. As our analysis has shown, it is

not possible to solve the feasibility problem just by counting variables in all subsets of IA

equations, a much more subtle analysis is needed. Similar examples are the (4× 8, 3)3
and

(5 × 11, 4)3
networks, which are infeasible according to our test (moreover they violate

the outer bound (3.4)) while the test in [NSG+10a] states they are feasible. We also have
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numerical evidence that this system is infeasible since iterative algorithms such as [GCJ11;

PH09] have not been able to �nd a solution for this scenario
4
.

Example 4.6. Now, let us consider the (3 × 4, 2)(1 × 3, 1)(10 × 4, 2) system studied in

[YGJ+10]. It is proper but infeasible, since it violates the 2-user cooperative outer bound (it

is equivalent to the (4 × 7, 3)(10 × 4, 2) network). Our test also shows that the system is

infeasible.

Example 4.7. Consider the (2× 2, 1)3(3× 5, 1) system also studied in [YGJ+10]. Checking

the properness of this scenario involves checking the properness of all the possible subsets

of equations. It can be found that the subset of equations which is obtained by shutting

down the fourth receiver is improper, therefore the system is infeasible. Our test provides

the same result.

Example 4.8. A �nal interesting example is the (2×2, 1)(5×5, 2)2(8×8, 4) system, which is

feasible according to the proposed test. This system has been built by taking the symmetric

(5×5, 2)4
system, which is known to be feasible, and transferring 6 antennas from the �rst

user to the fourth. It must noticed that while the total amount of antennas in the network

remains constant, the redistribution of antennas has allowed to achieve a total of 9 DoF

instead of the 8 DoF achieved in the symmetric case. This example gives new evidence

for the conjecture settled in [NSG+10a], which asserts that for a given total number of

DoF, D =
∑

k dk, there exist feasible asymmetric MIMO interference systems (that is, with

unequal antenna and stream distribution among the links) such that the total number of

antennas,

∑
k(Mk+Nk), is less than number of antennas of the smallest symmetric system

(Mk = M , Nk = N , and dk = D/K that can achieve dtot.

Let us �nally point out that, in all cases in which our feasibility test was positive, we

were able to �nd an IA solution using the iterative interference leakage minimization algo-

rithm proposed in [GCJ11; PH09].

4.6.2 Maximum DoF of arbitrary networks
In this section we show several simulation results to illustrate the performance of the Al-

gorithm 2. As an example, we consider a 4-user MIMO IC with a total number of antennas:∑
k(Mk + Nk) = 40, and with Mk ≥ 2 and Nk ≥ 2, ∀k ∈ K. We study the DoF that

can be achieved with linear beamforming for di�erent distributions of the total number of

antennas among users and between transmitters and receivers. Two di�erent measures are

proposed to quantify the asymmetry of a given scenario:

• Intra-user asymmetry:

1

K

∑

k∈K

|Mk −Nk|
Mk +Nk

. (4.63)

• Inter-user asymmetry:

1

K

∑

k∈K

|Mk − M̄ |+ |Nk − N̄ |
M̄ + N̄

. (4.64)

4
Note, however, that alternating minimization algorithms cannot guarantee convergence to a global min-

imum, so it cannot be used as a feasibility test.
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Figure 4.10: Mean values of the proposed linear DoF bounds for di�erent intra- and inter-user
asymmetries. Some specific scenarios have been pointed for illustration: (2 × 8, 1)3(8 × 2, 1),
(2× 2, 1)3(14× 14, 11), (5× 5, 2)4 and (2× 2, 1)(3× 5, 1)(3× 2, 1)(7× 16, 5).

where M̄ and N̄ are the mean number of transmit and receive antennas, respectively. No-

tice that there can be more than one network with the same value of inter- and intra-user

asymmetry, therefore, in our results we will depict mean DoF values (averaged over all

networks with the same level of asymmetry).

Figures 4.10a and 4.10b show how the mean value of the proposed bounds evolves with

the intra- and inter-user asymmetry, respectively. The mean value of the actual DoF, D, is

also shown in a dotted line while the shaded area represents the whole range of feasible DoF
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Figure 4.11: DoF region for the 4-user system (3 × 4, d1)(4 × 11, d2)(5 × 5, d3)(6 × 2, d4) using
linear beamforming.

values and, thus, it may exceed the mean value of the upper bounds. Both �gures show that

the water�lling bound that incorporates the 2-user constraints (denoted as BWF2) is very

close to the actual achievable DoF in the whole asymmetry range. On the other hand, the

analytic bound and the water�lling bound that uses only point-to-point constraints (BWF1),

are only tight for low values of asymmetry. This result suggests that for highly asymmet-

ric networks, the DoF are mainly limited by the 2-user channel constraints, whereas in

symmetric or close-to-symmetric IC the properness condition limits the DoF. Alternatively,

Figure 4.10a shows that the maximum DoF decreases as the intra-user asymmetry increases,

and so does in the mean sense. However, as Figure 4.10b shows, when the inter-user asym-

metry increases the maximum DoF increases as well, although the mean DoF value de-

creases. Let us remind that, for a given value of any of the asymmetries, there are di�erent

scenarios that achieve di�erent DoF. For the sake of illustration, we have pointed some

speci�c scenarios in both �gures. One such example is the system (2× 2, 1)3(14× 14, 11)
(designated by ), which, in spite of having a high inter-user asymmetry, is able to achieve

a total of 14 DoF with minimum intra-user asymmetry. For the totally symmetric scenario,

represented with , (i.e., all 4 users transmitting over 5× 5 links), 8 DoF can be achieved.

As a �nal example, Figure 4.11 shows the DoF region of the system (3 × 4, d1)(4 ×
11, d2)(5× 5, d3)(6× 2, d4), which has been obtained by checking the feasibility of all the

possible DoF tuples. It required a total of 208 executions of the feasibility test, whereas

computing the tuples in red, which satisfy

∑
k dk = 7 and achieve the DoF of the system,

required only 7 executions when initialized in BWF2 .



Chapter5
Number of Feasible Solutions

In this chapter we build on the previous feasibility results and study the problem of how

many di�erent alignment solutions exist for a given interference alignment (IA) scenario.

While the number of solutions is known for some particular cases (e.g the 3-user interfer-

ence channel [BCT14]), a general result is not available yet. In Chapter 4 it was proved that

systems for which the algebraic dimension of the solution variety is strictly larger than

that of the input space can have either zero or an in�nite number of alignment solutions.

In plain words, these are multiple-input multiple-output (MIMO) interference networks for

which the number of variables is larger than the number of equations in the polynomial

system. On the other hand, systems with less variables than equations are always infeasi-

ble as summarized in Theorems 4.2 and 4.3. Herein we will focus on the case in between,

where the dimensions of V and H are exactly the same (identical number of variables and

equations), and consequently, the number of IA solutions is �nite (it may be even zero) and

constant out of a zero measure set of H as proved in Lemma 4.7. In summary, rather than

just characterizing feasible or infeasible system con�gurations, we seek to provide a more

re�ned answer to the feasibility problem.

The chapter is organized as follows. In Sections 5.1 and 5.2 the existing results on the

number of IA solutions and the IA feasibility problem are brie�y reviewed, paying special

attention to the feasibility test in Chapter 4. The main results of this chapter are presented in

Section 5.3, where an integral formula for the number of IA solutions is given. Although the

integral formula is valid for arbitrary networks, two cases are distinguished: single-beam

and multi-beam scenarios. For single-beam scenarios, a solution to the aforementioned

integral formula is given in closed-form. For multi-beam systems, the value of the integral

is numerically estimated by means of classical Monte Carlo methods as shown in Section

5.4. A short review on Riemmanian manifolds and other mathematical results that will also

be used during the derivations as well as the proofs of the main theorems in Section 5.3 are

relegated to appendices. Numerical results are included in Section 5.5. The content of this

chapter is mainly based on our publications [GSB13; GBS13].

5.1 Introduction and background
The number of solutions for single-beam MIMO networks (i.e., all users wish to transmit a

single stream of data) follows directly from a classical result from algebraic geometry, Bern-
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stein’s Theorem, as shown in [YGJ+10]. More speci�cally, the number of alignment solu-

tions coincides with the mixed volume of the Newton polytopes that support each equation

of the polynomial system. Although this solves theoretically the problem for single-beam

networks, in practice the computation of the mixed volume of a set of IA equations using

the available software tools [LL11] can be very demanding. As a consequence, only a few

cases have been solved so far. For single-beam networks, some upper bounds on the num-

ber of solutions using Bezout’s Theorem have also been proposed [YGJ+10; SUH10]. For

multi-beam scenarios, however, the genericity of the polynomial system of equations is lost

and it is not possible to resort to mixed volume calculations to �nd the number of solutions.

Furthermore, the existing bounds in multi-beam cases are very loose.

The main contribution in this chapter is an integral formula for the number of IA solu-

tions for arbitrary feasible networks. More speci�cally, we prove that while the feasibility

problem is solved by checking the determinant of a certain Hermitian matrix, the number

of IA solutions is given by the integral of the same determinant over a subset of the solu-

tion variety scaled by an appropriate constant. Although the integral, in general, is hard to

compute analytically, it can be easily estimated using Monte Carlo integration. To speed up

the convergence of the Monte Carlo integration method, we specialize the general integral

formula for square symmetric multi-beam cases (i.e., equal number of transmit and receive

antennas and equal number of streams per user). Analogously, in the particular case of

single-beam networks, we specialize the formula into a combinatorial counting procedure

that allows us to compute the exact number of solutions and analyze its asymptotic growth

rate.

In addition to being of theoretical interest, the results herein might also have some

practical implications. For instance, �nding scaling laws for the number of solutions with

respect to the number of users could serve to analyze the asymptotic performance of linear

IA, as discussed by Schmidt et al. [SUH10], who used information about the number of

solutions to predict the system performance when the best solution (or the best out of

N ) solutions is picked. Recent results [BCT14] also suggest that the number of solutions is

related to the computational complexity of designing the precoders and decoders satisfying

the IA conditions.

5.2 Preliminaries
As shown in Chapter 4, the surjectivity of the mapping θ in (4.37) can easily checked by

a polynomial-complexity test that can be applied to arbitrary K-user MIMO interference

channels. The test basically consists of two main steps: i) to �nd an arbitrary point in the

solution variety and ii) to check the rank of a matrix constructed from that point.

We recall that for the purpose of checking feasibility or counting solutions, we can

replace the set of arbitrary complex matricesH by the set of structured matrices
1

HI =
∏

k 6=l

[
0dk,dl Akl

Bkl Ckl

]
≡ π−1

2

({[
Idk

0(Nk−dk),dk

]}

k

,

{[
Idl

0(Ml−dl),dl

]}

l

)
. (5.1)

1
For clarity, the results in this chapter are particularized to fully connected interference channels.
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The mapping θ in (4.37) has a simpler form for triples of the form (4.38) and (4.39), and can

be reduced to

θ :
(∏

k C(Nk−dk)×dk
)
×
(∏

lC(Ml−dl)×dl
)
→ ∏

k 6=lCdk×dl

({U̇k}k, {V̇l}l) 7→
(
U̇T
kBkl + AklV̇l

)
k 6=l
. (5.2)

Since the mapping (5.2) is linear in both U̇k and V̇l, it can be represented by a matrix,

Ψ. In this chapter, we will be interested in the function det(ΨΨH), which depends on

the channel realization Hkl through the blocks Akl and Bkl only. The dimensions of Ψ are∑
k 6=l dkdl×

∑K
k=1(Mk+Nk−2dk)dk. In the particular case of s = 0, the one of interest for

this work, Ψ is a square matrix of size

∑
k 6=l dkdl and, therefore, det(ΨΨH) = | det(Ψ)|2.

The interested reader can �nd additional details on the structure of the matrix Ψ in Section

4.4.3 and in Example 5.1 below.

5.3 Main results
We use the following notation: given a Riemannian manifold X with total �nite volume

denoted as Vol(X) (the volume of the manifolds used in this work is reviewed in Appendix

C.1), let

−
∫

x∈X
f(x) dx =

1

Vol(X)

∫

x∈X
f(x) dx

be the average value of a integrable function f : X → R. Fix dj,Mj, Nj and Φ satisfying

the assumptions (4.31) and (4.32) and let s be de�ned as in (4.36). The main results of this

work are Theorems 5.1 and 5.2 below, which give integral expressions for the number of

IA solutions when s = 0, that are denoted, for short, as S and calculated as |π−1
1 (H0)|.

For the sake of rigorousness, we denote a generic channel realization as H0. Recall that

the particular choice of H0 is irrelevant since the number of solutions is the same for all

channel realizations out of some zero-measure set.

Theorem 5.1. Assume that s = 0, and let Hε ⊆ H be any open set such that the following
holds: if H = (Hkl) ∈ Hε and Pk,Qk, 1 ≤ k ≤ K are unitary matrices of respective sizes
Nk,Mk, then

(PT
kHklQl) ∈ Hε.

(Wemay just say thatHε is invariant under unitary transformations). Then, for everyH0 ∈ H
out of some zero–measure set, we have:

S = C

∫

H∈HI∩Hε
det(ΨΨH) dH, (5.3)

where

C =
Vol(S)

Vol(Hε)
,

with S being the output space (Cartesian product of Grasmannians) in Eq. (4.34) and HI

de�ned in (5.1).
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Proof. See Appendix C.2.

If we takeHε to be the set

{(Hkl) | ‖Hkl‖F ∈ (1− ε, 1 + ε)}

(with ‖ · ‖F denoting Frobenius norm) and we let ε→ 0 we get:

Theorem 5.2. For an interference channel with s = 0, and for every H0 ∈ H out of some
zero–measure set, we have:

S = C−
∫

H∈HI ,‖Hkl‖F=1

det(ΨΨH) dH,

where

C =
∏

k 6=l

(
Γ(NkMl)

Γ(NkMl − dkdl)

)
×

∏

k

(
Γ(2) · · ·Γ(dk) · Γ(2) · · ·Γ(Nk − dk)

Γ(2) · · ·Γ(Nk)

)
×

∏

l

(
Γ(2) · · ·Γ(dl) · Γ(2) · · ·Γ(Ml − dl)

Γ(2) · · ·Γ(Ml)

)

Proof. See Appendix C.3.

Remark 5.1. As proved in Chapter 4, if the system is infeasible then det(ΨΨH) = 0 for

every choice ofH,U, V and hence Theorem 5.1 still holds. On the other hand, if the system

is feasible and s > 0 then there is a continuous of solutions for almost every Hkl and hence

it is meaningless to count them (the value of the integrals in our theorems is not related to

the number of solutions in that case). Note also that the equality of Theorem 5.1 holds for

every unitarily invariant open set Hε, which from Lemma 4.7 implies that the right-hand

side of (5.3) has the same value for all suchHε.

Example 5.1. In this example we specialize Theorem 5.2 to the (2×2, 1)3
scenario. Although

the number of IA solutions for this network is known to be 2 from the seminal work [CJ08],

this example will serve to illustrate the main steps followed to �nd the solution of the

integral equation, and the di�culties to extend this analysis to more complex scenarios.

Let us start by considering structured (2× 2) matrices of the form

H̄kl =

[
0 Akl
Bkl Ckl

]
, (5.4)

whose entries, without loss of generality, can be taken as independent complex normal

random variables with zero mean and variance 2: Akl ∼ CN (0, 2), Bkl ∼ CN (0, 2) and

Ckl ∼ CN (0, 2).
2

Each one of these random matrices is now normalized to get

Hkl =

[
0 Akl/‖H̄kl‖F

Bkl/‖H̄kl‖F Ckl/‖H̄kl‖F

]
. (5.5)

2
The real and imaginary parts of each entry are independent real Gaussian random variables with zero

mean and variance 1.
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The collection of matrices generated in this way is uniformly distributed on the set {HI ∩
{‖Hkl‖F = 1}} in Theorem 5.2. Therefore, the integral formula given in Theorem 2 yields:

|π−1
1 (H0)| = C E

[
det(ΨΨH)

]
= C E

[
| det(Ψ)|2

]
, (5.6)

where C = 36 = 729.

Choosing a natural order in the image space, the 6× 6 matrix Ψ de�ning the mapping

for the (2× 2, 1)3
scenario is

Ψ =




B12/‖H̄12‖F 0 0 0 A12/‖H̄12‖F 0
B13/‖H̄13‖F 0 0 0 0 A13/‖H̄13‖F

0 B21/‖H̄21‖F 0 A21/‖H̄21‖F 0 0
0 B23/‖H̄23‖F 0 0 0 A23/‖H̄23‖F
0 0 B31/‖H̄31‖F A31/‖H̄31‖F 0 0
0 0 B32/‖H̄32‖F 0 A32/‖H̄32‖F 0



.

It is easy to compute the determinant of this matrix expanding it along the �rst column:

det(Ψ) =
B12A13A32B23B31A21

‖H̄12‖F‖H̄13‖F‖H̄32‖F‖H̄23‖F‖H̄31‖F‖H̄21‖F
− B13A12A23B21A31B32

‖H̄13‖F‖H̄12‖F‖H̄23‖F‖H̄21‖F‖H̄31‖F‖H̄32‖F
. (5.7)

Therefore,

| det(Ψ)|2 =

∣∣∣∣
B12A13A32B23B31A21

‖H̄12‖F‖H̄13‖F‖H̄32‖F‖H̄23‖F‖H̄31‖F‖H̄21‖F

∣∣∣∣
2

(5.8)

+

∣∣∣∣
B13A12A23B21A31B32

‖H̄13‖F‖H̄12‖F‖H̄23‖F‖H̄21‖F‖H̄31‖F‖H̄32‖F

∣∣∣∣
2

(5.9)

− 2<
(

B12A13A32B23B31A21B13A12A23B21A31B32

(‖H̄12‖F‖H̄13‖F‖H̄32‖F‖H̄23‖F‖H̄31‖F‖H̄21‖F )2

)
. (5.10)

The �rst of these quantities is the product of 6 i.i.d. random variables, thus

E

[∣∣∣∣
B12A13A32B23B31A21

‖H̄12‖F‖H̄13‖F‖H̄32‖F‖H̄23‖F‖H̄31‖F‖H̄21‖F

∣∣∣∣
2
]

= E

[∣∣∣∣
B12

‖H̄12‖F

∣∣∣∣
2
]6

.

Similarly,

E

[∣∣∣∣
B13A12A23B21A31B32

‖H̄13‖F‖H̄12‖F‖H̄23‖F‖H̄21‖F‖H̄31‖F‖H̄32‖F

∣∣∣∣
2
]

= E

[∣∣∣∣
B12

‖H̄12‖F

∣∣∣∣
2
]6

.

Finally,

E

[
B12A13A32B23B31A21B13A12A23B21A31B32

(‖H̄12‖F‖H̄13‖F‖H̄32‖F‖H̄23‖F‖H̄31‖F‖H̄21‖F )2

]
= 0,
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becauseB12 has the same distribution as−B12. That is, the isometryB12 7→ −B12 changes

the sign of the function inside the expectation symbol but the expectation is unchanged

when multiplied by −1. Hence, the expectation is 0. We have thus proved that

S = 2 · 36E

[∣∣∣∣
B12

‖H̄12‖F

∣∣∣∣
2
]6

.

We now compute the last term using the fact that

∣∣∣ B12

‖H̄12‖F

∣∣∣
2

∼ Beta(1, 2), where Beta(1, 2)

denotes a beta-distributed random variable with shape parameters 1 and 2.

Consequently,

S = 2 · 36

(
1

3

)6

= 2,

as desired.

5.3.1 The single-beam case
The results of Theorems 5.1 and 5.2 are general and can be applied to systems where each

user wishes to transmit an arbitrary number of streams. This subsection is devoted to

specialize Theorem 5.2 to the particular case of single-beam MIMO networks (i.e. dk = 1,

∀ k ∈ K). First, we should mention that, from a theoretical point of view, the single-beam

case was solved in [YGJ+10], where it was shown that the number of IA solutions for single-

beam feasible systems matches the mixed volume of the Newton polytopes that support

each equation of the system
3
. However, from a practical point of view, the computation of

the mixed volume of a set of bilinear equations using the available software tools [LL11]

can be very demanding. As a consequence, the exact number of IA solutions is only known

for some particular cases [YGJ+10; SUH10].

Theorem 5.3. The number of IA solutions for an arbitrary single-beam scenario with s = 0
is given by

S =
per(T)∏

k(Nk − 1)!
∏

l(Ml − 1)!
(5.11)

where T is the matrix built by replacing the non-zero elements of Ψ by ones and per(T)
denotes its permanent.

Equivalently,
S = |A∗(R,C)| (5.12)

where R = (K − N1, . . . , K − NK), C = (M1 − 1, . . . ,MK − 1) and |A∗(R,C)| denotes
the number of elements inA∗(R,C) which is de�ned as the class of zero-traceK ×K binary
matrices with row sums R and column sums C .

Proof. See Appendix C.4.

3
This is not true for multibeam cases because, in this case, the genericity of the system of equations is lost.



5.3 Main results 77

Algorithm 3: Backtracking procedure for counting the number of IA solutions in

arbitrary single-beam scenarios

∏K
k=1 (Mk ×Nk, 1).

Input: Number of antennas, {Mk} and {Nk}; and users, K
Output: Number of solutions, S
begin

S = 0 // No solutions found yet

table = 0 // Empty table to fill with 1s

row = 0, col = 0 // Row and column indexes

S = backtrack(table, row, col, S)
return S

function S = backtrack(table, row, col, S)
if table is a valid solution then

S = S + 1 // Valid solution found

else
foreach (row, col) in get_candidates(table,row,col) do

table(row, col) = 1 // Fill the cell with a 1

backtrack(table, row, col, S) // Recursive call

table(row, col) = 0 // Remove the 1

return S

function ((crow1, ccol1), . . . , (crowN , ccolN)) = get_candidates(table,row,col)
return list of candidate cells to store the next 1

In spite of its apparent simplicity, evaluating (5.11) may be very hard. Although the

permanent is nothing else that an analog of a determinant where all signs in the expansion

by minors are taken as positive, it is surprisingly di�cult to calculate. In fact, computing the

permanent is, in general, proven to be #P-complete [Val79] even for (0,1)-matrices where

#P is de�ned as the class of functions that count the number of solutions in an NP problem.

On the other hand, (5.12) establishes an equivalence between the problem of computing

the number of solutions of single-beam scenarios and the problem of counting the num-

ber of zero-trace binary matrices with prescribed rows and column sums. From a practical

point of view, the result in (5.12) suggests that the IA problem can be interpreted as trans-

mitters and receivers collaborating to cancel every single interfering link. A transmitter

zero-forcing a link is encoded as a one in S whereas a receiver zero-forcing a link is en-

coded as a zero. The total number of possible collaboration strategies gives the number of

IA solutions.

Unfortunately, calculating |A∗(R,C)| is a non-trivial particular case of a problem which

is also known to be #P-complete [DG95, Theorem 9.1]. For the interested reader, we have

computed several exact values which are compiled in Section 5.5 , Table 5.1. Our algorithm

performs a recursive tree search, commonly known as backtracking [GB65] and is summa-

rized in Algorithm 3. A similar approach has been used, for tightly related problems, in

[Sni91].
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Example 5.2. In order to explain how this computational routine works, we will use the

(2×3, 1)(3×2, 1)(2×4, 1)(2×2, 1) system as an example. The proposed routine proceeds

as follows:

1. We start from a K × K table. Each cell in the table corresponds to a link of the

interference channel. Cells in the main diagonal represent direct links and they are

ruled out since they do not play any role in the IA problem. All other cells correspond

to interfering links. The table for the (2 × 3, 1)(3 × 2, 1)(2 × 4, 1)(2 × 2, 1) system

(or any 4-user system) would be as follows.

1

2

3

4R
ec
ei
ve
r
(k
)

1 2 3 4
Transmitter (l)

2. We will now �ll the cells according to some rules. The value in the cell (k, l) can be

either a zero o a one. We recall that, for any valid solution, the l-th column of the

table must contain exactly Ml − 1 ones whereas the k-th row must contain exactly

K − Nk ones (or, equivalently, Nk − 1 zeros). We also recall that when s = 0,∑
l(Ml − 1) +

∑
k(Nk − 1) = K(K − 1). Thus, for any valid solution, the l-th

column of the table must contain exactly Ml − 1 ones whereas the k-th row must

contain exactly Nk − 1 zeros. All cells must contain either a zero or a one.

As an example, for the (2× 3, 1)(3× 2, 1)(2× 4, 1)(2× 2, 1) system we just have to

�nd how many 4× 4 matrices exist with exactly (1, 2, 1, 1) ones in columns 1, . . . , 4
and (2, 1, 3, 1) zeros in rows 1, . . . , 4, respectively (not counting those in the main

diagonal). It can be seen that there are only two possibilities which are shown in

Figure 5.1.

3. The method to �ll the table for an arbitrary single-beam network is a recursive tree

search approach, which is widely used to solve combinatorial enumeration problems.

We �rst start with an all-zeros table and try to build up our solution cell by cell, �lling

it with ones, starting from the upper left corner; �rst right, then bottom. We can keep

track of the approaches that we explored so far by maintaining a backtracking tree
whose root is the all-zeros board and where each level corresponds to the number of

ones we have placed so far. Figure 5.2 shows the backtracking tree for our example

system which was constructed according to Algorithm 3.
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Figure 5.1: Representation of the two valid solutions for the system (2×3, 1)(3×2, 1)(2×4, 1)(2×
2, 1).
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Figure 5.2: Backtracking tree for the system (2× 3, 1)(3× 2, 1)(2× 4, 1)(2× 2, 1). The two tables
at the lowest level correspond to the two valid solutions.
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Connections with graph theory problems

For the particular case of symmetric (M×N, 1)K scenarios, the IA solution counting prob-

lem can be restated as several well-studied combinatorial and graph theory problems. Most

of these problems have been of historical interest and hence a lot of research has been done

on them. Two of the most important connections are presented below.

First, when matrix T is regarded as the biadjacency matrix of a bipartite graph, it is

well-known that the permanent of T is equal to the number of perfect matchings in the

graph. A perfect matching is de�ned as a subset of graph edges such as no two share an

endpoint and cover all vertices of the graph. Then, according to (5.11), the number of IA

solutions is the number of perfect matchings divided by

∏
k(Nk − 1)!

∏
l(Ml − 1)!. In

our case, this bipartite graph can be understood as a graph showing which variables and

involved in which polynomial equation. Consequently, it is partitioned in the following two

disjoint sets of nodes: interference links and free variables. An edge connects two nodes if

and only if the bilinear equation associated to an interference link in the �rst set involves

the variables in the second set. Note that there are Ml − 1 and Nk − 1 free variables per

transmitter and receiver, respectively. This interpretation is illustrated in Example 5.3.

Example 5.3. Consider the (2× 2, 1)3
scenario, for which

4

T =

Interference

link

Var 1 Var 1 Var 1 Var 1 Var 1 Var 1

R1 R2 R3 T1 T2 T3

(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)




1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0



.

(5.13)

Note that T has as many rows as interference links and as many columns as free variables

in the problem. In this case, the number of variables per node (transmitter or receiver) is

1 and, coincidentally, the number of columns is also the number of nodes. The value of

per(T) is calculated by computing the number of perfect matchings in the graph with T
as biadjacency matrix. The solution is given in Figure 5.3 where the aforementioned graph

is shown along with the only two existing perfect matchings. Consequently, per(T) = 2.

Additionally, since

∏
k(Nk − 1)!

∏
l(Ml − 1)! = 1 in this scenario, the number of perfect

matchings directly gives the exact number of solutions, that is, 2.

Second, when the matrices in A∗(R,C) are seen as the adjacency matrix of a directed

graph (or digraph for short), an interesting connection to a well-studied graph theory prob-

lem arises. It is natural, then, to �nd out that the number of solutions for some scenarios

have already been computed in the literature:

• The number of solutions for (2 × (K − 1), 1)K scenarios is given by the number

of simple loop-free labeled 1-regular digraphs with K nodes. It is also the number

4
In this case, T happens to be identical to the incidence matrix C in Example 2.1, however, T = C does

not hold for any other network. In general, T is a column-extended version of C.
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Figure 5.3: Bipartite graph defined by matrix T in Example 5.3 and the two perfect matchings
associated to each of the solutions for the (2× 2, 1)3 system.

of derangements (permutations of K elements with no �xed points), also known as

rencontres numbers or subfactorial. Interestingly, as demonstrated in [OEIS][GKP94,

p.195], a closed-form solution is available:

round

(
K!

e

)
.

• The number of solutions for (3× (K − 2), 1)K systems matches the number of sim-

ple loop-free labeled 2-regular digraphs with K nodes. In this case, a closed-form

expression is also available [OEIS]:

K∑

k=0

k∑

s=0

K−k∑

j=0

(−1)k+j−sK!(K − k)!(2K − k − 2j − s)!
s!(k − s)!((K − k − j)!)2j!22K−2k−j .

• In general, the number of solutions for the (M × (K−M +1), 1)K scenario matches

the number of simple loop-free labeled (M − 1)-regular digraphs with K nodes.

However, as far as we are aware, additional closed-form expressions do not exist.

Example 5.4. Consider again the (2 × 2, 1)3
scenario for which R = (1, 1, 1) and C =

(1, 1, 1). Thus, A∗(R,C) consists of two matrices, namely,




0 1 0
0 0 1
1 0 0


 and




0 0 1
1 0 0
0 1 0


 , (5.14)
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1

2 3

1st digraph

1

2 3

2nd digraph

Figure 5.4: Two directed graphs (digraphs) associated to each of the two IA solutions for the (2×
2, 1)3 scenario in Example 5.4.

which represent the digraphs with 3 nodes in Figure 5.4. Note that both graphs are simple

(no more than one edge between any two nodes is allowed), loop-free (no edge is connected

to itself), labeled (all nodes are labeled and, therefore, considered distinct), and 1-regular

(the number of inbound and outbound edges at every node is equal to 1).

Bounds and asymptotic rate of growth

In order to derive appropriate bounds for the number of solutions it is convenient to go

back to (5.11) and apply some classical combinatorial results to bound the value of per(T).

Herein, we will focus on symmetric systems: (M × N, 1)K . Bérgman’s Theorem [BR91,

Theorem 7.4.5] gives an upper bound for the permanent of an arbitrary matrix as a function

of its row sums, ri. In our case, every row (and column) sum is K − 1 and the bound

simpli�es quite notably:

per(T) ≤
K(K−1)∏

i

(ri!)
1/ri = ((K − 1)!)K . (5.15)

Additionally, we can use the fact that T′ = T/(K−1) is doubly stochastic to apply van der

Waerden’s conjecture (now proven) [Ego81; Fal81], i.e. per(T′) ≥ n!/nn, where n denotes

the size of the matrix:

per(T) = (K − 1)K(K−1) per(T′) ≥ (K(K − 1))!

KK(K−1)
. (5.16)

From the previous bounds and (5.11), the number of solutions is shown to be bounded above

and below as follows:

L =
(K(K − 1))!

((M − 1)!)K((N − 1)!)KKK(K−1)
≤ S ≤

(
K − 1

M − 1

)K
= U. (5.17)

Now, we study the growth rate of the number of solutions when the number of users in-

creases. As a �rst step, we approximate every factorial in both bounds applying Stirling’s

formula, i.e. log(n!) ≈ n log n for large n. Interestingly, this approximation demonstrates

that both upper and lower bounds are asymptotically equivalent

logL ≈ logU ≈ K(K − 1) log
K − 1

K −M +K(M − 1) log
K −M
M − 1

, (5.18)



5.4 Estimating the number of solutions via Monte Carlo integration 83

and the actual number of solutions, which is bounded above and below by these bounds, will

be asymptotically equivalent as well. In order to calculate the rate of growth, we distinguish

two di�erent scenarios of interest. First, a scenario where we �x the number of antennas

at one side of each link, for example M , and let the number of users, K , grow to in�nity.

Under this assumption, it is clear that the growth rate of (5.18) will be dominated by the

second addend, K(M − 1) log K−M
M−1

, and, thus

log(S) ∈ Θ(K logK), (5.19)

where Θ(K logK) represents the class of functions that are asymptotically bounded both

above and below by K logK . Equivalently, c1K logK ≤ log(S) ≤ c2K logK for some

positive c1 and c2. Note that Θ(K logK) denotes a polynomial rate of growth which is

faster than linear, Θ(K), but slower than quadratic, Θ(K2). Consequently, it can be said

that the logarithm of the number of solutions grows as K1+c
where c ∈ (0, 1), i.e. the

number of solutions grows exponentially with K1+c
.

Now, we consider a second scenario where the ratio γ = M/N is �xed. Given that

M + N = K + 1, we have that both M and N will grow as fast as K , i.e. N = K+1
γ+1

and

M = γ
γ+1

(K + 1). Taking this into account, it is trivial to see that both terms on the right

hand side of (5.18) grow as K2
and, consequently

log(S) ∈ Θ(K2). (5.20)

In summary, the logarithm of the number of solutions is quadratic in K or, in other words,

the number of solutions grows exponentially withK2
. Note that this rate is asymptotically

equivalent to that obtained from Bézout’s Theorem which bounds the number of solutions

by 2K(K−1)
. Despite being asymptotically equivalent, the upper bound proposed herein is

remarkably tighter.

5.4 Estimating the number of solutions via Monte
Carlo integration

Given the complexity of analytically computing the integral in Theorem 5.2 for general

scenarios (as illustrated with the Example 5.1 and the single-beam results in Section 5.3.1),

in this section, we provide a method to approximate its value using Monte Carlo integration.

Our main reference here is [HH64]. The Crude Monte Carlo method for computing the

average

EX [f ] = −
∫

x∈X
f(x) dx

of a function f de�ned on a �nite-volume manifoldX consists just in choosing many points

at random, say x1, . . . , xn for n >> 1, uniformly distributed in X , and approximating

−
∫

x∈X
f(x) dx ≈ En =

1

n

n∑

j=1

f(xj). (5.21)
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The most reasonable way to implement this in a computer program is to write down an

iteration that computes E1, E2, E3, . . . The key question to be decided is how many such

xj we must choose to get a reasonably good approximation of the integral. To do so, we

follow the ideas in [HH64, Ch. 5]: �rst note that the random variable Yn =
√
n(EX [f ] −

En) approaches, by the Central Limit Theorem, a Normal distribution, that is the density

function of Yn can be approximated as

1

σ
√

2π
e−

t2

2σ2 ,

for some σ which is actually the standard deviation of f , given by

σ2 = −
∫

x∈X
(f(x)− EX [f ])2 dx.

Now note that

1

σ
√

2π

∫ 2σ

−2σ

e−
t2

2σ2 dt =
t=sσ

1√
2π

∫ 2

−2

e−
s2

2 dt = 0.9544 . . .

Namely, for any random variable Y following a normal distribution N (0, σ), we have

|Y | ≤ 2σ with probability greater than 0.95. Note that the reasoning above is not a formal

proof but a heuristic argument. First, Yn is not exactly normal but, for a large n, our ap-

proximation will still serve its purpose. Second, there exists no way to guarantee that the

integral of a generic function is correctly computed by Monte Carlo methods, see [HH64,

Ch. 5].

In order to get an estimate, we need to approximate σ. The unbiased estimator of σ is

σn =

(
1

n− 1

n∑

j=1

(f(xj)− En)2

)1/2

. (5.22)

We thus have that, with probability greater than 0.95,

|EX [f ]− En| .
2σn√
n
.

If we stop the iteration when
σn√
nEn
≤ ε, then, with a probability of 0.95 on the set of random

sequences of n terms, the relative error satis�es

|EX [f ]− En|
|En|

. 2ε.

For example, if we stop the iteration when
σn√
nEn
≤ 0.05, then, we can expect to be making

an error of about 10 percent in our calculation ofEX [f ]. The whole procedure for a general

system is illustrated in Algorithm 4, which is based on Theorem 5.2.
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Algorithm 4: Monte Carlo computation of the number of IA solutions for general

scenarios

∏K
k=1 (Mk ×Nk, dk).

Input: Relative error, ε; number of antennas, {Mk} and {Nk}, and streams, {dk},
∀k ∈ K

Output: Approximate number of IA solutions, En
begin

n← 1
repeat

Generate a set of random matrices {Akl}, {Bkl} and {Ckl} with i.i.d.

CN (0, 2) entries

Build channel matrices {Hkl} according to (4.38)

Normalize every channel matrix Hkl such that ‖Hkl‖F = 1
Build the matrix Ψ de�ning (5.2)

Dn ← C det(ΨΨH) where C is taken from Theorem 5.2.

Calculate En and σn according to (5.21) and (5.22), respectively, where f(xj)
is now Dj

n← n+ 1
until σn√

nEn
< ε

5.4.1 The square symmetric case
We have shown how Theorem 5.2 can be used to approximate the number of IA solutions of

a given interference channel using Monte Carlo integration. Nevertheless, our numerical

experiments demonstrate that the convergence of the integral is, in general, slow. In this

section, with the aim of mitigating this problem, we provide a specialization for a case of

interest: square symmetric scenarios.

The so-called square symmetric case is that in which all the dk and all the Nk and Mk

are equal for all k. Furthermore, we are restricted to s = 0 (for the solution counting to

be meaningful) and to K ≥ 3 (for IA to make sense); which implies N = M ≥ 2d. Under

these assumptions, we can write another integral such that Monte Carlo integration has

been experimentally observed to converge faster:

Theorem 5.4. Let us consider a symmetric square interference channel (Nk = Mk = N and
dk = d, ∀k) with s = 0. Assuming additionally that K ≥ 3, then for every H0 ∈ H out of
some zero–measure set, we have:

S =

(
2d

2
Vol(UN−d)2

Vol(UN)V ol(UN−2d)

)K(K−1)

Vol(S)−
∫

(AH
kl,Bkl)∈U2

(N−d)×d

det(ΨΨH) dH,

where Ψ is again de�ned by (5.2) and the input space of MIMO channels where we have to
integrate are now

Hkl =

[
0d Akl

Bkl 0N−d

]
,

whose blocks, AH
kl and Bkl, are matrices in the complex Stiefel manifold, denoted as U(N−d)×d,

and formed by all the (ordered) collections of d orthonormal vectors in C(N−d). On the other
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hand, Ua denotes the unitary group of dimension a, whose volume can be found in Appendix
C.1.

Proof. See Appendix C.5.

Remark 5.2. The value of the constant preceding the integral in Theorem 5.4 is (using that

2N − dK − d = 0 when s = 0):

C =

(
2d

2
Vol(UN−d)2

Vol(UN) Vol(UN−2d)

)K(K−1)

Vol(S) =

(
Γ(N − d+ 1) · · ·Γ(N)

Γ(N − 2d+ 1) · · ·Γ(N − d)

)K(K−1)(
Γ(2) · · ·Γ(d)

Γ(N − d+ 1) · · ·Γ(N)

)2K

Example 5.5. In this example we will use Theorem 5.4 to calculate the number of solutions

for the scenario (2 × 2, 1)3
again. First, we calculate the value of the constant C which

happens to be equal to 1 and, consequently, the number of solutions is directly given by the

average of the determinant.
5

Subsequent calculations are similar to those in the example in Example 5.1. The main

di�erence is that Akl and Bkl are now restricted to be elements of the complex Stiefel man-

ifold, in this case, the unit-circle. Then,

S = 2E[|A12|2]6 = 2.

From Example 5.5 it is clear that Theorem 5.4 has remarkably simpli�ed the calcula-

tion of the integral by reducing the dimensionality of the integration domain. However,

for larger scenarios we may still need to resort to the Monte Carlo integration procedure

in Section 5.4 to approximate the integral in Theorem 5.4. Algorithm 5 summarizes the

proposed method.

5.5 Numerical experiments
In this section we present some results obtained by means of the integral formulae in The-

orem 5.2 (for arbitrary interference channels) and Theorem 5.4 (for square symmetric in-

terference channels). We �rst evaluate the accuracy provided by the approximation of the

integrals by Monte Carlo methods. To this end, we focus initially on single-beam systems,

for which the procedure described in Section 5.3.1 allows us to obtain the exact number

of IA solutions for a given scenario. The true number of solutions can thus be used as a

benchmark to assess the accuracy of the approximation.

Table 5.1 compares the number of solutions given by both the exact and the approximate

procedures. To simplify the analysis, we have considered (M×(K−M+1), 1)K symmetric

single-beam networks for increasing values of M and K . As shown in Section 5.3.1, count-

ing IA solutions for this scenario is equivalent to the well-studied graph theory problem of

5
Indeed, C = 1 for all systems whenever N = 2d or, equivalently, K = 3.



5.5 Numerical experiments 87

Algorithm 5: Monte Carlo computation of the number of IA solutions for square

symmetric scenarios (N ×N, d)K .

Input: Relative error, ε; number of antennas, N , and users, K
Output: Approximate number of IA solutions, En
begin

n← 1
repeat

Generate a set of (N − d)× d matrices {AH
kl} and {Bkl}, independently and

uniformly distributed in the Stiefel manifold.

Build the matrix Ψ de�ning (5.2)

Dn ← C det(ΨΨH) where C is taken from Theorem 5.4.

Calculate En and σn according to (5.21) and (5.22), respectively, where f(xj)
is now Dj

n← n+ 1
until σn√

nEn
< ε

M = 2 M = 3 M = 4

(2× (K − 1), 1)K (3× (K − 2), 1)K (4× (K − 3), 1)K

K Exact / Approx. Exact / Approx. Exact / Approx.

2 1 / 1 ± 0.0 % – –

3 2 / 2 ± 1.0 % 1 / 1 ± 0.5 % –

4 9 / 9 ± 1.6 % 9 / 9 ± 1.6 % 1 / 1 ± 0.6 %

5 44 / 44 ± 2.6 % 216 / 216 ± 1.5 % 44 / 44 ± 2.6 %

6 265 / 266 ± 3.3 % 7 570 / 7 291 ± 5.5 % 7 570 / 7 291 ± 5.5 %

7 1 854 / 1 868 ± 9.6 % 357 435 / 361 762 ± 8.7 % 1 975 560 / 1 936 679 ± 7.0 %

8 14 833/13 144±20.6% 22 040 361/22 419 610±11.3% 749 649 145/739 668 504±14.1%

.

.

.

.

.

.

.

.

.

> 8 [OEIS, Seq. A000166] [OEIS, Seq. A007107] [OEIS, Seq. A007105]

Table 5.1: Comparison of exact and approximate number of IA solutions for several symmetric
single-beam scenarios, (M × (K −M + 1), 1)K .

counting simple loop-free labeled (M−1)-regular digraphs withK nodes. Thus, additional

terms and further information can be retrieved from integer sequences databases such as

[OEIS] from its corresponding A-number given in the last row of Table 5.1. Percentages

represent the estimated relative error, 2ε · 100, for each scenario (see Section 5.4).

Figure 5.5 depicts the evolution of the exact number of solutions with a growingK , and

the area between the proposed upper and lower bounds, for di�erent values of M (form

top to bottom,M = 2, 3, 4). It shows that all three are asymptotically equivalent, as proved

in Section 5.3.1. The exact number of solutions has been obtained from the A-sequences

mentioned in Table 5.1. For the case M = 4, the solid line corresponds to the values which



88 Number of Feasible Solutions

0.1

1

10

100
lo

g
1
0
(S

)

Exact number of solutions for M = 2
Bounded region, L ≤ S ≤ U

0.1

1

10

100

lo
g
1
0
(S

)

Exact number of solutions for M = 3
Bounded region, L ≤ S ≤ U

5 10 15 20 25 30 35 40 45
0.1

1

10

100

Numbers of users, K

lo
g
1
0
(S

)

Exact number of solutions for M = 4

Least squares fit: aK log(K) + bK + c
Bounded region, L ≤ S ≤ U

Figure 5.5: Growth rate of the number of IA solutions in single-beam systems, (M × (K−1), 1)K ,
for M = 2, 3, 4.

are available at the time of writing in [OEIS, Seq. A007105], i.e. K ≤ 14. Beyond that

point, the dashed line extrapolates new values following the model aK log(K) + bK + c.
The coe�cients a, b and c are those providing the best least squares �t of the available data

for K ≤ 14.

Now we move to multi-beam scenarios, for which the exact number of solutions is

only know for a few cases. Table 5.2 shows the results obtained for some instances of the

(M × (2K −M + 2), 2)K network. These results have been obtained using the integral

formula in Theorem 5.2, except the square cases (M = N ), for which we used the expres-

sion in Theorem 5.4. For instance, we can mention that the system (5 × 5, 2)4
has, with

a high con�dence level, about 3700 di�erent solutions (this result has been independently

con�rmed by Bresler et al. [BCT14]). As numerical results show, the integral formula in

Theorem 5.4 can be approximated much faster than that of Theorem 5.2, thus allowing us to

get smaller relative errors. For the sake of completeness, Table 5.3 shows the approximate

number of solutions for some additional square symmetric multi-beam scenarios. For some

of them the exact number of solutions was already known, as indicated in the table. For

others (those indicated as N/A in the table) the exact number of solutions was unknown.
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M = 3 M = 4 M = 5 M = 6

(3× (2K − 1), 2)K (4× (2K − 2), 2)K (5× (2K − 3), 2)K (6× (2K − 4), 2)K

K = 2 0 ± 0.0 % 1 ± 4.1 % — —

K = 3 1 ± 4.2 % 6 ± 0.0 % 1 ± 4.8 % 1 ± 5.2 %

K = 4 9 ± 5.8 % 973 ± 7.0 % 3 700 ± 0.1 % 973 ± 7.0 %

K = 5 223 ± 14.8 % 530 725 ± 11.3 % 72 581 239 ± 17.8 % 387 682 648 ± 0.7 %

Table 5.2: Approximate number of IA solutions for several symmetric 2-beam scenarios, (M ×
(2K −M + 2), 2)K .

K d Scenario Exact Ref. Approximate

3 1 (2× 2, 1)3
2 [CJ08] 2 ± 0.9 %

3 2 (4× 4, 2)3
6 [CJ08] 6 ± 0.9 %

3 3 (6× 6, 3)3
20 [CJ08] 20 ± 1.4 %

4 2 (5× 5, 2)4
N/A N/A 3 700 ± 0.1 %

4 4 (10× 10, 4)4
N/A N/A 13 887 464 893 004 ± 6.8 %

5 1 (3× 3, 1)5
216 [SUH10] 216 ± 0.6 %

5 2 (6× 6, 2)5
N/A N/A 387 724 347 ± 0.7 %

Table 5.3: Approximate number of IA solutions for selected square symmetric scenarios,
(K+1

2 d× K+1
2 d, d)K .

5.5.1 Practical implications
In addition to the theoretical interest of the results above, they might also have some impor-

tant practical implications stemming from the fact that, in general, each solution provides

a di�erent performance in terms of bit error rate, achieved sum-rate, user fairness. stream

fairness, robustness, etc. In this sense, the number of solutions can be regarded as a diver-

sity metric for the network, since it measures the ability of a network to optimize other

criteria at the same time the interference is perfectly canceled out.

The following results show that, in spite of the remarkably large number of solutions,

most of the gain provided by the best-performing solution in terms of sum-rate can be

obtained by exhaustively exploring a limited set of solutions. We illustrate this point with a

numerical experiment. Let us consider a moderate-size network for which the total number

of solutions is relatively large. One such example could be the (3 × 4, 1)6
system which,

according to the results in Table 5.1, has 7570 solutions. Figure 5.6 depicts the sum-rate

performance for each of these solutions. The maximum sum-rate solution is highlighted

with a thicker solid line, while the average sum-rate of all solutions is represented with

a dashed line. Additionally, we plot the sum-rate obtained by the best-out-of-L solution,

where L takes the values L = 38, 151, corresponding to 0.5% and 2% of the total number

of solutions, respectively.

Figure 5.6 demonstrates that there is a promising room for improvement between the

average solution and the best performing solution. However, the problem of obtaining the

maximum sum-rate solution is challenging and, to date, no de�nitive solution has been
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found (a review of existing algorithms can be found in Section 3.3). Fortunately, Figure

5.6 shows that most of the available gain can be obtained by exploring a small subset of

all the solutions. A statistical analysis supporting this statement has been given by Santa-

maría [San14].

Typically, it su�ces to explore 20 or 30 solutions to extract a great portion of the sum-

rate achieved by the maximum sum-rate solution. Figure 5.7 illustrates this fact by com-

paring the sum-rate loss with respect to the maximum sum-rate solution in the high-SNR



5.5 Numerical experiments 91

regime for three di�erent systems of the form (3×K − 2, 1)K for K = 4, 5, 6. To facilitate

the comparison among di�erent systems, the y-axis values are normalized by the number of

users. We note that, when the best-of-20 solution is picked, the per user rate di�erence with

the best possible IA solution is 0, 0.32 and 0.67 bit/s/Hz for K = 4, 5 and 6, respectively.

Taking into account that the slope of sum-rate curve in the high-SNR regime is constant

and equal to the number of transmitted streams, the aforementioned rate losses translate

into approximately 0, 1 and 2 dB of signal power below the maximum sum-rate solution.

At this point, the reader may be wondering how to e�ciently compute the whole list of

solutions or even the suggested subset of 20 or 30 solutions. It is obvious that, since the ex-

act number of solutions is unknown for most scenarios, a systematic way to compute all IA

solutions for a given channel realization is not available. Still, one may try to compute them

by repeatedly running some iterative algorithm such as the one by Gomadam et al. [GCJ11]

from di�erent initialization points but unfortunately, given the slow convergence of this al-

gorithm, this usually turns out impracticable. For this reason, two algorithms which allow

a fast computation of distinct solutions are proposed in Part III.
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Chapter6
Homotopy Continuation

The numerical experiments at the end of Chapter 5 demonstrated that systematically ex-

ploring a small subset of interference alignment (IA) solutions provides substantial advan-

tages in terms of achieved sum-rate. Along this line, this chapter presents a type of algo-

rithm based on numerical continuation which is fast, theoretically complete and practically

very robust.

We present the basic theory behind this technique known as homotopy continuation

(HC) by starting with a simple example in Section 6.1 and, then, building up to the more

intricate problem of IA for interference channels (ICs) in Section 6.2.

An extension of the aforementioned method to more complex networks such X net-

works (XNs), interference broadcast channels (IBCs) and interference multiple-access chan-

nels (IMACs), possibly featuring symbol extensions, is proposed in Section 6.3. Chapter 7

presents a di�erent, but tightly related, Gauss-Newton algorithm which can be seen as a

particular case of the algorithm presented herein and is specially well-suited for ICs.

The results in this chapter are mainly based on our publications [GS11] and [GFS14].

6.1 The main idea behind homotopy continuation
Homotopy continuation methods [Mor87; Ver96; Li97; SW05] have long served as useful

tools for solving systems of non-linear equations in modern mathematics and many other

scienti�c disciplines such as chemistry, robotics, control theory, economics, etc.

Stated brie�y, a homotopy method consists in the following. Suppose our goal is to

obtain a solution to a system of Ne non-linear equations in Nv ≥ Ne variables, say

r(x) = 0Ne,1 (6.1)

where r : CNv → CNe is a mapping which we will assume is smooth, i.e. it has as many

continuous derivatives as we require. Note that this assumption is always true when r
is de�ned by polynomials. Additionally, any complex polynomial is a complex analytic

function in its variables and, as such, a Taylor series exists in some neighborhood of every

point.

We are interested in the case where a priori knowledge concerning the location of the

zeros of r, denoted as x?, is not available. If an approximation x0 of a zero were available, it

would be advisable to calculate x? via a Newton-like algorithm. However, in our situation,
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since Newton methods are only guaranteed to converge in a local neighborhood of the

solution, the Newton-like approach will often fail. A remedy to this is de�ning a smooth

deformation or homotopy function g: CNv+1 → CNe such that

g(x, 1) = r(x), g(x, 0) = r(x), (6.2)

where r : CNv → CNe is also a smooth map. Usually, a convex homotopy function such as

g(x, t) = (1− t)r(x) + tr(x) (6.3)

is chosen, but many other deformations are equally allowed. The parameter t is referred to

as the continuation parameter, varies from 0 to 1 and controls the amount of deformation

applied to convert r, the start system, into r, the target system. The system r is chosen so

that its solutions are readily available and, for that reason, it is also referred to as trivial
system.

The deformation de�ned by the homotopy function g makes the solutions of g(x) =
0Ne,1 describe a one-dimensional path that we are interested in following, from the trivial

system (t = 0) to the target system (t = 1).

6.1.1 General path-following procedure
The idea of path-following is to obtain a sequence of points xi, i = 1, 2, . . . along the curve

satisfying a chosen tolerance criterion, say ‖g(x, t)‖ ≤ ε for some ε > 0. The interested

reader can �nd a complete study of path-following methods in the book by Allgower and

Georg [AG03]. A typical path-following strategy consists of a succession of two di�erent

steps: prediction and correction. This method is highly preferred over other methods such

as ordinary di�erential equation (ODE) solvers which, quite oftenly, su�er from accumu-

lation errors. Let us emphasize, that the name predictor-corrector is commonly used for

both approaches but there is an important di�erence. Although the predictor step may be

the same for both methods, the corrector step in an ODE solver does not bring the newly

obtained point back to the solution path. In the case of a path-following method, the cor-

rector step exploits the strong contractive properties of the path which are due to the fact

it satis�es g(x, t) = 0Ne,1.

In particular, the most commonly used predictor and corrector steps, Euler prediction

and Newton correction, are derived from the �rst-order Taylor expansion of the homotopy

function:

g(x + ∆x, t+ ∆t) = g(x, t) +Dxg(x, t)∆x +Dtg(x, t)∆t+ Higher-order terms, (6.4)

where the notation Dba denotes the derivative of the vector function a with respect to the

vector variable b.
1

Euler prediction Assuming we have a point (x, t) near the path (i.e., g(x, t) ≈ 0Ne,1), we

can predict to an approximation solution at t+∆t by setting g(x+∆x, t+∆t) = 0Ne,1
and solving for ∆x, i.e.,

Dxg(x, t)∆x = −Dtg(x, t)∆t. (6.5)

1
The notation and de�nitions concerning complex derivation used in this work follow those introduced

by Hjørungnes [Hjø11].
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Newton correction If, on the other hand, the current point (x, t) is not as close to the

path as we would like, i.e., ‖g(x, t)‖ > ε, we can hold t constant by setting ∆t = 0
in (6.4) and solving the equation for ∆x. Formally,

Dxg(x, t)∆x = −g(x, t). (6.6)

Given that Newton’s method converges quadratically to a point in the path, a common

strategy is to run the correction step for a few times by establishing a limit on the number

of executions to a maximum of MaxNwtIter, or until ‖g(x, t)‖ is below the prede�ned

tolerance ε (NwtTol), whatever happens �rst. As a �nal remark, in order to guarantee the

success of the path tracking procedure it is important to implement a step size adaptation

rule.

A simple rule will help to detect convergence of the Newton’s method to local minima

and accelerate the execution of the path tracking routine. This is now explained in more

detail. It may happen that after a prediction step with a step size ∆t we end up in the

basin of attraction of a local minimum. In that case, the Newton’s method will exhaust the

maximum number of allowed iterations, MaxNwtIter, without converging to the desired

tolerance NwtTol. When this happens we consider that the Euler prediction has failed and

we repeat it with a smaller step size. A common criterion is to cut the step size in half.

If, after implementing this step reduction procedure, a number of repeated failed predic-

tions is obtained, it means that the patch tracking procedure stagnated in a local minimum.

This can be detected when the step size becomes too small. In particular, if it becomes

smaller than a prede�ned minimum step size, MinStepSize, the whole path tracking pro-

cedure should be accounted as a failure. Conversely, if the correction step is successful for

NumHitsToDoubleStep consecutive iterations, the step size can be doubled aiming to ac-

celerate the path tracking procedure. Though simple, this adaptive step size scheme works

very well for a wide variety of problems. Additional implementation details can be found

in Algorithm 6.

Example 6.1. Let us consider how to �nd the roots of the single-variable polynomial r(x) =

x5 − a where a = 32 e
√−1π 5

6 . Note that, in this example, we have Ne = Nv = 1 and, thus,

the bold typeface used before is no longer necessary. Basic algebra shows that r(x) has

the following 5 solutions: 2 e
√−1(π

6
+ 2π

5
(k−1))

for k = 1, . . . , 5. However, our goal here is

to solve it by means of homotopy continuation. As a start system we will use the system

r(x) = x5 − 1 whose solutions are easily identi�ed as the vertices of a unit-radius regular

pentagon with one of them being equal to 1, i.e., x?k(0) = e
√−1 2π(k−1)/5

for k = 1, . . . , 5.

Consequently, our homotopy function ends up being de�ned as

g(x, t) = (1− t)(x5 − 1) + t(x5 − a). (6.7)
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Algorithm 6: Generic path-following routine featuring prediction, correction and

step size adaptation steps.

Input: Target system, r(x), trivial system, r(x), homotopy function, g(x, t), initial

step size, ∆t, and path-following parameters: NwtTol, MaxNwtIter,

MinStepSize, NumHitsToDoubleStep

Output: Solution to the target system, i.e., x such that r(x) = 0, and a convergence

indicator, PathFailed

begin
/* Trivial system solution */

Solve r(x) = 0
t = 0, NumHits = 0, PathFailed = false

t∗ = t, x∗ = x // backup variables

while t < 1 do
t = min(t+ ∆t, 1)
/* Euler prediction */

x = x + ∆x where ∆x satis�es

Dxg(x, t)∆x = −Dtg(x, t)∆t

/* Newton correction */

NewtonFailed = true

for iter = 1 to MaxNwtIter do
x = x + ∆x where ∆x satis�es

Dxg(x, t)∆x = −g(x, t)

if ||g||2 < NwtTol then
NumHits = NumHits + 1
NewtonFailed = false

break

/* Step size adaptation routine */

if NumHits == NumHitsToDoubleStep then
∆t = 2∆t
t∗ = t, x∗ = x, NumHits = 0

else if NewtonFailed then
∆t = ∆t/2
t = t∗, x = x∗, NumHits = 0
if ∆t < MinStepSize then

PathFailed = true

return

return
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Figure 6.1: Five solution paths for the toy problem in Example 6.1.

Algorithm 7: Path-following algorithm for the toy problem in Example 6.1.

Input: Trivial system solution, x = e
√−1 2π(k−1)/5

for any k = 1, . . . , 5, step size, ∆t,
and path-following parameter MaxNwtIter

Output: Solution to x5 − a = 0
begin

t = 0;

while t < 1 do
t = min(t+ ∆t, 1);

/* Euler prediction */

x← x− (1− a)

5x4
∆t (6.8)

;

/* Newton correction */

for iter = 1 to MaxNwtIter do

x← x− (x5 − 1) + (1− a)t

5x4
(6.9)

end
end
return

end

Solving g(x, t) = 0 for x de�nes the �ve solution paths plotted in Figure 6.1. In order to

numerically follow these paths we require the predictor and corrector steps in (6.5) and (6.6).

This gives rise to Algorithm 7. Given the simplicity of the problem, step-size adaptation has
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not been considered and T equally-sized steps along the path are taken, i.e., ∆t = 1/T . The

values T ≥ 25 and MaxNwtIter ≥ 3 are su�cient to achieve a correct solution.

In particular, starting in one of the start system solutions by setting x = x?k(0) returns

the solution 2 e
√−1(π

6
+ 2π

5
(k−1))

at the end of the continuation path. Figure 6.2 shows the

results of the prediction-correction routine for M = 50 and MaxNwtIter = 3 when the

path correspond the �rst solution (k = 1) is tracked. The exact path, x?1(t), is also plotted

as a reference.
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Figure 6.2: Path-following details for the first solution path (k = 1) in the problem proposed in
Example 6.1.

6.2 Homotopy continuation for IA
Once the fundamentals of homotopy continuation have been presented, we now tackle its

particularization to the IA problem. First, a brief review of the IA conditions in (4.1) and

(4.2) is in order:

UH
k HklVl = 0dk,dl , (k, l) ∈ Φ, (6.10)

rank(UH
k HklVl) = dk, ∀k ∈ K. (6.11)

As stated in Section 4.6.1, the condition (6.10) de�nes a set of bilinear polynomial equations

which naturally �t into the homotopy continuation framework. On the contrary, the rank

condition (6.11) — which is not de�ned as a polynomial equation — is not that well-suited

for this tool. As we are interested in guaranteeing both conditions we are basically left with

two choices:
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1. The �rst reasonable choice is to drop the rank condition but modify the continuation

routine to implicitly satisfy it. It is a well-known fact [GCJ11] that (6.11) is automat-

ically satis�ed as long as both the precoding and decoding matrices are guaranteed

to be full column rank. This is clear by taking into consideration that the channels

appearing in (6.11) are independent of those appearing in (6.10). The alternating min-

imization algorithm by Gomadam et al. [GCJ11] exploits this fact and solves (6.10) by

restricting the precoders and decoders to lie in the Stiefel manifold, i.e., VH
l Vl = Idl

and UH
k Uk = Idk . This is the approach we will follow in this section.

2. It is also possible to convert the rank condition into a set of polynomial equations and,

thus, enforce the rank condition explicitly. Under mild assumptions, (6.11) can be re-

placed by a more convenient set of polynomial equations suitable for the continuation

procedure. This is specially interesting for networks other than the interference chan-

nel or networks featuring (non-generic) structured channels as will be demonstrated

in Section 6.3.

When picking the �rst option we are faced with a set polynomial equations (which can be

solved by homotopy continuation) where some additional orthogonality constraints have

been imposed: VH
k Vk = Idk and UH

k Uk = Idk , ∀k ∈ K. These constraints are, indeed,

quadratic but cannot be modeled as a set of quadratic polynomial equations in the variables

of Vl and UH
k . Note that these equations are a function of both the optimization variables

and their complex conjugates, i.e. they are non-analytic in the optimization variables. This

would require optimizing separately both variables and their complex conjugates (or their

real and imaginary parts) incurring in an increased problem size with higher associated

computational cost. Instead, we will prefer to modify the path-following procedure in Sec-

tion 6.1.1 to track the solution path subject to the additional constraint of it lying on the

product manifold of 2K Stiefel manifolds (one per transmitter and receiver).

Contrarily to what is done in other algorithms (like those based on alternating min-

imization or steepest descent) where the optimization variables are partitioned so that

they can be optimized separately and alternatively, homotopy continuation follows a joint-

optimization approach. For IA this means the precoder and decoder variables are opti-

mized simultaneously while moving from the start system to the target system as part of

the path-following procedure, as depicted in Figure 6.3. We start by describing how this

path-following procedure is conducted. Section 6.2.3 will discuss the choice of the start

system.

6.2.1 Path-following procedure
In the particular case of IA for ICs, the so-called convex homotopy in (6.3) leads to consider

a system as the one in (6.10) where the multiple-input multiple-output (MIMO) channels are

now obtained as a convex combination of a start channel, Hkl, and the target channel, Hkl.

The combination is controlled by the continuation parameter, t, which leads to a homotopy

matrix function de�ned as

Gkl(U
H
k ,Vl, t) = UH

k Hkl(t)Vl, ∀(k, l) ∈ Φ and t ∈ [0, 1], (6.12)
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Figure 6.3: Illustration of the paths connecting the start system with the trivial system. Prediction
and correction steps are depicted at an intermediate point along the path.

where Hkl(t) = (1 − t)Hkl + tHkl. The homotopy function associated to each link, Gkl,

is given as a function of the precoders, Vl, and the conjugate transpose of the decoders,

UH
k . The advantage of considering Gkl as a function of UH

k instead of Uk is that, in this

way, Gkl is an analytic function of the variables in the domain and thus, the path-following

procedure can be formulated as in Section 6.1.1.

The �rst order approximation of the homotopy

Gkl(U
H
k + ∆UH

k ,Vl + ∆Vl, t+ ∆t) ≈ UH
k Hkl(t)Vl+

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl + UH
k (Hkl −Hkl)Vl∆t ∀(k, l) ∈ Φ,

(6.13)

gives rise to Euler prediction and Newton correction after following the steps in Section

6.1.1.

Euler prediction

That is, assuming we have a point ({Uk}, {Vl}, t) near the path (i.e. UH
k Hkl(t)Vl ≈

0dk,dl ∀(k, l) ∈ Φ), we may predict to an approximate solution at t + ∆t by setting

Gkl(U
H
k + ∆UH

k ,Vl + ∆Vl, t+ ∆t) = 0dk,dl :

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl = −UH
k (Hkl −Hkl)Vl∆t ∀(k, l) ∈ Φ. (6.14)

Increments ∆Vl and ∆UH
k ∀k and l are obtained by solving the system of linear equations

in (6.14). Speci�c details on this are relegated to Section 6.2.2.
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Newton correction

On the other hand, if the current point ({Uk}, {Vl}, t) is not as close to the path as we

would like, i.e., the entries of Gkl(U
H
k ,Vl, t) are larger than a prede�ned tolerance, we can

hold t constant by setting ∆t = 0 and obtain the Newton correction step:

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl = −UH
k Hkl(t)Vl, ∀(k, l) ∈ Φ. (6.15)

Analogously to the prediction step, precoder and decoder updates, ∆Vl and ∆UH
k ∀k, l, are

obtained by solving the system of linear equations in (6.15) (cf. Section 6.2.2) which leads

to a new set of precoders and decoders, {Vl + ∆Vl} and {Uk + ∆Uk}, which are closer

to the tracked path.

Projection

Finally, the precoders and decoders obtained after each iteration are projected back to the

Stiefel manifold. It is easy to see [Man02] that, given a full column rank matrix such as Vl

(Uk), the closest point in the Stiefel manifold can be obtained as ABH
where the ASBH

denotes the singular value decomposition (SVD) of Vl (Uk). In order to reduce the com-

putational cost of the projection we can exploit the fact that after the Newton correction

step the residuals will be within a prede�ned tolerance NwtTol, i.e., UH
k Hkl(t)Vl ≈ 0dk,dl .

In practice, it means that UH
k Hkl(t)Vl ≈ 0dk,dl holds even when the precoders and de-

coders are right-multiplied by a unitary matrix. In other words, it holds independently of

the particular orthonormal basis chosen for Uk and Vl. Therefore, among all orthonormal-

ization operations, we consider the QR decomposition as it requires the least computational

demands, and denote the Q factor as qf(·). The complete procedure is summarized in Al-

gorithm 8.

6.2.2 Implementation details
In this section we provide supplementary material that may be helpful for the practical

implementation of (6.14) and (6.15). So far, the homotopy function and the derivation of the

predictor and corrector steps have been formulated in a matrix form. In order to numerically

implement the proposed method in a computer it is convenient to vectorize the variables

and calculations. First, we construct the vector of variables

x = [vec(UH
1 )T , . . . , vec(UH

K)T , vec(V1)T , . . . , vec(VK)T ]T , (6.16)

by simply stacking up all decoder and precoder elements. Note that x contains the totality

of Nv =
∑K

k=1(Mk +Nk)dk variables in the system and will, consequently, contain super-

�uous variables. Similarly, the vector homotopy function can be described as an ordered

stacking of the vectorized versions of Gkl, i.e.,

g(x, t) = cat
(k,l)∈Φ

(gkl) (6.17)

where gkl = vec(Gkl(U
H
k ,Vl, t)) and the cat operator performs the horizontal concate-

nation of its arguments with the indexes picked in lexicographic order. That is, in a fully
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connected IC, (k, l) = (1, 2), (1, 3), . . . , (K,K − 1). The vector function g consists of

Ne =
∑

k 6=l dkdl scalar functions. More formally, r : CNv → CNe where we will addition-

ally assume that Nv ≥ Ne holds since it is necessary for the system to have a solution (cf.

Theorem 4.2 and Theorem 4.3). The exact requirements for the system to be feasible have

been studied in Chapter 4, but here we will assume Nv ≥ Ne for simplicity.

Both (6.14) and (6.15) describe systems of coupled linear equations which can be con-

veniently solved if each (6.14) and (6.15) is regarded as a large and sparse linear system.

We follow with the analysis of (6.14). Our goal is to write the set of linear equations in

(6.14) as a single linear matrix equation, Dxg(x, t)∆x = −Dtg(x, t)∆t. In order to do so,

we �rst vectorize (6.14) by using the identity vec(ABC) = (CT ⊗A) vec(B) which leads

to

(
VT
l HT

kl ⊗ Idk
)

︸ ︷︷ ︸
D

UH
k

Gkl

∆vec UH
k +

(
Idl ⊗ (UH

k Hkl)
)

︸ ︷︷ ︸
DVl

Gkl

∆vec Vl

= − vec
(
UH
k (Hkl −Hkl)Vl

)
︸ ︷︷ ︸

DtGkl

∆t, ∀(k, l) ∈ Φ, (6.18)

where derivatives of Gkl with respect to UH
k , Vl and t have been identi�ed as DUH

k
Gkl,

DVl
Gkl and DtGkl, respectively.

Now, the Euler prediction step amounts to �nd the minimum-norm solution of the fol-

lowing sparse linear system

Dxg(x, t)∆x = −Dtg(x, t)∆t, (6.19)

which is given by

∆x = −(Dxg(x, t))†Dtg(x, t)∆t, (6.20)

where Dxg(x, t) is the Jacobian matrix of the system of matrix equations (6.10), which

comprises all the derivatives with respect to the variables in {Vl} and {UH
k }, and (·)†

denotes the Moore-Penrose (MP) pseudoinverse operator. More speci�cally, the derivative

of g with respect to x is the Ne ×Nv matrix described by

Dxg =
∂g

∂xT
=




∂g1

∂x1
· · · ∂g1

∂gNv
.
.
.

.

.

.

∂gNe
∂g1

· · · ∂gNe
∂gNv


 , (6.21)

where gi and xi denote the i-th element of g and x, respectively. However, it is much more

meaningful and convenient to consider its block-partitioned structure with as many row

partitions as channel matrices and as many column partitions as precoding and decoding

matrices from which it is evident that Dxr is essentially the same as Ψ in Section 4.4:

Dxg =




DV1G21 DV2G21 · · · DVK
G21 DUH

1
G21 DUH

2
G21 · · · DUH

K
G21

DV1G31 DV2G31 · · · DVK
G31 DUH

1
G31 DUH

2
G31 · · · DUH

K
G31

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DV1GK−1,K DV2GK−1,K · · · DVK
GK−1,K DUH

1
GK−1,K DUH

2
GK−1,K · · · DUH

K
GK−1,K


 .

(6.22)
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Another relevant characteristic of the above matrix is its sparsity which arises from the fact

that each equation involves only subset of the variables and, therefore, most of the blocks

are identically zero. In particular, DVqGkl = 0dkdl,Mldl if q 6= l and DUH
p
Gkl = 0dkdl,Nkdk if

p 6= k.

The derivative with respect to the continuation parameter is built from all partial deriva-

tives as

Dtg(x, t) = cat
(k,l)∈Φ

(vec(DtGkl)
T )T , (6.23)

and the solution vector ∆x contains the update values for all the variables in both precoders

and decoders.

Similarly, the Newton correction step can be written as the solution to a single linear

equation, Dxg(x, t)∆x = −g(x, t), which can be obtained by vectorizing and stacking up

all the equations in (6.15):

DUH
k
Gkl∆vec UH

k +DVl
Gkl∆vec Vl = −gkl∆t, ∀(k, l) ∈ Φ, (6.24)

where gkl = vec
(
UH
k Hkl(t)Vl

)
. Stacking up all the equations we obtain the linear system

Dxg(x, t)∆x = −g(x, t), (6.25)

where g(x, t) = cat
(k,l)

(gkl(x, t)) and whose minimum-norm solution is found as

∆x = −(Dxg(x, t))†g(x, t). (6.26)

Recall that Dxg(x, t) is Ne × Nv and Nv ≥ Ne. Consequently, (6.25) has in�-

nite solutions which can be parametrized as ∆x = −(Dxg(x, t))†g(x, t) + (INv −
(Dxg(x, t))†Dxg(x, t))w, where w is an Nv× 1 vector of free parameters. Now, the reader

may be wondering why the minimum-norm solution is chosen in both (6.20) and (6.26) if

every solution is equally valid. Although that is, a priori, true, not every solution enjoys

the same convergence properties [WW90].

Taking into account that ∆x = xi+1−xi, it is reasonable to pick the solution that causes

∆x to be normal to the manifold {x : g(xi+1, t) = g(xi, t)} (the set of variables keeping

the polynomials unchanged) or, equivalently, is orthogonal to the nullspace of Dxg(xi, t).

More formally, this is achieved by setting (INv − (Dxg(xi, t))
†Dxg(xi, t))w = 0Nv ,1 which

leads to the so-called normal �ow update, i.e. ∆x = −(Dxg(xi, t))
†g(xi, t) [WW90].

Consequently, the Newton update is given by

xi+1 = xi − (Dxg(xi, t))
†g(xi, t), i = 0, 1, . . . (6.27)

In practice, it is recommended not to compute the MP pseudoinverse but, instead, solve

argmin∆xi
{‖∆xi‖ : (Dxg(xi, t))∆xi = −g(xi, t)} . (6.28)

Most of the existing numerical linear algebra routines for solving this problem cannot ex-

ploit the sparse structure of Dxg(xi, t) or, if they do, compute a fast basic solution in-

stead of the minimum-norm solution. A convenient routine ful�lling both requirements is

SPQR_SOLVE which is part of the SuiteSparseQR linear algebra bundle by Davis [Dav11].

As a �nal remark, in order to guarantee the success of the path tracking procedure it is

important to implement a step size adaptation rule. The simple rule in Section 6.1.1 will help

to detect convergence of the Newton method to local minima and accelerate the execution

of the path tracking routine.
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Algorithm 8: Homotopy continuation algorithm for interference alignment in arbi-

trary MIMO interference channels.

Input: Channel matrices, {Hkl}, initial step size, ∆t, path-following parameters:

NwtTol, MaxNwtIter, MinStepSize, NumHitsToDoubleStep

Output: Perfect IA transceiver designs {Vl} and {Uk} and path-tracking failure

indicator, PathFailed

begin
/* Start system solution */

Obtain a trivial system solution ({Hkl}, {Uk}, {Vl}) as described in Section 6.2.3

t = 0, NumHits = 0, PathFailed = false

x = [vec(UH
1 )T , . . . , vec(UH

K)T , vec(V1)T , . . . , vec(VK)T ]T

t∗ = t, x∗ = x // backup variables

while t < 1 do
t = min(t+ ∆t, 1)
/* Euler prediction */

x = x− (Dxg(x, t))†Dtg(x, t)∆t as indicated in (6.20)

/* Newton correction */

NewtonFailed = true

for iter = 1 to MaxNwtIter do
x = x− (Dxg(x, t))†g(x, t) as shown in (6.26)

/* Projection */

Split x into parts

Project each part onto the Stiefel manifold

Build x again

/* Check if interference leakage is below tolerance */

if ||g||2 < NwtTol then
NumHits = NumHits + 1
NewtonFailed = false

break

/* Step size adaptation routine */

if NumHits == NumHitsToDoubleStep then
∆t = 2∆t
t∗ = t, x∗ = x, NumHits = 0

else if NewtonFailed then
∆t = ∆t/2
t = t∗, x = x∗, NumHits = 0
if ∆t < MinStepSize then

PathFailed = true

return

return
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6.2.3 Computing multiple IA solutions
We have described the routine that allows us to track the evolution of the solution ma-

trices until the target system is reached. The homotopy continuation procedure has the

advantage that, if the structure of the start and target systems is similar and they both have

S solutions, a one-to-one correspondence between both sets of solutions exists. In other

words, it means that all the solutions of our target system can be found at the end of S
solution paths [Li97]. The problem, then, is how to �nd a convenient start system. In the

following we propose two di�erent techniques to solve this problem. The �rst one gives

an explicit method to compute a single solution for the start system, whereas the second

exploits the characteristics of single-beam systems proposing a combinatorial procedure to

enumerate all distinct start solutions.

In any case, the �nal homotopy continuation algorithm is summarized in Algorithm 8.

The inverse IA problem

In this section we detail how to obtain one starting point for the path-following procedure

in an arbitrary system. The key observation here is to consider what we call the inverse IA
problem which is simply looking at (6.10) as if we were given UH

k and Vl and we had to

solve it for Hkl. When regarded this way, the problem turns into a linear problem [Lau04,

Theorem 6.11] where all solutions can be parametrized as

Hkl = Xkl −AkA
H
k XklBlB

H
l (6.29)

where Ak and Bl are orthonormal bases of Uk and Vl, respectively, and Xkl is a non-zero

arbitrary matrix. Therefore, in order to �nd a valid start system we just need to take Uk,

Vl and Xkl at random and then obtain Hkl according to (6.29). The conditions under which

(6.29) can be solved are simple: for generic Uk and Vl, a non-trivial Hkl satis�es the IA

conditions if and only if dkdl < NkMl. Recall that this condition is (4.32), one of our initial

assumptions, that have to be trivially satis�ed for a system to be feasible. That means it is

possible to �nd an infeasible system for which the inverse IA problem is solvable, but not

vice versa. A remarkable fact is that the inverse IA problem can be solved for each Hkl (i.e.,

each interference link) independently, which notably simpli�es its implementation.

It is important to note that, by means of this method, a single start system solution is

obtained, which can be later traced to obtain a single IA solution. If we are interested in

�nding L� S distinct solutions to the problem, we can start the path-following procedure

from L di�erent inverse IA solutions. With high probability, due to L� S, this would give

us nearly L distinct IA solutions. We can then store these solutions to be used as future

starting points of the procedure. Although it may seem ine�cient at �rst, this procedure

has the advantage that the L di�erent IA solutions have to be calculated only once and

then they are stored for future use. Since the stored system is generically identical to the

target system, a one-to-one correspondence will exist between the L solutions in the stored

and target systems, thus enabling a fast computation of L distinct solutions in any target

system.
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Start system for single-beam scenarios

Expression (6.29) provides a simple and e�cient method to �nd a starting point for the ho-

motopy continuation procedure. We have also described a procedure to compute L distinct

IA solutions when L is small compared to the total number of solutions. However, if we

were able to systematically compute all S solutions for our start system, we could use the

homotopy to track S di�erent paths from the start system to the target system, thus �nding

all di�erent IA solutions. Once again, the special characteristics of single-beam scenarios

facilitate this task.

Consider a single-beam scenario, whose precoders and decoders are given by the col-

umn vector vl and uk, respectively. A suitable start system can be found by considering

rank-one channel matrices, that is, channel matrices that are factorable as

Hkl = bkla
H
kl. (6.30)

The IA equations in (6.10) can then be written as

uHk bkl︸ ︷︷ ︸
Lkl(uk)

aHklvl︸ ︷︷ ︸
Lkl(vl)

= 0, (k, l) ∈ Φ, (6.31)

where Lkl(uk) is a linear form in the variables of uk and Lkl(vl) is a linear form in the

variables of vl.
The new set of bilinear equations (6.31) can be trivially solved by nulling either Lkl(uk)

or Lkl(vl) in each equation. Unfortunately, the equations in (6.31) are coupled and, conse-

quently, the linear terms cannot be nulled out independently. In order to solve the problem

we must �nd a subset of linear terms forming a compatible linear system. Since all the

equations are generic, we simply need to check that the chosen subset of linear terms has,

at least, as many free variables as equations. From Section 4.2 we know that the number

of free variables in these precoders and decoders is Ml − 1 and Nk − 1, respectively. The

problem is now determining which term selections are compatible with each other.

As the attentive reader may have already noticed, this poses a combinatorial problem

which is, indeed, identical to the one solved when counting the number of solutions for

single-beam systems. More speci�cally, we will use a zero-trace K × K matrix, A, to

keep track of our term selection strategy. We set akl = 1 if Lkl(vl) = 0 and akl = 0 if

Lkl(uk) = 0. For a given l, Lkl(vl) = 0 can be satis�ed for, at most, Ml− 1 di�erent values

of k which limits the number of ones per column of A to Ml − 1. Analogously, for a given

k, Lkl(uk) = 0 can be ful�lled for, at most, Nk − 1 di�erent values of l thus limiting the

number of zeros per row of A to Nk − 1.

The mapping we have just de�ned between valid term selections solving the rank-one

system and binary matrices A with prede�ned margins shows that the number of solutions

with rank-one channels is identical to the number of solutions for generic channels. Indeed,

this could have been easily derived from a well-known fact in algebraic geometry stating

that the linear-product decomposition of a generic system of equations does not change its

root count [VC93, Theorem 3.1].
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6.3 Extension to other networks
In this section, we consider the extension of the homotopy algorithm above to a more gen-

eral network topology known as X network (XN). We recall that XNs subsume many other

topologies such as the IC, the IBC and the IMAC. Additionally, the explicit consideration

of the rank conditions will also allow us to use structured channel matrices as the ones de-

scribed in Section 2.3.1. We will show that this extension is straightforward and translates

into a slight modi�cation of the homotopy continuation algorithm presented before.

The following IA equations arise from the system model equations presented in Section

2.5 when all the interference terms are canceled out and independence among all the desired

signal streams impinging each receiver is preserved:

UH
k HklVjl = 0dk,djl , ∀j 6= k, and (k, l) ∈ Φ (6.32)

rank

(
UH
k cat
p: dkp 6=0

({HkpVkp})
)

= dk, ∀k ∈ K. (6.33)

Note that, in this kind of network, MIMO channels may transport both desired signal and

interference, thus, rendering some sort of interdependence between (6.32) and (6.33). Con-

trarily to what we did for the IC, in this case we cannot simply drop (6.33) and solve the

system of bilinear equations de�ned by (6.32). A more delicate approach to the problem is

required.

We �rst de�ne the dk × dk matrix

Mk , UH
k cat
p: dkp 6=0

({HkpVkp}) . (6.34)

It is clear that (6.33) is equivalent to Mk having an inverse and, therefore, as M−1
k exists,

we can rede�ne the decoder Uk to be

Uk ← UkM
−H
k . (6.35)

This allows us to rewrite (6.33) as the polynomial equation

UH
k cat
p: dkp 6=0

({HkpVkp}) = Idk . (6.36)

Once the rank conditions in (6.33) have been rewritten as polynomial equations, both (6.32)

and (6.36) can be uni�ed as

UH
k HklVl = Wkl, ∀(k, l) ∈ Φ, (6.37)

where

Vl = cat
j∈K

(Vjl) = [V1l,V2l, . . . ,VKl] . (6.38)

The matrix

Wkl =
[
0dk,

∑k−1
j=1 djl

, Pkl, 0dk,
∑K
j=k+1 djl

]
, (6.39)

where Pkl denotes a contiguous subset of columns of the identity matrix Idk , i.e., Pkl =

Idk [ : , 1 +
∑l−1

p=1 dkp :
∑l

p=1 dkp].
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6.3.1 Path-following procedure
In this section we will show that the generalization of the homotopy continuation proce-

dure to XNs translates into simple changes to the path-following procedure. Indeed, the

homotopy continuation algorithm for XNs can be regarded as a generalization of that for

ICs and is obtained with a simple modi�cation of the latter.

In order to see this, we �rst note that the homotopy function now includes a constant

term in addition to the already existing quadratic terms:

Gkl(U
H
k ,Vl, t) = UH

k Hkl(t)Vl −Wkl, ∀(k, l) ∈ Φ and t ∈ [0, 1]. (6.40)

Euler prediction

The Euler prediction step is obtained when the homotopy function is derived with respect

to both precoders and decoders and also with respect to the continuation parameter t. The

constant term Wkl, therefore, disappears and the Euler prediction formulation is qualita-

tively identical to (6.14). Nevertheless, there is a quantitative di�erence due to the fact that

the set of interfering links, Φ, is di�erent. The set of interfering links of an IC is generally

a subset of those in an XN.

Newton correction

Obtaining an expression for the Newton correction step requires, on the one hand, deriving

with respect to both precoders and decoders. On the other hand, the homotopy function is

not derived with respect t which means that the constant factor Wkl will now play a role

in the Newton correction step:

∆UH
k Hkl(t)Vl + UH

k Hkl(t)∆Vl = −UH
k Hkl(t)Vl + Wkl, ∀(k, l) ∈ Φ. (6.41)

As discussed above, the number of interfering links, |Φ|, will be generally larger for an

XN than for an IC. Additionally, we have to recall that the explicit introduction of the rank

conditions (6.33) enables this newly introduced homotopy continuation algorithm to handle

structured channels. For this same reason, the projection onto the Stiefel manifold of the

precoders and decoders after each iteration is no longer necessary.

Except for these subtle di�erences, the path-following procedure and implementation

details are identical to that already presented for the interference channel. We also note that

even the determination of the start system by means of the inverse IA procedure described

in Section 6.2.3 is identical as long as the channel matrices are unstructured.

Some authors [SL13] have suggested that for certain scenarios involving structured

channels to be feasible, it is required that precoders or decoders are non-generic or, more

speci�cally, they need to contain zeros in some positions. The conditions under which

non-generic precoders or decoders are necessary, or the required amount of zeros, are still

unknown and constitutes an interesting matter for future research.
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Figure 6.4: Detail of the path-following procedure results for a channel realization in the (5 ×
5, 2)4 system. Top: Evolution of interference leakage for both intermediate and final channels.
Bo�om: Step size adaptation along the path.

6.4 Numerical results
This section shows some numerical results concerning the homotopy continuation algo-

rithm. We start by presenting Figure 6.4 which depicts the evolution of some relevant

metrics along the continuation path for one channel realization in the multi-beam system

(5 × 5, 2)4
. The continuation parameters for this experiment have been set to: NwtTol =

10−15
, MaxNwtIter = 5, MinStepSize = 10−8

and NumHitsToDoubleStep = 4. As ex-

pected, the interference leakage for the channels matrices along the path never exceeds the

tolerance NwtTol. When it does, the step is marked as a failure and the step size is cut in

half. After NumHitsToDoubleStep successful steps the step size is doubled to accelerate

the convergence.

The actual interference leakage (measured with respect to the target channels) is also

depicted. It is readily observed that its convergence is, at the beginning, very slow and

accelerates after the continuation parameter passes beyond 0.9. This is a consequence of

the q-quadratic local convergence of the Newton corrector (more on this on Chapter 7).

This property can be also exploited for the rapid calculation of spatial domain IA solutions

in slowly time-varying channels from solutions obtained in previous time instants. In spite
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Figure 6.5: Average computation time to reach a certain interference leakage using three di�erent
algorithms: homotopy continuation, alternating minimization and steepest descent.

Scenario

Alternating minimization Homotopy continuation

Iteration time (s) t10−5 t10−10 Iteration time (s) t10−5 t10−10

(5× 5, 2)4 7.34 · 10−4
9.09 s 31.99 s 2.96 · 10−2

1.78 s 1.78 s

(12× 12, 4)5 1.79 · 10−3
6 min 52 min 1.32 · 10−1

43.66 s 43.66 s

(10× 10, 1)19 1.27 · 10−2
48 min 7 h 8 min 9.26 · 10−1

6 min 6 s 6 min 6 s

Table 6.1: Average execution time to reach an interference leakage of 10−5 (t10−5) and 10−10

(t10−10) for the AM and HC methods.

of the slow initial convergence, it takes only 50 steps to converge to the global solution

which, additionally, translates into a fast convergence in terms of execution time.

Figure 6.5 illustrates this point by comparing the average computation time to reach a

certain interference leakage level with that of the alternating minimization (AM) algorithms

in [GCJ11] and the steepest-descent (SD) algorithm in [ZYW12]. The results are averaged

over 100 independent Monte-Carlo simulations, where the entries of the MIMO channels

are independent and identically distributed complex Gaussian variables with zero mean

and unit variance.
2

The results in Figure 6.5 show that the HC algorithm is able to �nd an

IA solution in a time that is orders of magnitude smaller than that required by the fastest

of the two algorithms used for the comparison. A similar outcome is obtained when other

scenarios are considered, as shown in Table 6.1.

We now complement the sum-rate results shown in Figures 5.6 and 5.7 at the end of

Chapter 5 with additional results. Those �gures illustrated the wide disparity in terms of

sum-rate performance among di�erent IA solutions and motivated the need of designing

2
These results were obtained in an Intel i7 3.2 GHz CPU with 4 GB of memory.



6.4 Numerical results 113

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

SNR [dB]

S
u
m
-r
at
e
[b
it
/s
/H

z]
Maximum sum-rate solution

Best of 5.0 % (11 solutions)
Incremental SNR
Average sum-rate

Figure 6.6: Comparison of the sum-rate performance achieved by exhaustively exploring a small
subset of solutions and that achieved by state-of-the-art sum-rate maximization algorithms.

an algorithm to systematically explore, at least a subset, of the whole set of solutions. We

showed that most of the gain provided by the best-performing solution in terms of sum-rate

can be obtained by exhaustively exploring a limited set of solutions.

Here, we compare the performance of this idea to one of the best-performing algorithms

to date according to the comparison found in [SSB+13], the so-called Incremental SNR

algorithm. The results are depicted in Figure 6.6 where we show the sum-rate obtained for

both homotopy continuation and Incremental SNR in the (3×3, 1)5
interference channel.

Recall that, for moderate-size networks, homotopy continuation allows us to compute all

di�erent solutions. In this case, since the number of solutions is only 216, we have been

able to compute the performance of the best solution and the average performance among

all solutions, which are plotted in the �gure as comparison baselines.

It is readily observed that the Incremental SNR is able to extract most of the avail-

able sum-rate gain despite not being able to obtain all the degrees-of-freedom (DoF) in

system, which is clear from the curve slope decreasing beyond 50 dB. Our strategy consists

in exploit the fast convergence of the homotopy continuation method to compute several

random solutions and pick the best one out of them. In this case, we show the performance

achieved by the best out of 5 % of solutions (i.e., 11 solutions), which is demonstrated to

be comparable to that obtained by the Incremental SNR algorithm. Computation times

are around 4 seconds in both cases. Additionally, we recall that our approach is extensible

to multi-beam systems whereas the Incremental SNR approach is limited to single-beam

scenarios.

Finally, we conclude with an interesting observation on the e�ect of the step size in

the convergence of the homotopy continuation algorithm. After a vast number of simula-

tions in di�erent network setups, we have observed that, for some scenarios, the homotopy

continuation algorithm convergences to a global solution independently of the chosen step
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size. Our investigations conclude that this only holds for interference channels and step

adaptation is still necessary for the rest of networks. From this observation, it seems that,

for interference channels, we can ignore the Euler prediction step and �nd a solution by

only executing Newton correction steps. Chapter 7 will shed some light on this observation

by reinterpreting the Newton correction step as a Gauss-Newton method for interference

leakage minimization.



Chapter7
Gauss-Newton Minimum Leakage

Algorithm

The contents in this chapter are based on the numerical observation made in Section 6.4

showing that Newton correction is su�cient to achieve zero interference leakage for every

interference channel (IC). It is well-known that Newton-like methods are locally conver-

gent but it is unusual to �nd problems in which they demonstrate global convergence, i.e.

convergence to the global optimum irrespectively of the initialization point.

We will shed some light on this by reinterpreting the algorithm as a second-order Gauss-

Newton (GN) method for interference leakage minimization and examining its stationary

points. In the case of real-valued cost functions of a complex parameter vector, the theory

behind GN is relatively well-known and understood. Unfortunately, the interference align-

ment (IA) problem poses the substantial di�culty of requiring precoders and decoders to

stay full rank along GN iterations in order to preserve the rank of the desired channels. We

will guarantee this by incorporating an orthonormalization step after every GN iteration.

Given that the updates are small, the orthonormalization step is not expected to jeopardize

the convergence properties of the GN algorithm.

Our numerical results show that, in addition to systematically converging to a zero

interference leakage point (in feasible scenarios) regardless of the initialization point, the

proposed method provides remarkable computation time savings when compared to the

well-known alternating minimization (AM) or steepest-descent (SD) algorithms.

The algorithm presented in this chapter is mainly based on our publication [GLS14].

7.1 Mathematical preliminaries
We �rst start by considering the matrix functions Rkl : Cdk×Nk × CMl×dl → Cdk×dl for all

(k, l) ∈ Φ, which are de�ned as

Rkl(U
H
k ,Vl) = UH

k HklVl, ∀ (k, l) ∈ Φ, (7.1)

and denote the residual interference at each link as a function of the precoders, Vl, and

the conjugate transpose of the decoders, UH
k . When all Rkl are stacked on top of each

other, they de�ne the vector of residuals r(x) used in Chapter 6 which is a function of the

optimization variables (i.e. the entries of every Uk and Vl) gathered in the vector x.
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Interestingly, the interference leakage cost function can be expressed as f(x) =
r(x)Hr(x) : CNv → R. Since f(x) is a real-valued function with complex domain, it is

not analytic in x and hence a Taylor expansion of f(x) at a point x0 cannot be derived. On

the other hand, Wirtinger calculus [Wir27] provides a framework for complex derivation

that allows the existence of a complex Taylor expansion of such real-valued function, by

being regarded as a function of the augmented vector χ , [xT xH ]T . Then, two complex

derivatives are de�ned by taking the derivative with respect to x while treating x∗ as a

constant and the other way around for x∗. For further details, we refer the reader to the

works by Schreier and Scharf [SS10] and Hjørungnes [Hjø11].

Following these lines, the augmented Jacobian matrix of r can be written as

Dχr ,
∂r(χ)

∂χT
=

[
∂r(x)

∂xT
∂r(x)

∂xH

]
= [Dxr Dx∗r] , (7.2)

where, due to r being analytic, Dx∗r = 0Ne,Nv . The gradient vector of f(χ) can be calcu-

lated applying the chain rule to (7.2), that is,

Dχf(χ) , [Dxf Dx∗f ] =
[
r(χ)HDxr r(χ)T (Dxr)∗

]T
. (7.3)

Additionally, the Hessian matrix of f(χ) is de�ned as

Hχf ,

[
Hx,x∗f Hx∗,x∗f
Hx,xf Hx∗,xf

]
, (7.4)

whereHx,yf = Dx(Dyf)T . For real-valued f(χ),Hχf is Hermitian and, therefore, it can be

parametrized by the two upper blocks: the so-called complex and complementary Hessian

matrices. For the interference leakage cost function these blocks can be expressed as

Hx,x∗f = (Dxr)HDxr +
∑

i

ri(x)
∂2r∗i (x)

∂xT∂x∗
︸ ︷︷ ︸

=0

=(Dxr)HDxr , (7.5)

Hx∗,x∗f = (Dx∗r)HDx∗r︸ ︷︷ ︸
=0

+
∑

i

ri(x)
∂2r∗i (x)

∂xH∂x∗
=
∑

i

ri(x)
∂2r∗i (x)

∂xH∂x∗
, (7.6)

where ri(x) denotes the i-th element of r(x). Note that some terms are identically zero due

to r being analytic.

7.2 Complex Gauss-Newton method
The IA problem poses some characteristics that make it specially suitable for a GN method.

First, it can be formulated as the minimization of a sum-of-squares function (i.e. the in-

terference leakage cost function). Second, as we will see in this section, the interference

leakage function convexi�es as one gets closer to an IA solution.

At the i-th iteration of Newton-like methods, the variables are updated according to the

rule xi+1 = xi + ∆xi, where the update vector ∆xi is obtained through the second-order
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approximation of the cost function, f(x). The second-order approximation of any real cost

function, f(χ), around a point χ0 can be written as [Hjø11; SS10]:

f(χ) ≈ f(χ0) + ∆χT0Dχf(χ0) +
1

2
∆χH0 Hχf(χ0)∆χ0 , (7.7)

where ∆χ0 = χ−χ0,Dχf(χ0) denotes the complex gradient of the scalar function f(χ) at

χ0 andHχf(χ0) denotes the Hessian matrix of f(χ) atχ0. Note that f(χ) is an alternative

representation of f(x) that explicitly shows its dependence on both x and x∗, and thus

f(χ) = f(x).

In the GN method, the Hessian matrix is approximated by taking Hx∗,x∗f = 0Nv in

(7.5), which is a reasonable approximation when the entries of r are small (we are close

to a minimum) or the function r is mildly non-linear (the second derivatives are small).

As r is a bilinear function, this happens to be a rather good approximation. Taking this

approximation into account, and using (7.3)–(7.6), we can express (7.7) as a function of x as

f(x) ≈ f(x0) + 2<
{
r(x0)H(Dxr(x0))∆x0

}
+ ∆xH0 (Dxr(x0))H(Dxr(x0))∆x0 . (7.8)

Note that the approximated Hessian is positive semide�nite, and thus (7.8) is actually a

convex approximation of f(x) at x0. The accuracy of this approximation improves as the

interference leakage cost function is minimized. Finally, the GN update is obtained when

the derivative of (7.8) with respect to ∆x0 equals zero:

∂f(x)

∂∆x0

= 2(Dxr(x0))Hr(x0) + 2(Dxr(x0))H(Dxr(x0))∆x0 = 0Nv ,1. (7.9)

Given that Dxr(x0) is Ne ×Nv and Nv ≥ Ne, (7.9) simpli�es to (Dxr(x0))∆x0 = −r(x0),

whose solution was given in Section 6.2.2 (see also Remark 7.1).

Finally, it is worth pointing out that due to the fact the GN updates are small, the pre-

coders and decoders obtained after each iteration should guarantee the IA rank condition

(4.2). Therefore, both precoders and decoders can be projected back to the Stiefel mani-

fold by computing an orthonormal basis of the subspace spanned by each of them. Given

that the interference leakage function is invariant to right-multiplications of the precoders

and decoders by unitary matrices, the particular choice of orthonormal representatives is

irrelevant. Therefore, among all orthonormalization operations, we consider the QR de-

composition as it requires the least computational demands, and denote the Q factor as

qf(·). The complete procedure is summarized in Algorithm 9.

Remark 7.1. The GN method applied to minimize f(x) = r(x)Hr(x) is identical to the

classical Newton’s method applied to the system of equations r(x) = 0Ne,1 when the min-

imum norm update is chosen [NW06]. To see this, consider a �rst order model of r(x), i.e.

r(x) = r(x0) + (Dxr(x0))∆x0. In the classical Newton’s method, the update vector ∆x0

must satisfy r(x0) + (Dxr(x0))∆x0 = 0Ne,1 thus yielding the same update as in Section

6.2.1.

7.2.1 Some remarks on the convergence properties
Convergence of GN methods is usually di�cult to analyze, hence we provide here some

insights based on empirical observations rather than formal convergence proofs. Never-
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Algorithm 9: Gauss-Newton method for interference leakage minimization.

Input: Channel matrices, {Hkl}, starting point, ({V(0)
l }, {U

(0)
k }), interference

leakage threshold, ε
Output: Transceiver designs {Vl} and {Uk}
begin

n = 0
repeat

Construct xn, Dxr(xn) and r(xn)
Solve (7.9) for ∆xn

Construct {∆V
(n)
l } and {∆U

(n)
k } from ∆xn

Update and orthonormalize

V
(n+1)
l ← qf(V

(n)
l + ∆V

(n)
l ) ∀l ∈ K

U
(n+1)
k ← qf(U

(n)
k + ∆U

(n)
k ) ∀k ∈ K

n← n+ 1

until f(xn+1) ≤ ε
return

theless, we will observe in Section 7.3 through exhaustive simulations that our intuitions

behind the convergence of the method are in agreement with the experimental results.

Stationary points

From (7.9) it is clear that points satisfying (Dxr(x0))Hr(x0) = 0Nv ,1 are accumulation

points, i.e., stationary points of the method. In Chapter 4 we have proved that, for a feasi-

ble IA system, the matrix Dxr is always full-rank, and therefore the nullspace of (Dxr)H is

always empty. Thus, these points correspond to r(x) = 0Ne,1, i.e., zero interference leak-

age. Also, points at which the updates do not change the subspace of the precoders and

decoders are also accumulation points (recall that the interference leakage is invariant to

right-multiplications by unitary matrices), but do not necessarily correspond to stationary

points of the interference leakage. Note, however, that such points are also present in the

AM and other IA algorithms.

Non-monotone convergence

It can be seen that the classical GN direction is a descent direction of the function f(x)
when (Dxr)Hr(x) is nonzero [NW06]. In other words, the scalar product of the direction

∆x over the gradient is always negative, i.e. r(x)H(Dxr)∆x < 0. Intuitively, it is clear

that the interference leakage can always be reduced by diminishing the transmitted power,

thus guaranteeing a monotone convergence. In general, when a power constraint is added

(e.g. by restricting precoders and decoders to lie in the Stiefel manifold as in Algorithm 9)

monotone convergence does not hold anymore.
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Figure 7.1: Average convergence of GN, AM and SD for the (5×5, 2)4 and (12×12, 4)5 scenarios.
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Figure 7.2: CDF of computation times of the GN, AM and SD algorithms in scenarios (5 × 5, 2)4

and (12× 12, 4)5.

7.3 Numerical results
In this section we provide several numerical examples to compare the convergence speed

of the proposed GN method to that of the AM [GCJ11] and SD [ZYW12] algorithms. Our

results are averaged over 100 independent Monte-Carlo simulations, where the entries of

the multiple-input multiple-output (MIMO) channels are independent and identically dis-

tributed complex Gaussian variables with zero mean and unit variance.

The evolution of the interference leakage with the average computation time (in an

Intel i7 3.2 GHz CPU) for the scenarios (5× 5, 2)4
and (12× 12, 4)5

is depicted in Fig. 7.1.

The di�erence in the convergence rate between AM and SD on the one hand and the GN
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Table 7.1: Median number of iterations to reach an interference leakage of 10−5 and average time
per iteration.

Scenario

Median number of iterations Iteration time (ms)

GN AM SD GN AM SD

(5× 5, 2)4
20 6204 1917 3.9 0.7 7.3

(12× 12, 4)5
42 32190 – 18.5 1.8 28.0

method on the other is readily observed. More speci�cally, the use of AM against GN would

be only justi�ed when the desired interference level is still far above 10−2
, which is not a

su�ciently low value for the signal-to-noise ratio (SNR) regimes where IA is meaningful.

For the considered scenarios, the SD algorithm is always slower than AM and, in fact,

fails to converge (stagnating in local minima) in the (12 × 12, 4)5
scenario. On the other

hand, both AM and GN have always converged to a zero-leakage solution. The CDF of the

computation times and the median number of iterations to reach an interference leakage

of 10−5
are depicted in Fig. 7.2 and Table 7.1, respectively.

Lastly, we analyze the convergence order of the two algorithms that have always con-

verged in both scenarios: GN and AM. The classical GN method is known to converge q-

quadratically for small residual problems, r(x?) ≈ 0Ne,1, when the following assumptions

are satis�ed [NW06]: the residuals ri(x) are Lipschitz continuously di�erentiable (i.e., their

second derivative is bounded) and the JacobianDxr is full rank for all x in a neighborhood

of the optimum x?. Since both requirements are met in the IA problem (recall that the

Jacobian matrix is always full-rank for feasible scenarios), GN is expected to converge q-

quadratically in a neighborhood of the optimum. We note that q-quadratic convergence

holds for the classical GN method but may not hold when additional operations such as

the orthonormalization step in Algorithm 9 are applied. Fortunately, in a neighborhood of

the optimum, the orthonormalization step can be regarded as a retraction which guaran-

tees superlinear convergence (α > 1) [AMS08]. The numerical results below suggest the

convergence rate is indeed q-quadratic although a rigorous proof is not available so far.

On the other hand, both alternating-optimization and steepest descent algorithms on

manifolds are known to converge q-linearly (that is, α = 1) with 0 ≤ c < 1 (see [BH03]

and [AMS08], respectively). These algorithms, despite being simple, lack good rate of con-

vergence properties, making them prohibitively slow. This limitation stems from their dis-

tributed nature, constraining the optimization problem to a subset of variables at each it-

eration. Conversely, the GN method takes advantage of a joint, centralized optimization

which enables a more focused convergence. We note, however, that distributed implemen-

tations of the GN method are possible by exploting the inherent block-wise structure of the

problem as shown by Béjar and Zazo [BZ12]. This extension is left as future work.

To numerically estimate the convergence order, α, we take logarithms in the conver-

gence rate formula presented in Chapter 3. That is,

α ≈ log(‖xi+1 − xi‖ / ‖xi − xi−1‖)
log(‖xi − xi−1‖ / ‖xi−1 − xi−2‖)

for large i,
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where i denotes the iteration number. The GN method gives α = 2.10 and α = 2.05 for

the scenarios (5× 5, 2)4
and (12× 12, 4)5

, respectively, thus showing that the convergence

is q-quadratic and corroborating our arguments above. The estimates of α for the AM

algorithm are α = 0.91 and α = 1.01, respectively, which are also consistent with the

q-linear convergence results in the literature.
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Chapter8
Conclusions and Further Research

8.1 Conclusions
In this dissertation we studied the idea of interference alignment (IA) applied to a network

consisting of several mutually interfering transmitter-receiver pairs which is commonly

known as interference channel. In particular, we explored the problem of linear spatial

domain interference alignment in three di�erent facets.

• First, we analyzed the conditions, i.e., number of antennas, users and streams, un-

der which IA is feasible. For the case of single-beam networks (those in which users

transmits one data stream only), we reinterpreted available results as the problem of

determining the existence of a feasible �ow in a supply-demand network. When re-

garded this way, the problem translates into evaluating as many simple conditions as

the number of users in the network. This constitutes an elegant closed-form solution

to the problem of IA feasibility in single-beam interference channels. For multi-beam

systems, the same network �ow approach o�ers substantial computational advan-

tages when evaluating the infeasibility of IA in a network.

In order to derive necessary and su�cient conditions for multi-beam systems we

have been compelled to use more sophisticated mathematical tools. By combining

algebraic geometry techniques with di�erential topology, we proved a result that

completely settles the question of IA feasibility in arbitrary networks (including the

partially connected ones). In particular, we consider the input set (complex projective

space of multiple-input multiple-output (MIMO) interference channels), the output

set (precoder and decoder Grassmannians), and the solution set (channels, decoders,

and precoders satisfying the IA polynomial equations), not only as algebraic sets, but

also as smooth compact manifolds. Using this mathematical framework, we proved

that the linear alignment problem is feasible when the algebraic dimension of the

solution variety is larger than or equal to the dimension of the input space and the

linear mapping between the tangent spaces of both smooth manifolds given by the

�rst projection is generically surjective. This result naturally yields a simple fea-

sibility test, which amounts to checking the rank of a matrix that depends on the

topology of the network. Both a �oating point and an exact arithmetic test were pro-

posed. Indeed, the latter shows that the problem of checking IA feasibility belongs to

the bounded-error probabilistic polynomial time (BPP) complexity class.
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• Second, the feasibility results above were generalized to characterize the number of

existing solutions. It has been shown experimentally that di�erent IA solutions can

exhibit dramatically di�erent performances. Consequently, the number of solutions

acts as a diversity metric which turns out to be important for evaluating the abil-

ity of a system to improve its performance in terms of sum-rate or robustness while

maintaining perfect IA. We proved that the number of IA solutions, in those cases

where it is �nite, is constant for any channel realization and given by an integral

formula. More precisely, the number of alignment solutions is the scaled average of

the Gram determinant of the matrix used to check feasibility. Interestingly, while the

value of this determinant at an arbitrary point can be used to check the feasibility

of the IA problem, its average (properly scaled) gives the number of solutions. For

single-beam systems, a closed-form solution for the average of this determinant was

obtained, establishing interesting connections with classical combinatorial and graph

theory problems. Since evaluating this closed-form formula may be computationally

intractable for large networks, its asymptotic rate of growth was also analyzed. For

the multi-beam case, we resorted again to a numerical solution consisting in approx-

imating the value of the integral formula by Monte Carlo integration. Our results

showed that the number of solutions grows dramatically with the network size.

• Finally, once the number of solutions is characterized, we study the problem from a

third point of view: the design of methods for the fast computation of IA solutions.

More speci�cally, we proposed two algorithms for the computation of IA solutions.

The �rst of them, based on a numerical technique known as homotopy continua-

tion, is theoretically complete meaning that the convergence to a global optimum is

guaranteed. Additionally, when di�erent starting points are provided, the algorithm

is able to obtain distinct IA solutions. For the fast computation of IA solutions, we

presented a Gauss-Newton method as a particularization of the �rst one. Although

it could not be rigorously proved, but validated numerically, this second algorithm

exhibits global convergence at quadratic rate, which makes it, as far as we are con-

cerned, orders of magnitude faster than all other existing IA algorithms.

Our results show that by repeatedly executing the proposed algorithms from di�erent

initialization points, it is possible to compute distinct solutions and pick the best one

(according to any criterion), in a short amount of time. For example, the sum-rate

performance obtained by picking the best out of a couple of dozen solutions rivals

that obtained by the best-performing state-of-the-art algorithms.

We have striven to integrate every method in this dissertation and many of those inves-

tigated in the literature into one software package which has been made publicly available.

We hope these tools constitute a powerful workbench for future research.

8.2 Further research
Future research directions are unveiled in this section. We will �rst start from a more

speci�c point of view and advance towards more general and ambitious goals.
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First and most importantly, we consider that there are still some loose ends specially

regarding feasibility and number of solutions for multi-beam systems. Our solutions, in this

case, have been mainly numerical and a theoretical solution has demonstrated elusive. Still,

we think that multi-beam results can be built on the foundations laid by our single-beam

results:

• First, we believe that the network �ow interpretation of the problem given in Section

4.3 could be extended to provide accurate degrees-of-freedom (DoF) bounds for both

single-beam and multi-beam scenarios which could later be used for computing the

best-achieving DoF in the vein of Section 4.5. Regarding feasibility, we are strongly

convinced that most of currently known closed-form feasibility results (and those

to come) can be derived with a careful study of the full-rankness conditions for the

matrix in Section 4.4.

• With respect to the number of solutions, for which we have been only able to pro-

vide a closed-form solution in single-beam scenarios, we are hopeful that a similar

combinatorial solution may exist for multi-beam scenarios. It would be interesting

to investigate the connections between our approach and that of Schubert calculus,

concurrently proposed by other authors. Nevertheless, given the complexity usually

associated to the combinatorial enumerating procedures, it is possible that random-

ized methods as the one proposed in Section 5.4 are the proper solution for moderate-

size to large networks. Similar solutions in combinatorial mathematics include the

celebrated work by Jerrum et al. [JSV04].

From an algorithmic point of view, multiple improvements are possible. The �rst and

most critical one is providing a rigorous proof for the global convergence of the Gauss-

Newton method. Second, given the natural structure of the problem, it would be convenient

for both algorithms to consider updates in a product manifold of Grassmanians [AMS08]

instead of performing the conventional normal �ow update borrowed from Euclidean space

optimization. This will presumably accelerate the convergence of the methods. Also, based

on recent results on average consensus algorithms [BZ12] from the wireless sensor net-

works (WSNs) literature, building a distributed implementation of both algorithms seems

plausible.

Other, more ambitious objectives include extending the studies in this dissertation to

rank-de�cient or structured channels (possibly featuring asymmetric complex signaling).

The main issue when analyzing these special channel matrix structures is that, so far, they

are not well understood, not even for the most basic setups.





AppendixA
Review of Algebraic Geometry and

Di�erential Topology

A key point of our analysis is a subtle use of the notion of compactness of spaces. We

introduce this fundamental mathematical concept in the following lines. Recall that a topo-

logical space X is just a set where a collection τ ⊂ {subsets of X} of “open subsets” has

been chosen, satisfying three conditions:

1. the empty set and the total set X are in τ ,

2. the intersection of a �nite number of elements in τ is again in τ , and

3. the union of any collection of elements in τ is again in τ .

For example, Rn with the usual de�nition of “open set” is a topological space. Any subset

A ⊆ Rn (for example, a sphere or a linear subspace) then inherits a structure of topological

space, with open sets being those obtained by intersecting an open set of Rn with A. More

generally, any (smooth) manifold is by de�nition a topological space and any subset of a

manifold inherits a structure of topological space.

A subsetA ⊆ X of a topological space is called compact if the following property holds:

given any collection of open sets of X such that their union contains A, there exist a �nite

subcollection which also contains A. This is not a particularly intuitive de�nition, but it

permits to obtain many results, notoriously a fundamental result due to Ehressman that

will be recalled below. From the Heine–Borel Theorem, a subset of Rn or Cn is compact if

and only if it is closed (in the usual de�nition) and bounded. Thus, the sphere is compact

but a linear subspace is not.

Using the de�nition, note that a given manifold X is itself compact if any collection

of open subsets whose union is X has a �nite subcollection that covers X . For example,

Rn is not compact (the union for m ≥ 1 of open balls of radius m covers Rn but no �nite

subcollection of these balls covers Rn). It is not obvious but it is true that the projective

spaces P(Rn) and P(Cn) are both compact. We will �nally use the following basic fact: if

X is compact and A ⊆ X is closed, then A is compact as well.

We will also use some basic notions related to regular mappings: let ϕ : X → Y be a

smooth mapping where X and Y are smooth manifolds. For every x ∈ X , the derivative is

a linear mapping between the tangent spaces, Dϕ(x) : TxX → Tϕ(x)Y . A regular point of
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ϕ is a point such that Dϕ(x) is surjective (which requires dim(X) ≥ dim(Y )). A critical
point is a x ∈ X which is not regular. Similarly, a regular value of ϕ is an element y ∈ Y
such that for every x ∈ X such that ϕ(x) = y, x is a regular point. That is, y ∈ Y is a

regular value if every point mapped to y is a regular point. This includes, by convention,

the case ϕ−1(y) = ∅. If y is not a regular value, we say that it is a critical value. Note that

ϕ{critical points of ϕ} = {critical values of ϕ}.
If x is a regular point of ϕ we say that ϕ is a submersion at x. If ϕ is a submersion at every

point (equivalently, every x ∈ X is a regular point of ϕ) then we simply say that ϕ is a

submersion.

We now recall a few results from regular mappings; the reader may �nd them for ex-

ample in [GP74, Ch. 1] or [Sch68]:

Theorem A.1 (Preimage Theorem). If Y0 ⊆ Y is a submanifold such that every y ∈ Y0

is a regular value of ϕ : X → Y then Z = ϕ−1(Y0) is a submanifold of X of dimension
dim(Z) = dim(X) − dim(Y ) + dim(Y0). Moreover, the tangent space TxZ at x to Z is the
kernel of the derivative Dϕ(x) : TxX → TyY .

Theorem A.2 (Sard’s Theorem). If X and Y are manifolds and ϕ : X → Y is a smooth
mapping, then almost every point of Y is a regular value of ϕ.

Remark A.1. Note that it can happen that every x ∈ X is a critical point: this simply means

that every y ∈ ϕ(X) is a critical value, which by Sard’s theorem means that ϕ(X) has

zero–measure in Y . This phenomenon is behind case 1 of Theorem 4.6.

Another tool that we will use is a celebrated theorem by Ehresmann, a foundational

result in di�erential topology. Before writing it, we recall that a �ber bundle is a tuple

(E,B, π, F ) where E,B, F are manifolds and π : E → B is a continuous surjective map-

ping that is locally like a projection B × F → E, in the sense that for any x ∈ E there

exists an open neighborhood U ⊆ B of π(x) such that π−1(U) is homeomorphic to the

product space U × F . For example, E = R2 \ {0} is a �ber bundle with base space B the

unit circle and �ber F = R, because locally R2 \ {0} is as a product space of a short piece

of the circle and a line (which goes from 0 to∞ with no extremes). Fiber bundles are very

useful objects in the study of geometry and they are closely related to regular values as the

following result (see [Ehr50] or [Rab97, Th. 5.1] for a more general version) shows:

TheoremA.3 (Ehresmann’s Theorem). LetX, Y be smooth manifolds with Y connected, let
U ⊆ X be a nonempty open subset of X and let π : U → Y satisfy:

• π is a submersion, and

• π is proper, i.e. the inverse image of a compact set is a compact set.

Then, π : X → Y is a �ber bundle, and π(U) = Y .

In the precedent theorem, if X is compact and dim(X) = dim(Y ), then the inverse

image of any point is a �nite set and the fact that every point is regular with the Inverse

Mapping Theorem implies that π is actually a covering map, that is every point y ∈ Y has

an open neighborhood V whose preimage by π which is equal to a �nite number of open

sets of X , each of them homeomorphic to V . Thus:
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Corollary A.3.1. If in Ehresmann’s Theorem we assume moreover that X is compact and
dim(X) = dim(Y ) then π de�nes a covering map. In particular, this implies that every
y ∈ Y has a �nite number of preimages, and that number is the same for all y ∈ Y .

We recall also some known facts from algebraic geometry. Our basic references are

[Sha94; Mum76]. Given complex vector spaces V1, . . . , Vl, the Segre embedding is a map-

ping from the product of projective spaces P(V1) × · · · × P(Vl) into a higher dimensional

projective space P(T ) (where T is a high–dimensional vector space) such that:

• it is a di�eomorphism into its image (more speci�cally, it is an embedding), and

• the image of an algebraic subvariety is an algebraic subvariety and viceversa.

The Segre embedding is useful because it allows us to treat some objects (for example, prod-

ucts of Grassmannians) as algebraic subvarieties of a high–dimensional projective space.

We will use this at some point combined with the following result

Theorem A.4 (Main Theorem of Elimination Theory). Let Z ⊆ P(Ca) × P(Cb) be an
algebraic variety. Then,

π1(Z) = {x ∈ P(Ca) : ∃ y ∈ P(Cb), (x, y) ∈ Z}

is an algebraic subvariety of X .





AppendixB
Proof of Mathematical Results in

Chapter 4

In what follows we provide a rigorous proof of our results.

B.1 Proof of Theorem 4.5
This proof builds on the conditions in Theorem 4.2. First we note that, when dk = 1∀ k ∈ K,

(4.9) is satis�ed automatically as long as the trivial assumption of each node having at least

one antenna is satis�ed. Second, it can be easily observed that (4.10) is included in (4.11).

From (4.10) we obtain

max(Ml, Nk) ≥ 2, (B.1)

that enforces either Ml ≥ 2 or Nk ≥ 2. Analogously, by restricting the subset φ in (4.11) to

a single interference link we obtain

Ml +Nk ≥ 3, (B.2)

which, again, enforces either Ml ≥ 2 or Nk ≥ 2, thus showing that (4.10) is covered by

(4.11). Additionally, we assume Nk ≥ K without loss of generality.

We have seen (Theorem 4.4) that satisfying (4.11) is equivalent to the existence of a

feasible �ow {fkl} such that

K∑

l=1

fkl ≥ dk(
K∑

l=1

dl −Nk), (B.3)

K∑

k=1

fkl ≤ (Ml − dl)dl, (B.4)

fkl ≤ dkdl. (B.5)
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Particularizing to single-beam,

K∑

l=1

fkl ≥ K −Nk, (B.6)

K∑

k=1

fkl ≤Ml − 1, (B.7)

fkl ≤ 1 ∀ k, l ∈ K. (B.8)

In this case, the supply-demand theorem [Gal57] establishes that the conditions (B.6) are

feasible if and only if [Ful60] the following 2K − 1 inequalities are satis�ed:

∑

i∈A
min(bi, |A| − 1) +

∑

i 6∈A
min(bi, |A|) ≥

∑

i∈A
ai, ∀ A ⊆ K, A 6= ∅, (B.9)

where bi = K − Ni and ai = Mi − 1. Note that the conditions (4.25) in Theorem 4.5 can

also be written as
1

k∑

i=1

min(bi, k − 1) +
K∑

i=k+1

min(bi, k) ≥
k∑

i=1

ai, ∀ k ∈ K, (B.10)

where

∑K
i=K+1 min(bi, k) = 0 by de�nition.

The rest of the proof is greatly inspired by the work of Chen [Che90, Corollary 6.4].

Necessity: The inequalities (B.10) follow directly from (B.9) by taking A = {1, . . . , k}.
Su�ciency: We show that (B.10) implies (B.9). It is clear that (B.10) implies (B.9) for A = K
but it remains to prove it for all non-empty proper subsetsA ⊂ K. Given |A|, the cardinality

of A, we can write (B.9) as

|A|−1∑

i=1

b∗i (K) + b∗|A|(Ā) ≥
∑

i∈A
ai, (B.11)

where b∗k(A) = |{i|i ∈ A, bi ≥ k}|.2 We now proof that the right-hand side of the inequality

|A|−1∑

i=1

b∗i (K) ≥
∑

i∈A
ai − b∗|A|(Ā), (B.12)

is maximized over all k-element subsets A ⊆ K by letting A = {1, 2, . . . , k}. Recall that

users have been sorted such that Mi ≥ Mi+1 or, equivalently, ai ≥ ai+1. De�ne A =
{1, 2, . . . , k}, a subset A′ ⊂ {1, 2, . . . , K} such that |A′| = k, and another subset A′′ that

has one more element in common with A than A′ and also satis�es |A′′| = k, i.e. A′′ =
(A′ − {q}) ∪ {p} for p < q. If ap 6= aq, we obtain

∑

i∈A′′
ai >

∑

i∈A′
ai and |b∗|A′′|(Ā′′)− b∗|A′|(Ā′)| ≤ 1, (B.13)

1
Step easily visualized with the help of an I-restricted Young diagram.

2
Step easily visualized with the help of a non-restricted Young diagram.
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because of our ordering of the ai. Since b∗|A′′|(Ā
′′) and b∗|A′|(Ā

′) di�er in at most one unit,

the right-hand side of (B.12) grows or stays the same, i.e.,

∑

i∈A′′
ai − b∗|A′′|(Ā′′) ≥

∑

i∈A′
ai − b∗|A′|(Ā′). (B.14)

On the other hand, if ap = aq, we need to use the fact that users have been sorted such

that Ni ≤ Ni+1 if Mi = Mi+1 or, in other words, bp ≥ bq when ap = aq. In this case, both

∑

i∈A′′
ai ≥

∑

i∈A′
ai and b∗|A′′|(Ā

′′) ≤ b∗|A′|(Ā
′) (B.15)

hold, thus leading again to (B.14). Since A′′ has one more element in common with A
that A′, we conclude that A can be obtained by repeating this process and we will end up

maximizing the right-hand side of (B.12).

B.2 Dimensions of the algebraic manifolds involved in
the problem

In this subsection we recall the dimensions of the algebraic sets involved in the problem.

Similar results have appeared in [YGJ+10], [BCT14] and [RLL12]; therefore and to keep the

paper concise, their proofs are omitted. For the interested reader the proofs can be deduced

following the mentioned references [YGJ+10; BCT14; RLL12] with a basic knowledge of

algebraic geometry tools such as those described in [Sha94] and [Whi72].

Lemma B.1. BothH and S are complex manifolds, and

dimCH =
∑

(k,l)∈Φ

(NkMl − 1),

dimC S =
∑

k∈ΦR

dk(Nk − dk) +
∑

l∈ΦT

dl(Ml − dl).

Lemma B.2. The set V is a complex smooth submanifold ofH×S and its complex dimension
is

dimC V =


 ∑

(k,l)∈Φ

NkMl − dkdl


+

(∑

k∈ΦR

Nkdk − d2
k

)

+

(∑

l∈ΦT

Mldl − d2
l

)
− |Φ|.
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B.3 The critical points and values of π1

We now study the sets of critical points and values of π1.

Lemma B.3. Let (H,U, V ) ∈ V be �xed and let θ be the mapping de�ned in (4.37). Then, θ
is surjective or not, independently of the chosen representatives of (H,U, V ).

Proof. See Appendix B.7.

Proposition B.4. Let (H,U, V ) ∈ V . Then, (H,U, V ) is a regular point of π1 if and only if
the mapping θ de�ned in (4.37) is surjective.

Proof. See Appendix B.8.

Proposition B.5. The set Σ′ ⊆ V of critical points of π1 is an algebraic subvariety of V . The
set Σ ⊆ H of critical values of π1 is a proper (i.e. di�erent from the total) algebraic subvariety
ofH.

Proof. See Appendix B.9.

Corollary B.5.1. H \ Σ is a connected set.

Proof. From Proposition B.5, the set Σ is a complex proper algebraic subvariety, therefore

it has real codimension 2 and removing it does not disconnect the spaceH.

Corollary B.5.2. Assume that Σ′ is a proper algebraic subvariety of V (equivalently, π1 :
V → H has at least one regular point). Then, we are in the case 2) of our Theorem 4.6, that is
for everyH ∈ H the set π−1

1 (H) is nonempty, and forH 6∈ Σ it is a smooth complex manifold
of dimension s. Indeed, the restriction V \ π−1

1 (Σ)
π1→ H \ Σ is a �ber bundle.

Proof. From Corollary B.5.1, the set H \ Σ of non-critical values of π1 is a connected set.

Moreover, we have:

• V \ π−1
1 (Σ) is not empty by assumption,

• π1 |V\π−1
1 (Σ) is a submersion (because we have removed the set of critical points), and

• it is proper: let A ⊆ H \Σ ⊆ H be a compact set. Then, A is closed as a subset ofH
and from the continuity of π1, so is A′ = π−1

1 (A) ⊆ V . Now, A′ is a closed subset of

the compact set V and hence A′ is compact.

Ehresmann’s Theorem then implies that π |V\π−1
1 (Σ) is a �ber bundle, and in particular it is

surjective. This proves that π−1
1 (H) 6= ∅ for every H ∈ H \ Σ, and the Preimage Theorem

implies that π−1
1 (H) is a smooth submanifold of complex codimension equal to dimCH,

thus of complex dimension equal to dimC V − dimCH = s. Now, let H ∈ Σ and let

Hi, i ≥ 1 be a sequence of elements inH\Σ such that limi 7→∞Hi = H . Let (H∞, U∞, V∞)
be an accumulation point of (Hi, Ui, Vi) ∈ V , which exists because V is compact. Then, by

continuity of π1 we have that π1(H∞, U∞, V∞) = H , that isH∞ = H and (H,U∞, V∞) ∈ V .

Thus, π−1
1 (H) 6= ∅ and we conclude that for every choice of Hkl there exists at least one

solution to (4.1) as claimed.
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B.4 Proof of Theorem 4.6
Recall from Lemma B.1 that the complex dimension ofH is

dimC(H) =
∑

(k,l)∈Φ

(NkMl − 1) =
∑

(k,l)∈Φ

NkMl − |Φ|.

From this and from Lemma B.2, de�ning s as in (4.36) we have

s = dimC V − dimCH.

Assume that dimC(H) ≤ dimC(V) (equivalently, s ≥ 0). There are two cases:

1. if Σ′ = V then every point of V is a critical point of π1 and hence every element of

π1(V) is a critical value of π1. On the other hand, from Proposition B.5, Σ is a proper

algebraic subset ofH, thus a zero measure set ofH. This means that π−1(H) = ∅ for

every H out of the zero–measure set Σ, thus we are in case 1) of Theorem 4.6.

2. otherwise, Σ′ is a proper subset of V , and from Corollary B.5.2 we are in case 2) of

Theorem 4.6.

We now prove each of the following implications:

a)⇒b): assume that π−1
1 (H) 6= ∅ for every H ∈ H . From Sard’s theorem, for almost

everyH ∈ H, π1 is a submersion at every point in π−1
1 (H) and from Proposition

B.4 the mapping (4.37) de�nes a surjective linear mapping.

b)⇒c): trivial.

c)⇒a): from Proposition B.4, π1 has a regular point, and from Corollary B.5.2, a) holds.

This �nishes the proof.

Finally, the proof of Lemma 4.7 stating when a feasible interference alignment (IA) prob-

lem has a �nite number of solutions is as follows: assume that s = 0, or equivalently

dimC(H) = dimC(V), and that we are still in case 2(b) of Theorem 4.6. Then, from Corol-

lary A.3.1 (see Appendix A) all the elements inH\Σ have the same (�nite) number, say C ,

of preimages by π1. This proves the assertion of Lemma 4.7.

Remark B.1. It is important for our analysis that the input and output spaces are de�ned

over the complex numbers, not over the reals. Indeed, a key property in proving our main

results is that the critical points and values of π1 are algebraic sets. In the complex case this

means they have (real) codimension 2 and hence do not disconnect their ambient spaces.

In the real case, these sets may have real codimension 1 and they may thus disconnect their

ambient spaces. More speci�cally, Corollary B.5.1 may fail to hold in the real case. As a

consequence, one cannot apply Ehresman’s Theorem and a more delicate analysis would

be required in this case.
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B.5 Proof of Theorem 4.9
Assume that parameters dj,Mj, Nj,Φ are chosen such that the associated multiple-input

multiple-output (MIMO) scenario is feasible. First, let us remind from Section 4.4.3 that we

may choose Uk and Vl as those in (4.38), and the MIMO channels as in (4.39) which, for

convenience, we show again:

Hkl =

[
0dk×dl Akl

Bkl Ckl

]
, (k, l) ∈ Φ.

Now, let h ≥ 1 be an integer number and let those matrices have coe�cients of the form

a

h
+
√
−1

b

h
, (B.16)

with denominator h and numerators a, b in [0, h)∩Z. As the system is generically feasible,

for most choices of these matrices Akl,Bkl,Ckl, we will have (H,U, V ) 6∈ Σ, that is the

linear mapping in (4.40) will be surjective. Moreover, the mapping in (4.40) is independent

of the entries Ckl, so we can simply say that for most choices of Akl,Bkl the mapping will

be surjective. The merit of Theorem 4.9 is to quantify this “for most”, which we do following

the arguments in [BCS+98, Sec. 17.4], which in turn are inspired by a celebrated result by

Milnor bounding the number of connected components of semi–algebraic sets. We start by

studying the set

Z = {(Akl,Bkl) ∈ [0, 1)2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk :

the linear mapping in (4.40) is not surjective}.

Note that we consider Z as a subset of [0, 1)2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk
, that is a real set, by

considering the real and complex parts of each entry of each Akl and Bkl as a real number

in [0, 1).

LemmaB.6. Let κ(Z) be the maximum number of connected components (intervals) ofZ∩L
where L is some line parallel to some axis. Then,

κ(Z) ≤ 1.

Proof. Let L be a line parallel to some axis. That is, L is the set of all (Akl,Bkl), (k, l) ∈ Φ,

such that all entries of Akl and Bkl are �xed save for one of them (the real or the complex

part of some entry, call it λ, of some Akl or some Bkl). The setZ∩L is de�ned by rank(θ) <∑
(k,l)∈Φ dkdl, equivalently it is given by

p(λ) =
∑

J

| det(M)|2 = 0,

where J runs over all the possible minors of maximal size contained in the matrix of map-

ping (4.40) and det(M) are those minors. This is thus one real, non–negative equation of

degree at most 2 in λ. There are several possibilities:
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• Case p(λ) = 0: the set Z ∩ L = L has one connected component.

• Case p(λ) 6= 0 for all λ ∈ [0, 1): the set Z ∩ L = ∅ has zero connected components.

• Case p(λ) has a �nite number of zeros in [0, 1): As p(λ) is non–negative of degree 2,

it has at most one isolated zero. Thus, in this case Z ∩ L consists of one point and

thus has one connected component.

In any case, Z ∩ L has at most 1 connected component.

Lemma B.7. For any h ≥ 1, the cardinal of the set of values ofAkl andBkl with entries of the
form a

h
+
√
−1 b

h
, 0 ≤ a, b < h such that the mapping in (4.40) with Ckl = 0 is not surjective

is at most

Ph =


2

h

∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk


Qh,

where Qh is the total number of Akl, Bkl with such entries, that is

Qh = h2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk

Proof. From [BCS+98, Th. 3, p. 327] (note the di�erence in the notation: our h is 1/h in

[BCS+98]), we know that

|Ph − Vol(Z)Qh| ≤
D

h
κ(Z)Qh,

where Vol(Z) = 0 is the volume (Lebesgue measure) of the proper algebraic varietyZ , and

D is the (real) dimension of the set of (Akl,Bkl), which is equal to D = 2
∑

(k,l)∈Φ(Nk −
dk)dl + (Ml − dl)dk. The lemma follows from Lemma B.6.

We now prove Theorem 4.9. Let Akl,Bkl be chosen at random with i.i.d. entries of

the form a +
√
−1b, a, b ∈ Z, 0 ≤ a, b < h. Then, the mapping in (4.40) is surjective if

and only if the same mapping but with entries
a
h

+
√
−1 b

h
is surjective, because we are

only multiplying each Akl and Bkl by h−1
. From Lemma B.7, the probability that the linear

mapping (4.40) is not surjective is at most

Ph
Qh

=
2

h

∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

By choosing

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk,

we guarantee that with probability at least 3/4 the answer of the algorithm is feasible. As

already mentioned, one can repeat the test k times to get the probability of having a wrong

answer decreasing as 1/4k. Note that the integers de�ning the mapping (4.37) are of bit

length bounded above by 1 + log2 h, a quantity which is logarithmic in |Φ| and dj,Mj, Nj .

Hence, the exact arithmetic test can be carried out in time which is polynomial in the same

quantities.
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B.6 Proof of Lemma 4.8
Proof. Let (U, V ), (A,B) ∈ S be two points, and assume that we have chosen a�ne rep-

resentatives that we denote as {Uk}, {Vl}, {Ak}, {Bl}. Note that there exist nonsingular

square matrices Qj of size Nj and Pj of size Mj such that Uj = QjAj and Vj = PjBj .

Consider the following mapping

π−1
2 (U, V ) → π−1

2 (A,B)
Hkl 7→ QT

kHklPl

which is a linear bijection. Thus, π−1
2 (U, V ) is empty or nonempty for every (U, V ) ∈ S

and it su�ces to prove the claim for some (U, V ) ∈ S . If it is nonempty for some (thus,

all) (U, V ), let (U, V ) ∈ S be a regular value of π2. Then, from the Preimage Theorem

π−1
2 (U, V ) is a smooth submanifold of V of the claimed dimension (the dimension of V is

given in Lemma B.2.) Moreover, it is given by the nullset of a set of linear (in H) equations

and is thus a product of projective vector subspaces as claimed.

We now discard the case that π−1
2 (U, V ) is empty for every (U, V ) ∈ S (equivalently,

V is empty). Note that since we have assumed (4.32) holds, the particularly simple element

(H,U, V ), �rst described in Section 4.4.3, is in V and hence V 6= ∅.

B.7 Proof of Lemma B.3
Proof. Let θ1 be the mapping of (4.37) for representatives (H1, U1, V1) of (H,U, V ), and

similarly let θ2 be the mapping of (4.37) for representatives (H2, U2, V2) of (H,U, V ). We

need to prove that if θ1 is surjective then so is θ2. Because both a�ne points are repre-

sentatives of the same (H,U, V ), there exist complex numbers (λkl)(k,l)∈Φ and nonsingular

matrices Qk ∈ Cdk×dk , k ∈ ΦR, and Pl ∈ Cdl×dl , l ∈ ΦT , such that

(H2)kl = λkl(H2)kl, (U2)k = (U1)kQk, (V2)l = (V1)lPl.

Let Ṙ = (Ṙkl)(k,l)∈Φ ∈
∏

(k,l)∈ΦCdk×dl . If θ1 is surjective, there exist ({U̇k}k∈ΦR , {V̇l}l∈ΦT )
such that

U̇T
k (H1)kl(V1)l + (U1)Tk (H1)klV̇l = λ−1

kl (QT
k )−1ṘklP

−1
l .

Then,

(θ2({U̇kQk}k∈ΦR , {V̇lPl}l∈ΦT ))kl

= QT
k U̇T

k (H2)kl(V2)l + (U2)Tk (H2)klV̇lPl

= λkl

(
QT
KU̇T

k (H1)kl(V1)lPl + QT
k (U1)Tk (H1)klV̇lPl

)

= λklQ
T
k

(
U̇T
k (H1)kl(V1)l + (U1)Tk (H1)klV̇l

)
Pl

= λklQ
T
k

(
λ−1
kl (QT

k )−1ṘklP
−1
l

)
Pl = Ṙkl.

Thus, θ2 is surjective as claimed.
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B.8 Proof of Proposition B.4
Proof. Assume �rst that θ is surjective, and let (H,U, V ) be some �xed a�ne representa-

tives. For any tangent vector Ḣ , let Ṙ = (Ṙkl)(k,l)∈Φ ∈
∏

(k,l)∈ΦCdk×dl be de�ned as

Ṙkl = −UT
k ḢklVl.

Because θ is surjective, there exists (U̇, V̇) ∈ θ−1(Ṙ), that is (U̇, V̇) satisfying

U̇T
kHklVl + UT

kHklV̇l = −UT
k ḢklVl, (k, l) ∈ Φ. (B.17)

Note that the equations de�ning V are precisely UT
kHklVl = 0dk,dl , (k, l) ∈ Φ,

and thus from the Preimage Theorem we can cover the tangent space to V at (H,U, V )
with those (Ḣ, U̇ , V̇ ) satisfying (B.17). We conclude that (Ḣ, U̇ , V̇ ) is in the tangent

space to V at (H,U, V ), and thus Dπ1(H,U, V )(Ḣ, U̇ , V̇ ) = Ḣ , which means that

Dπ1(H,U, V )−1(Ḣ) 6= ∅. As Ḣ was chosen generically, we conclude that π1 is a sub-

mersion at (H,U, V ), namely (H,U, V ) is a regular point of π1 as wanted. This �nishes the

“if” part of the proposition.

The “only if” part is a converse reasoning: assume that (H,U, V ) is a regular point

of π1. This means that for every Ḣ ∈ THH there exist (U̇ , V̇ ) ∈ T(U,V )S such that

(Ḣ, U̇ , V̇ ) ∈ T(H,U,V )V , which means that these tangent vectors satisfy (B.17). Let

(Ṙkl)(k,l)∈Φ ∈
∏

(k,l)∈ΦCdk×dl . Now, because Uk and Vl are representatives of an element

of the Grassmannian, they are full rank and thus we can write Ṙkl = −UT
k ḢklVl for some

Ḣkl. Then, (B.17) reads

U̇T
kHklVl + UT

kHklV̇l = −UT
k ḢklVl = Ṙkl, (k, l) ∈ Φ,

that is all such Ṙkl have a preimage by θ, and θ is surjective.

B.9 Proof of Proposition B.5
Proof. From Proposition B.4, Σ′ can be written as the set of (H,U, V ) such that all the

minors of the matrix de�ning θ are equal to 0. Thus, Σ′ is an algebraic subvariety of V . The

setH is a product of projective spaces and hence the associated Segre embedding de�nes a

natural embedding

ϕ1 : H → P(T1), (B.18)

where T1 is a high-dimensional complex vector space.

Let ∧a(Cb) the a–th exterior power of Cb. Then, the Grassmannian Gb×a can be seen

as an algebraic subset of a complex projective space P(∧a(Cb)), and as a compact complex

manifold of (complex) dimension a(b − a) (see for example [Sha94, p.42] and [Whi72, p.

175–176]). The Segre embedding de�nes a natural embedding

ϕ2 : S → P(T2), (B.19)
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where T2 is a certain (high-dimensional) complex vector space. Both ϕ1 and ϕ2 de�ne

di�eomorphisms between their domains and ranges, as does the product mapping ϕ1×ϕ2,

and they preserve algebraic varieties in both ways. We can thus identify H ≡ ϕ1(H),

S ≡ ϕ2(S) and see V as an algebraic subvariety of the product space

V ≡ (ϕ1 × ϕ2)(V) ⊆ P(T1)× P(T2).

The Main Theorem of Elimination Theory then grants that Σ = π1(Σ′) is an algebraic

subvariety ofH. We moreover have that it is a proper subvariety because by Sard’s Theorem

it has zero-measure inH.

B.10 Derivation of (4.47)

The execution of the proposed test for a large number of scenarios suggests that γ(p) and

γ′(p), which we will indistinctly denote as γ?(p), are given by

γ?(p) =
F ?
p

F ?
p+1

where F ?
p satis�es the recurrence relation F ?

p+1 = (K−1)F ?
p −F ?

p−1 with initial conditions

F1 = 1, F0 = −1 (for γ(p)), and F ′1 = 0, F ′0 = −1 (for γ′(p)). Sequences satisfying this

recurrence equation are known as Lucas Sequences because any such a sequence can be

represented as a linear combination of the Lucas sequences of �rst and second kind. Lucas

sequences are a generalization of other famous sequences including Fibonacci numbers,

Mersenne numbers, Pell numbers, Lucas numbers, etc. The interested reader can �nd a

good introduction to Lucas sequences in [Dic12, Chapter 17].

For convenience, we rewrite the recurrence relation in matrix form f?p = Af?p−1, where

[
F ?
p+1

F ?
p

]

︸ ︷︷ ︸
f?p

=

[
(K − 1) −1

1 0

]

︸ ︷︷ ︸
A

[
F ?
p

F ?
p−1

]

︸ ︷︷ ︸
f?p−1

.

Now, we are interested in writing f?p as a function of the initial conditions, i.e. f?p = Apf?0 .

In order to do so, we �rst need the eigenvalue decomposition of A. The eigenvalues are the

roots of the characteristic polynomial

det(A− λI2) = λ2 − (K − 1)λ+ 1 = 0,

which are given by

λ± =
1

2
((K − 1)±

√
(K − 1)2 − 4).

Notice that given det(A) = 1, λ− = 1/λ+. Thus, for convenience we de�ne λ = λ− and

factorize Ap = SΛpS−1
:

Ap =

[
1/λ λ
1 1

]

︸ ︷︷ ︸
S

[
1/λp 0

0 λp

]

︸ ︷︷ ︸
Λp

[
1 −λ
−1 1/λ

]
λ

1− λ2

︸ ︷︷ ︸
S−1

,



B.10 Derivation of (4.47) 143

where the columns of S are the eigenvectors of A. Then, using the fact that f?p = SΛpS−1f?0 ,

it is straightforward to obtain a compact expression for F ?
p :

F ?
p = λ−p+1

(
F ?

1

p−1∑

k=0

λ2k − F ?
0

p−2∑

k=0

λ2k+1

)
. (B.20)

Finally, when the corresponding initial conditions are substituted in (B.20), we can write

γ(p) =
Fp
Fp+1

=

(p−1)∑

k=−(p−1)

λk

p∑

k=−p
λk

and

γ′(p) =
F ′p
F ′p+1

= λ

p−2∑

k=0

λ2k

p−1∑

k=0

λ2k

.

A �nal observation is that limp→∞ γ(p) = limp→∞ γ′(p) = limp→∞
F ?p
F ?p+1

= λ and, thus, λ

is also a threshold value separating the so-called piecewise linear and properness-limited

degrees-of-freedom (DoF) regimes.





AppendixC
Proof of Mathematical Results in

Chapter 5

C.1 Mathematical preliminaries
To facilitate reading, in this section we recall the mathematical results used in this paper.

Firstly, we provide a short review on mappings between Riemannian manifolds and the

main mathematical result used to derive the number of interference alignment (IA) solu-

tions, which is the Coarea formula. Secondly, we review the volume of the Grassmanian

manifolds and the volume of the unitary group, which are also used throughout the paper.

C.1.1 Tubes in Riemannian manifolds and the Coarea formula
A general result about tubes states that the volume of a tubular neighborhood about a com-

pact embedded submanifold is essentially given by the intrinsic volume of the submanifold

times the volume of a ball of the appropiate dimension. We write down a simpli�ed version

of [Gra04, Th. 9.23]:

Theorem C.1. Let X be a compact, embedded, (real) codimension c submanifold of the Rie-
mannian manifold Y . Then, for su�ciently small ε > 0,

Vol(y ∈ Y : d(y,X) < ε) = Vol(X) Vol(r ∈ Rc : ‖r‖ ≤ 1)εc +O(εc+1).

Here, Vol(X) is the volume of X w.r.t. its natural Riemannian structure inherited from that
of Y .

One of our main tools is the so–called Coarea Formula. The most general version we

know may be found in [Fed69], but for our purposes a smooth version as used in [BCS+98,

p. 241] or [How93] su�ces. We �rst need a de�nition.

De�nition C.2. Let X and Y be Riemannian manifolds, and let ϕ : X −→ Y be a C1

surjective map. Let k = dim(Y ) be the real dimension of Y . For every point x ∈ X such
that the di�erential mapping Dϕ(x) is surjective, let vx1 , . . . , v

x
k be an orthogonal basis of

Ker(Dϕ(x))⊥. Then, we de�ne the Normal Jacobian of ϕ at x, NJϕ(x), as the volume in the
tangent space Tϕ(x)Y of the parallelepiped spanned by Dϕ(x)(vx1 ), . . . , Dϕ(x)(vxk). In the
case that Dϕ(x) is not surjective, we de�ne NJϕ(x) = 0.



146 Proof of Mathematical Results in Chapter 5

TheoremC.3 (Coarea formula). LetX, Y be two Riemannian manifolds of respective dimen-
sions k1 ≥ k2. Let ϕ : X −→ Y be a C∞ surjective map, such that the di�erential mapping
Dϕ(x) is surjective for almost all x ∈ X . Let ψ : X −→ R be an integrable mapping. Then,
the following equality holds:

∫

x∈X
ψ(x)NJϕ(x) dX =

∫

y∈Y

∫

x∈ϕ−1(y)

ψ(x) dx dy. (C.1)

Note that from the Preimage Theorem and Sard’s Theorem (see [GP74, Ch. 1]), the set

ϕ−1(y) is a manifold of dimension equal to dim(X) − dim(Y ) for almost every y ∈ Y .

Thus, the inner integral of (C.1) is well de�ned as an integral in a manifold. Moreover, if

dim(X) = dim(Y ) then ϕ−1(y) is a �nite set for almost every y, and then the inner integral

is just a sum with x ∈ ϕ−1(y).

The following result, which follows from the Coarea formula, is [BCS+98, p. 243, Th.

5].

Theorem C.4. LetX, Y and V ⊆ X ×Y be smooth Riemannian manifolds, with dim(V) =
dim(X) and Y compact. Assume that π2 : V → Y is regular (i.e. Dπ2 is everywhere surjec-
tive) and thatDπ1(x, y) is surjective for every (x, y) ∈ V out of some zero measure set. Then,
for every open set U ⊆ X contained in some compact set K ⊆ X ,

∫

x∈U
|π−1

1 (x)| dx =

∫

y∈Y

∫

x∈U :(x,y)∈V
DET (x, y)−1 dx dy, (C.2)

whereDET (x, y) = det(DGx,y(x)DGx,y(x)∗) andGx,y is the (locally de�ned) implicit func-
tion of π1 near x = π1(x, y). That is, close to (x, y) the sets V and {(x,Gx,y(x))} coincide.
Corollary C.4.1. In addition to the hypotheses of Theorem C.4, assume that there exists y0 ∈
Y such that for every y ∈ Y there exists an isometry ϕy : Y → Y with ϕy(y) = y0 and an
associated isometry χy : X → X such that χy(U) = U and (χy × ϕy)(V) = V . Then,

∫

x∈U
|π−1

1 (x)| dx = Vol(Y )

∫

x∈U :(x,y0)∈V
DET (x, y0)−1 dx.

Proof. Let y ∈ Y and let ϕy, χy as in the hypotheses. Then, consider the mapping

χy |{x∈U :(x,y)∈V}: {x ∈ U : (x, y) ∈ V} : → {x ∈ U : (x, y0) ∈ V}
x 7→ χy(x),

which is the restriction of an isometry, hence an isometry. Let Gx,y be the local inverse of

π1 close to (x, y) ∈ V . The change of variables formula then implies:

∫

x∈U :(x,y)∈V
DET (x, y)−1 dx =

∫

x∈U :(x,y0)∈V
DET (χ−1

y (x), y)−1 dx. (C.3)

Note that the following diagram is commutative:

V ∩ π−1
1 (U)

χ−1
y ×ϕ−1

y−→ V ∩ π−1
1 (U)

π1 ↓↑ Gx,y0 ↓ π1

X
χ−1
y−→ X
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Thus, the mapping (χ−1
y ×ϕ−1

y ) ◦Gx,y0 ◦χy is a local inverse of π1 near (χ−1
y (x), y), that is

Gχ−1
y (x),y = (χ−1

y × ϕ−1
y ) ◦Gx,y0 ◦ χy,

and the composition rule for the derivative gives:

DGχ−1
y (x),y(χ

−1
y (x)) = D(χ−1

y × ϕ−1
y )(Gx,y0(x))DGx,y0(x)Dχ−1

y (χy(x)).

Now, χy, ϕy and χy × ϕy are isometries of their respective spaces. Thus, we conclude:

det(DGχ−1
y (x)(χ

−1
y (x))DGχ−1

y (x),y(χ
−1
y (x))H) = det(DGx,y0(x)DGx,y0(x)H),

that is DET (χ−1
y (x), y) = DET (x, y0). Then,

ref{([}]∗)} reads

∫

x∈U :(x,y)∈V
DET (x, y)−1 dx =

∫

x∈U :(x,y0)∈V
DET (x, y0)−1 dx.

That is, the inner integral in the right-hand side term (C.2) is constant. The corollary fol-

lows.

C.1.2 The volume of classical spaces
Some helpful formulas are collected here:

(cf. [Gra04, p. 248]) Vol(S(Ca)) = Vol(S(R2a)) =
2πa

Γ(a)
(C.4)

is the volume of the complex sphere of dimension a.

(cf. [Hua63, p. 54]) Vol(Ua) =
(2π)

a(a+1)
2

Γ(1) · · ·Γ(a)
, (C.5)

is the volume of the unitary group of dimension a. Note that, as pointed out in [Hua63, p.

55] there are other conventions for the volume of unitary groups. Our choice here is the

only one possible for Theorem C.1 to hold: the volume of Ua is the one corresponding to

its Riemannian metric inherited from the natural Frobenius metric in Ca×a.
We �nally recall the volume of the complex Grassmannian. Let 1 ≤ a ≤ b; then,

Vol(Gb×a) = πa(b−a) Γ(2) · · ·Γ(a) · Γ(2) · · ·Γ(b− a)

Γ(2) · · ·Γ(b)
. (C.6)

C.2 Proof of Theorem 5.1
We will apply Corollary C.4.1 to the double �bration given by (4.4). In the notations of

Corollary C.4.1, we consider X = H, Y = S , V the solution variety and

y0 =

([
Idk

0Nk−dk,dk

]
,

[
Idk

0Mk−dk,dk

])
= (U0,V0) ∈ S.
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Given any other element y = (Uk,Vk) ∈ S , let Pk and Qk be unitary matrices of respective

sizes Nk and Mk such that

Uk = Pk

[
Idk

0Nk−dk

]
, Vk = Qk

[
Idk

0Mk−dk

]
.

Then consider the mapping

ϕy(Ũk, Ṽk) = (PH
k Ũk,Q

H
k Ṽk),

which is an isometry of S and satis�es ϕy(y) = y0 as demanded by Corollary C.4.1. We

moreover have the associated mapping χy : H → H given by

χy((Hkl)k 6=l) = (PT
kHklQl)k 6=l

which is an isometry of H. Moreover, χy(Hε) = Hε and χy × ϕy(V) = V . We can thus

apply Corollary C.4.1 which yields

∫

H∈Hε
|π−1

1 (x)| dx = Vol(S)

∫

H∈HI∩Hε
det(DG(H)DG(H)H)−1 dH, (C.7)

where G is the local inverse of π1 close to H at (H,U0, V0). We now compute

det(DG(H)DG(H)H)−1
. From the de�nition of G we have

T(H,U,V )V = {(Ḣ,DG(H)Ḣ) : Ḣ ∈ THH}.

On the other hand, from the de�ning equations (4.1) and considering H ∈ HI and Ḣ ∈
THH as block matrices

H =

[
0dk×dl A

B C

]
, Ḣ =

[
Ṙkl Ȧkl

Ḃkl Ċkl

]

we can identify

T(H,y0)V =

{(
Ḣ,

[
0

U̇

]
,

[
0

V̇

])
: U̇T

kBkl + Ṙkl + AklV̇l = 0, k 6= l

}
=

{(Ḣ, U̇, V̇) : (U̇, V̇) = −Ψ−1
H (Ṙkl)}.

Hence
1
,

DG(H)Ḣ = −Ψ−1
H (Ṙkl) = −Ψ−1

H (UH
0 ḢklV0).

A straightforward computation shows that:

DG(H)H(U̇, V̇) = (−U0Ψ
−H
H (U̇, V̇)VH

0 )k 6=l.

Thus, writing Ψ = ΨH , we have:

DG(H)DG(H)H(U̇, V̇) = Ψ−1Ψ−H(U̇, V̇).

1
Note that in the appendices we will sometimes refer to Ψ as ΨH to make the dependence on H explicit.
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Therefore, (DG(H)DG(H)H)−1 = ΨHΨ and

det(DG(H)DG(H)H)−1 = det(ΨHΨ) = | det(Ψ)|2 = det(ΨΨH).

From this last equality and (C.7) we have:

∫

H∈Hε
|π−1

1 (H)| dH = Vol(S)

∫

H∈HI∩Hε
det(ΨΨH) dH.

Theorem 5.1 follows dividing both sides of this equation by Vol(Hε) and using the fact

that for every choice of H out of a zero measure set, the number of elements in π−1
1 (H) is

constant (see Lemma 4.7).

C.3 Proof of Theorem 5.2
Let ε < 1 and letHε be the product for k 6= l of the sets

{Hkl : d(Hkl, {R ∈ CNk×Ml : ‖R‖F = 1}) < ε}.

From Theorem C.1, each of these sets have volume equal to

2 Vol({R ∈ CNk×Ml : ‖R‖F = 1})ε+O(ε2) =
(C.4)

4πNkMl

Γ(NkMl)
ε+O(ε2)

Thus,

V ol(Hε) =

(∏

k 6=l

4πNkMl

Γ(NkMl)

)
εK(K−1) +O(εK(K−1)+1).

On the other hand, consider the smooth mapping

f : HI → HI ∩
∏

k 6=l{Hkl : ‖Hkl‖F = 1}
(Hkl)k,l →

(
Hkl

‖Hkl‖F

)
k,l

and apply Theorem C.3 to get

∫

H∈HI∩Hε
det(ΨHΨH

H) dH =

∫

H∈HI∩
∏
k 6=l{Hkl:‖Hkl‖F=1}

∫

~t=(tkl)∈[−ε,ε]K(K−1)

det(ΨĤΨH
Ĥ

)NJf(Ĥ) d~t dH,

where Ĥkl = Hkl(1 + tkl). Note that the function inside the inner integral is smooth and

hence for any H ∈ HI ∩
∏

k 6=l{Hkl : ‖Hkl‖F = 1} we have

det(ΨĤΨH
Ĥ

)NJf(Ĥ) = det(ΨHΨH
H)NJf(H) +O(ε).
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We have thus proved (using ≈ for equalities up to O(ε)):

∫

H∈HI∩Hε
det(ΨHΨH

H) dH ≈
∫

H∈HI∩
∏
k 6=l{Hkl:‖Hkl‖F=1}

(2ε)K(K−1) det(ΨHΨH
H)NJf(H) dH,

It is very easy to see that NJf(H) = 1 if H = (Hkl) with ‖Hkl‖F = 1. Thus, we have

∫

H∈HI∩Hε
det(ΨHΨH

H) dH ≈ (2ε)K(K−1)

∫

H∈HI∩
∏
k 6=l{Hkl:‖Hkl‖F=1}

det(ΨHΨH
H) dH.

From Theorem 5.1 and taking limits we then have that for almost every H0 ∈ H,

|π−1
1 (H0)| = C−

∫

H∈HI∩
∏
k 6=l{Hkl:‖Hkl‖F=1}

det(ΨΨH) dH, (C.8)

where

C =
2K(K−1) Vol

(
H ∈ HI ∩

∏
k 6=l{Hkl : ‖Hkl‖F = 1}

)

∏
k 6=l

4πNkMl
Γ(NkMl)

Vol(S)

Now,HI ∩
∏

k 6=l{Hkl : ‖Hkl‖F = 1} is a product of spheres and thus from (C.4)

Vol

(
HI ∩

∏

k 6=l
{Hkl : ‖Hkl‖F = 1}

)
=
∏

k 6=l

2πNkMl−dkdl

Γ(NkMl − dkdl)
.

Finally, S = (
∏

k GNk×dk) × (
∏

l GMl×dl) is a product of complex Grassmannians, and its

volume is thus the product of the respective volumes, given in (C.6). That is,

Vol(S) =

(∏

k

πdk(Nk−dk) Γ(2) · · ·Γ(dk) · Γ(2) · · ·Γ(Nk − dk)
Γ(2) · · ·Γ(Nk)

)
×

(∏

l

πdl(Ml−dl) Γ(2) · · ·Γ(dl) · Γ(2) · · ·Γ(Ml − dl)
Γ(2) · · ·Γ(Ml)

)
.

Putting these computations together, and using s = 0, we get the value of C claimed in

Theorem 5.2.

C.4 Proof of Theorem 5.3
The proof of this theorem is a generalization of the computation in Example 5.1. From

Theorem 5.2, the number of solutions is given by

S = |π−1
1 (H0)| = C E

[
| det(Ψ)|2

]
, (C.9)
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where C is the constant de�ned in Theorem 5.2 and Ψ is a square matrix of size L =
K(K − 1). The expectation of the square absolute value of the determinant is

E[| det(Ψ)|2] = E

[∑

σ∈SL

L∏

i=1

ψσ(i)i

∑

δ∈SL

L∏

i=1

ψHδ(i)i

]
= E



∑

σ∈SL
δ∈SL

L∏

i=1

ψσ(i)iψ
H
δ(i)i


 , (C.10)

where σ, δ ∈ SL are permutations of the set (1, . . . , L), and ψij is the ij-th entry of the

matrix Ψ. We note that if δ 6= σ then

∏L
i=1 ψσ(i)iψ

H
δ(i)i equals the product of a Gaussian

random variable times a non-negative quantity and a quantity depending on other Gaussian

variables. By the same argument as in Example 5.1, we conclude:

E

[
L∏

i=1

ψσ(i)iψ
H
δ(i)i

]
= 0, σ 6= δ.

Thus,

E[| det(Ψ)|2] = E


 ∑

σ∈SK(K−1)

K(K−1)∏

i=1

|ψσ(i)i|2

 (1)

=
∑

σ∈SK(K−1)

K(K−1)∏

i=1

E[|ψσ(i)i|2]

(2)
=

(∏

k 6=l

1

(NkMl − 1)

) ∑

σ∈SK(K−1)

K(K−1)∏

i=1

1[ψσ(i)i 6= 0]
(3)
=
∏

k 6=l

1

(NkMl − 1)
per(T). (C.11)

A brief explanation of each step follows:

(1) Independence among di�erent ψσ(i)i for a given σ.

(2) Every non-zero addend in the sum is the product of K(K − 1) independent Beta-

distributed random variables. In fact, we note that

|ψσ(i)i|2 =
|z1|2

|z1|2 + |z2|2 + · · ·+ |zNkMl−1|2
,

where each zi is a complex Gaussian random variable, whose real and complex parts

are N (0, 1) variables (i.e. zi is a CN (0, 2) variable). The distribution of the quo-

tient above is then well known: |ψσ(i)i|2 ∼ Beta(1, NkMl − 2) is a beta distribu-

tion with parameters 1 and NkMl − 2, and its expected value equals E[|ψσ(i)i|2] =
1/(NkMl − 1) where the values of k and l depend uniquely the row σ(i). There-

fore,

∏K(K−1)
i=1 E[|ψσ(i)i|2] =

∏
k 6=l

1
(NkMl−1)

. The notation 1[P ] denotes the indicator

function which equals 1 if the predicate P is true and 0 otherwise.

(3) The sum can be identi�ed as a Leibniz-like expansion of the permanent of a (0,1)-

matrix T which is built by replacing the non-zero elements of Ψ by ones. More

speci�cally, the matrix T will always haveNk +Ml−2 ones per row andK−1 ones

per column.
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Combining (C.9) and (C.11), the compact closed-form expression for the number of solu-

tions in (5.11) is obtained.

For the second part of the theorem we note that T, with the appropriate row and column

ordering, is almost exactly equal to the matrix A obtained by setting m = n = K , wij =
1[i 6= j], ci = Ni − 1 and ri = K −Mi in the notations of [Bar10, Lemma 9]. To obtain

matrix A of [Bar10, Lemma 9] from our matrix T one just addsK rows containingMl ones

each and K columns containing K ones each. A detailed inspection of the matrices shows

that per(A) = per(T)
∏

lMl and then [Bar10, Lemma 9] implies the second claim of the

theorem.

C.5 Proof of Theorem 5.4
The proof of this theorem is quite long and nontrivial. We will apply Theorem 5.1 to the

sets

Hε = {(Hkl) : d(Hkl,UNk) ≤ ε, k 6= l}. (C.12)

Then, because (5.3) holds for every ε, one can take limits and conclude that for almost every

H0 ∈ H,

|π−1
1 (H0)| = lim

ε→0

Vol(HI ∩Hε) Vol(S)

Vol(Hε)
−
∫

H∈HI∩Hε
det(ΨΨH) dH. (C.13)

The claim of Theorem 5.4 will follow from the (di�cult) computation of that limit. We

organize the proof in several subsections.

C.5.1 Unitary matrices with some zeros
In this section we study the set of unitary matrices of size N ≥ 2d which have a principal

d×d submatrix equal to 0, and the set of closeby matrices. For simplicity of the exposition,

the notations of this section are inspired in, but di�erent from, the notations of the rest of

the document. Let

T = TN,d =

{
H =

[
0d A
B C

]}
⊆ CN×N .

Note that T is a vector space of complex dimension N2 − d2
. Our three main results are:

Proposition C.5. The set UN ∩ T is a manifold of codimension N2 inside T . Moreover,

Vol(UN ∩ T ) =
Vol(UN−d)2

Vol(UN−2d)
.

Proposition C.6. The following equality holds:

lim
ε→0

Vol(H ∈ T : d(H,UN) ≤ ε)

εN2 = 2d
2

Vol(UN ∩ T ) Vol(x ∈ RN2

: ‖x‖ ≤ 1).
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Proposition C.7. Let ψ : T → R be a smooth mapping de�ned on T and such that ψ(H)
depends only on the A and B part of H, but not on the part C. Denote ψ(H) = ψ(A,B).
Then,

lim
ε→0

∫
H∈T :d(H,UN )≤ε ψ(H) dH

Vol(H ∈ CN×N : d(H,UN) ≤ ε)
=

2d
2

Vol(UN−d)2

Vol(UN) Vol(UN−2d)
−
∫

(AH ,B)∈U(N−d)×d

ψ(A,B) d(A,B).

Proof of Proposition C.5

Let

ξ : U2
N−d → UN ∩ T

(U,V) 7→
[
Id 0
0 U

]
J

[
Id 0
0 VH

]
(C.14)

where

J =




0 Id 0
Id 0 0
0 0 IN−2d


 .

We claim that ξ is surjective. Indeed, let

H =

[
0 A
B C

]
∈ UN ∩ T .

From HHH = IN we have that A satis�es AAH = Id, i.e. the rows of A can be completed

to form a unitary basis of CN−d. Namely, there exists V ∈ UN−d such that A = [Id 0]V.

Similarly, there exists U ∈ UN−d such that B = U

[
Id
0

]
. Then,

H =

[
Id 0
0 U

]


0 Id 0
Id R1 R2

0 R3 R4



[
Id 0
0 V

]
,

where

R =

[
R1 R2

R3 R4

]

satis�es URV = C. Now, this implies that the matrix




0 Id 0
Id R1 R2

0 R3 R4




is unitary, which forces R1 = 0, R2 = 0, R3 = 0 and R4 unitary. That is

H =

[
Id 0
0 U

]


0 Id 0
Id 0 0
0 0 R4



[
Id 0
0 V

]
=

[
Id 0
0 U

]
J




Id 0 0
0 Id 0
0 0 R4



[
Id 0
0 V

]
,
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that is

H = ξ

(
U,VH

[
Id 0
0 R4

]H)
,

and the surjectivity of ξ is proved. Moreover, this construction describes UN ∩ T as the

orbit of J under the action in T given by

((U,V),X) 7→
[
Id 0
0 U

]
X

[
Id 0
0 VH

]
.

Then, UN ∩ T is a smooth manifold di�eomorphic to the quotient space

U2
N−d/SJ ,

where SJ is the stabilizer of J. Now, (U,V) ∈ SJ if and only if




Id 0 0
0 U1 U2

0 U3 U4






0 Id 0
Id 0 0
0 0 IN−2d






Id 0 0
0 VH

1 VH
3

0 VH
2 VH

4


 =




0 Id 0
Id 0 0
0 0 IN−2d


 ,

which implies U1 = Id, U2 = 0, U3 = 0, V1 = Id, V2 = 0, V3 = 0 and U4 = V4. Thus,

SJ =

{([
Id 0
0 U4

]
,

[
Id 0
0 U4

])
: U4 ∈ UN−2d

}
. (C.15)

Then,

dim(UN ∩ T ) = dim(U2
N−d/SJ) = 2 dim(UN−d)2 − dim(SJ) =

2(N − d)2 − (N − 2d)2 = N2 − 2d2.

On the other hand, dim(T ) = 2N2 − 2d2
and thus

codimT (UN ∩ T ) = 2N2 − 2d2 − (N2 − 2d2) = N2,

as claimed. We now apply the Coarea formula to ξ to compute the volume of UN ∩T . Note

that, by unitary invariance, the Normal Jacobian of ξ is constant, and so is Vol(ξ−1(H)).

We can easily compute

Vol(ξ−1(H)) =
∀ H

Vol(ξ−1(J)) = Vol(SJ) =
(C.15)

√
2

(N−2d)2

Vol(UN−2d).

For the Normal Jacobian of ξ, writing

U̇ =

[
U̇1 U̇2

U̇3 U̇4

]
,

for an element in the tangent space to UN−d at IN−d (and similarly for V̇), note that

Dξ(IN−d, IN−d)(U̇, V̇) =




0 V̇H
1 −V̇2

U̇1 0 U̇2

−U̇H
2 V̇H

2 U̇4 + V̇H
4


 .
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Thus, Dξ(IN−d, IN−d) preserves the orthogonality of the natural basis of TUUN−d ×
TV UN−d but for the elements such that U̇4 6= 0 or V̇4 6= 0. We then conclude that

NJ(ξ)(IN−d, IN−d) = NJ(η) where

η : {M ∈ CN−2d : M + MH = 0}2 → {M ∈ CN−2d : M + MH = 0}
(U̇4, V̇4) 7→ U̇4 + V̇H

4 .

It is a routine task to see that ηH(L) = (L,LH), which implies ηηH(L) = 2L, that is

det(ηηH) = 2dim({M∈CN−2d:M+MH=0}) = 2(N−2d)2

.

Hence, NJ(η) =
√

det(ηηH) =
√

2
(N−2d)2

. As we have pointed out above, the value of

the Normal Jacobian of ξ is constant. Thus, for every U,V,

NJ(ξ)(U,V) = NJ(η) =
√

2
(N−2d)2

.

The Coarea formula applied to ξ then yields:

Vol(U2
N−d) =

∫

(U,V)∈U2
N−d

1 d(U,V) =

∫

H∈UN∩T

Vol(ξ−1(H))

NJ(ξ)
dH =

Vol(UN ∩ T ) Vol(UN−2d).

The value of Vol(UN ∩ T ) is thus as claimed in Proposition C.5.

Some notations

Given a matrix of the form

H =




0 σ 0
α C1 C2

0 C3 C4


 , (C.16)

(α and σ are d × d diagonal matrices with real positive ordered entries) we denote by H̃
the associated matrix

H̃ =



α C1 C2

0 σ 0
0 UH

0 C3 UH
0 C4


 ,

where U0 is some unitary matrix which minimizes the distance from C4 to UN−2d. Note

that

H̃ =




0 I 0
I 0 0
0 0 UH

0


H,

and hence

d(H,UN) = d(H̃,UN).

We also let

T1(H) = ‖α− Id‖2 + ‖σ − Id‖2 + ‖C4 −U0‖2 +
‖C1‖2 + ‖C2‖2 + ‖C3‖2

2
,
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T2(H) = ‖α−Id‖2+‖σ−Id‖2+‖C4−U0‖2+‖C1‖2+
‖C2‖2 + ‖C3‖2

2
= T1(H)+

‖C1‖2

2
.

Note that

T2(H) ≥ T1(H) ≥ ‖H̃− IN‖2

2
≥ d(H̃,UN)2

2
=
d(H,UN)2

2
(C.17)

Approximate distance to UN and UN ∩ T
In this section we prove that for small values,

d(H,UN) ≈ T1(H)1/2, d(H,UN ∩ T ) ≈ T2(H)1/2.

More precisely:

Proposition C.8. For su�ciently small ε > 0, if d(H,UN) ≤ ε then,

|d(H,UN)− T1(H)1/2| ≤ O(ε2),

∣∣d (H,UN ∩ T )− T2(H)1/2
∣∣ ≤ O(ε2).

Here, we are writing O(ε2) for some function of the form c(d)ε2.

Before proving Proposition C.8 we state the following intermediate result.

Lemma C.9. There is an ε0 > 0 such that ‖H̃− IN‖ ≤ ε < ε0 implies:

T1(H)1/2 − 9ε2 ≤ d(H,UN) ≤ T1(H)1/2 + 9ε2,

T2(H)1/2 − 30ε2 ≤ d (H,UN ∩ T ) ≤ T2(H)1/2 + 30ε2.

Proof. We will use the concept of normal coordinates (see for example [Gra04, p. 14]).

Consider the exponential mapping in UN , which is given by the matrix exponential

TIUN = {R ∈ CN : R + RH = 0} → UN
R 7→ eR = I + R +

∑
k≥2

Rk

k!
,

which is an isometry from a neighborhood of 0 ∈ TIUN to a neighborhood of I ∈ UN and

de�nes the normal coordinates. Thus, for su�ciently small ε1 > 0 there exists ε0 > 0 such

that if U ∈ UN , ‖U− I‖ < ε0 then there exists a skew-symmetric matrix R such that

U = eR, ‖R‖ = dUN (U, I), ‖R‖ ≤ ε1.

Let R ∈ CN be a skew-Hermitian matrix such that

‖H̃− eR‖ = d(H̃,UN) = δ ≤ ε, ‖R‖ = dUN (eR, I), ‖R‖ ≤ ε1.

Let S =
∑

k≥2 Rk/k!. Then, eR = I + R + S and

‖S‖ ≤
∑

k≥2

‖R‖k
k!
≤ ‖R‖2.
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If we denote a = ‖eR − I‖ = ‖R + S‖ and b = dUN (eR, I) = ‖R‖, we have proved that

b− 2b2 ≤ a ≤ b+ 2b2.

Assuming that ε1 < 1/3 (so b < 1/3) and doing some arithmetic, this implies

a+ 6a2 ≥ b, that is ‖R‖ ≤ ‖eR − I‖+ 6‖eR − I‖2.

Now,

‖eR − I‖ ≤ ‖eR − H̃‖+ ‖H̃− I‖ ≤ 2ε,

which implies

‖R‖ ≤ 2ε+ 24ε2 ≤ 3ε.

In particular, ‖S‖ ≤ 9ε2.

We conclude:

d(H,UN) = d(H̃,UN) = ‖H̃− eR‖ ≥ ‖H̃− (I + R)‖ − ‖S‖ ≥ ‖H̃− (I + R)‖ − 9ε2.

We now solve the following elementary minimization problem:

min
R:R+RH=0

‖H̃− (I + R)‖.

Let

R =




R1 R2 R3

−RH
2 R5 R6

−RH
3 −RH

6 R9


 , R1 + RH

1 = 0,R5 + RH
5 = 0,R9 + RH

9 = 0.

Then, ‖H̃− (I + R)‖ is minimized when R1 = 0, R5 = 0, R9 = 0 and

R2 = argmin(‖C1 −R2‖2 + ‖R2‖2)

R3 = argmin(‖C2 −R3‖2 + ‖R3‖2)

R6 = argmin(‖UH
0 C3 + RH

6 ‖2 + ‖R6‖2).

It is easily seen that the solutions to these problems are:

R2 =
C1

2
→ ‖C1 −R2‖2 + ‖R2‖2 =

‖C1‖2

2
,

R3 =
C2

2
→ ‖C2 −R3‖2 + ‖R3‖2 =

‖C2‖2

2

R6 =− CH
3 U0

2
→ ‖UH

0 C3 + RH
6 ‖2 + ‖R6‖2 =

‖C3‖2

2
.

We have then proved

min
R:R+RH=0

‖H̃− (I + R)‖ = T1(H̃)1/2,
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and the minimum is reached at

R =




0 C1/2 C2/2
−CH

1 /2 0 −C3U
H
0 /2

−CH
2 /2 U0C

H
3 /2 0


 (C.18)

Hence,

d(H,UN) ≥ T1(H̃)1/2 − 9ε2,

and the �rst lower bound claimed in the lemma follows. For the upper bound let R be

de�ned by (C.18) and note that (following a similar reasoning to the one above)

d(H,UN) = d(H̃,UN) ≤ ‖H̃− eR‖ ≤ ‖H̃− (I + R)‖+
∑

k≥2

‖R‖k
k!

=

T1(H̃)1/2 +
∑

k≥2

(
‖C1‖2+‖C2‖2+‖C3‖2

2

)k/2

k!
.

Now, ‖H̃− IN‖ ≤ ε in particular implies ‖C1‖2 + ‖C2‖2 + ‖C3‖2 ≤ ε2 and then we have

d(H,UN) ≤ T1(H̃)1/2 +
∑

k≥2

(
ε2

2

)k/2

k!
≤ T1(H̃)1/2 + 2ε2,

as wanted. Now, for the second claim of the lemma, the same argument is used but now R
is such that eR

minimizes ‖H̃− eR‖ and

eR =



∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗


 .

Now, from the equality

I + R = eR − S,

and arguing as above we have that

‖R2‖ ≤ ‖S‖ ≤ 9ε2, which implies ‖R− R̃‖ =
√

2‖R2‖ ≤ 20ε2,

where we denote by R̃ the matrix resulting from letting R2 = 0. Thus,

|‖H̃−eR‖−‖H̃−(I+R̃)‖| ≤ |‖H̃−I−R‖−‖H̃−I−R̃‖|+‖S‖ ≤ ‖R̃−R‖+9ε2 ≤ 30ε2.

We have then proved

∣∣∣∣d (H,UN ∩ T )− min
R:R+RH=0,R2=0

‖H̃− (I + R)‖
∣∣∣∣ ≤ 30ε2,

and as before we can easily see that the minimum is reached when R1 = 0, R2 = 0,

R5 = 0, R9 = 0, R3 = C2/2 and R6 = CH
3 U0/2 which proves that

min
R:R+RH=0,R2=0

‖H̃− (I + R)‖ = T2(H).

This �nishes the proof of the lemma.
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Proof of Proposition C.8
Let E be a matrix such that ‖E‖ ≤ ε < 1 and H = U + E for some unitary matrix U.

Then,

‖HHH−I‖ = ‖UUH+UEH+EUH+EEH−I‖ = ‖UEH+EUH+EEH‖ ≤ 2ε+ε2 ≤ 3ε.

On the other hand,

HHH − I =



σ2 − I σCH

1 σCH
3

C1σ X X
C3σ X C3C

H
3 + C4C

H
4 − I


 ,

where the entries X are terms which we do not need to compute. In particular, we have

‖C1σ‖ ≤ 3ε and

‖σ2 − I‖ ≤ 3ε, (C.19)

which implies ‖σ−2‖ = ‖σ−2 − I + I‖ ≤
√
d+ 4ε and hence

‖C1‖ = ‖C1σσ
−1‖ ≤ ‖C1σ‖‖σ−1‖ ≤ 3ε

√√
d+ 3ε ≤ 4

√
dε.

A similar argument works for C3 as well, and using a symmetric argument for HHH we

get the same bound for C2 and an equivalent bound for α to that of (C.19). Summarizing

these bounds, we have:

‖C1‖2 + ‖C2‖2 + ‖C3‖2 ≤ 48dε2 (C.20)

Moreover, we also have

‖C4C
H
4 − I‖ ≤ ‖C3C

H
3 ‖+ ‖C3C

H
3 + C4C

H
4 − I‖ ≤ 16dε2 + 4ε ≤ 20dε,

which implies

N−d∑

j=0

(β2
j − 1)2 = ‖C4C

H
4 − I‖2 ≤ 400d2ε2

where the βj are the singular values of C4. In particular,

‖UH
0 C4 − IN−d‖2 = d(C4,UN−d)2 =

N−d∑

j=1

(βj − 1)2 ≤

N−d∑

j=1

(βj − 1)2(βj + 1)2 =
N−d∑

j=1

(β2
j − 1)2 ≤ 400d2ε2,

and we conclude that

‖UH
0 C4 − IN−d‖ ≤ 20dε. (C.21)

Using (C.19), (C.20) and (C.21) above we get:

‖H̃−IN‖2 = ‖σ−Id‖2+‖α−Id‖2+‖C1‖2+‖C2‖2+‖C3‖2+‖UH
0 C4−IN−d‖2 ≤ c(d)2ε2,

where c(d) depends only on d. Let ε be small enough for c(d)ε to satisfy the hypotheses of

Lemma C.9. The Proposition C.8 follows from applying that lemma.
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How the sets of closeby matrices to UN and UN ∩ T compare

Our main result in this section is the following.

Proposition C.10. Let α > 1. For su�ciently small ε > 0, we have:

2d
2

Vol
(
H ∈ T : d(H,UN ∩ T ) ≤ ε

α

)
≤

Vol(H ∈ T : d(H,UN) ≤ ε) ≤
2d

2

Vol(H ∈ T : d(H,UN ∩ T ) ≤ αε)

Before the proof we state two technical lemmas.

Lemma C.11. Let σ,α be as in (C.16). Then,

Vol


C : T1






0 σ 0
α C1 C2

0 C3 C4




 ≤ ε


 = 2d

2

Vol


C : T2






0 σ 0
α C1 C2

0 C3 C4




 ≤ ε


 .

Proof. Let

Si(C) = Ti

([
0 A
B C

])
, i = 1, 2,

where A = [σ 0] and BT = [α 0]. The claim of the lemma is that

Vol(C : S1(C) ≤ ε) = 2d
2

Vol(C : S2(C) ≤ ε).

Indeed, consider the mapping

ϕ

([
C1 C2

C3 C4

])
=

[√
2C1 C2

C3 C4

]
,

which has Jacobian equal to

√
2

2d2

= 2d
2
. The change of variables theorem yields:

2d
2

Vol(C : S1(ϕ(C)) ≤ ε) = Vol(ϕ(C) : S1(ϕ(C)) ≤ ε) = Vol(C : S1(C) ≤ ε).

The lemma follows from the fact that S1(ϕ(C)) = S2(C).

Lemma C.12. Let α > 1 and let A,B be complex matrices of respective sizes d × (N − d)
and (N − d)× d. Then, for su�ciently small ε > 0 we have

2d
2

Vol

(
C : d

([
0 A
B C

]
,UN ∩ T

)
≤ ε

α

)
≤

Vol

(
C : d

([
0 A
B C

]
,UN

)
≤ ε

)
≤

2d
2

Vol

(
C : d

([
0 A
B C

]
,UN ∩ T

)
≤ αε

)
.
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Proof. Let UA,VA,UB,VB be such that

A = UA[σ 0]VH
A , B = UB

[
α
0

]
VH
B

are singular value decompositions of A and B respectively. Then,

Vol

(
C : d

([
0 A
B C

]
,UN

)
≤ ε

)
=

Vol

(
C : d

([
UH
A 0

0 UH
B

] [
0 A
B C

] [
VB 0
0 VA

]
,UN

)
≤ ε

)
=

Vol


C : d






0 [σ 0][
α
0

]
UBCVH

A


 ,UN


 ≤ ε


 =

Vol


C : d






0 [σ 0][
α
0

]
C


 ,UN


 ≤ ε


 ,

where the last inequality follows from unitary invariance of the volume. Let H be as in

(C.16). From Proposition C.8, we conclude:

Vol (C : d(H,UN) ≤ ε) ≤ Vol(C : T1(H)1/2 ≤ ε+ c(d)ε2) =

Vol(C : T1(H) ≤ (ε+ c(d)ε2)2) =
Lemma C.11

2d
2

Vol(C : T2(H) ≤ (ε+ c(d)ε2)2).

From (C.17), for su�ciently small ε > 0, T2(H) ≤ (ε+c(d)ε2)2
implies d(H,UN) is as small

as wanted. Hence, from Proposition C.8, for su�ciently small ε > 0 we have

Vol(C : T2(H) ≤ (ε+ c(d)ε2)2) = Vol(C : T2(H)1/2 ≤ ε+ c(d)ε2) ≤
Vol
(
C : d (H,UN ∩ T ) ≤ ε+ 2c(d)ε2

)
.

In particular, for every α > 1 and for su�ciently small ε > 0 we have proved that

Vol (C : d(H,UN) ≤ ε) ≤ 2d
2

Vol (C : d (H,UN ∩ T ) ≤ αε) .

This proves the upper bound of the lemma. The lower bound is proved with a symmetric

argument, using the opposite inequalities of Proposition C.8.

Proof of Proposition C.10 Let α > 1. From Fubini’s Theorem,

Vol(H ∈ T : d(H,UN) ≤ ε) =

∫

A∈Cd×(N−d),B∈C(N−d)×d
Vol(C : d(H,UN) ≤ ε) d(A,B).

From Lemma C.12, for su�ciently small ε > 0 this is at most∫

A∈Cd×(N−d),B∈C(N−d)×d
2d

2

Vol(C : d(H,UN ∩ T ) ≤ αε) d(A,B).

Again from Fubini’s Theorem, this last equals

2d
2

Vol(H : d(H,UN ∩ T ) ≤ αε),

proving the upper bound of the proposition. The lower bound follows from a symmetrical

argument.



162 Proof of Mathematical Results in Chapter 5

Proof of Proposition C.6

Let α > 1. From Proposition C.10, we have

lim
ε→0

Vol(H ∈ T : d(H,UN) ≤ ε)

εN2 ≤ 2d
2

lim
ε→0

Vol(H ∈ T : d(H,UN ∩ T ) ≤ αε)

εN2 .

Note that N2
is the (real) codimension of UN ∩ T inside T . Thus, from Theorem C.1,

lim
ε→0

Vol(H ∈ T : d(H,UN ∩ T ) ≤ αε)

εN2 = Vol(UN ∩ T )αN
2

Vol(x ∈ RN2

: ‖x‖ ≤ 1).

We have thus proved that for every α > 1 we have

lim
ε→0

Vol(H ∈ T : d(H,UN) ≤ ε)

εN2 ≤ 2d
2

Vol(UN ∩ T )αN
2

Vol(x ∈ RN2

: ‖x‖ ≤ 1).

This implies:

lim
ε→0

Vol(H ∈ T : d(H,UN) ≤ ε)

εN2 ≤ 2d
2

Vol(UN ∩ T ) Vol(x ∈ RN2

: ‖x‖ ≤ 1).

The reverse inequality is proved the same way using the other inequality of Proposition

C.10.

Integrals of functions of the subset of matrices in T which are close to UN
We are now close to the proof of Proposition C.7, but we still need some preparation. We

state two lemmas.

Lemma C.13. Let ψ : T → [0,∞) be a smooth mapping. Then,

lim
ε→0

1

εN2

∫

H∈T :d(H,UN )≤ε
ψ(H) dH =

2d
2

Vol(UN ∩ T ) Vol(x ∈ RN2

: ‖x‖ ≤ 1)−
∫

U∈UN∩T
ψ(U) dU

Proof. For su�ciently small ε > 0, given H ∈ T such that d(H,UN) < ε, there is a unique

U ∈ U ∩ T such that the distance d(H,U ∩ T ) is minimized (see for example [Gra04, p.

32]). Let π(H) be such U. Moreover, π is a smooth mapping. From Theorem C.3 we thus

have

∫

H∈T :d(H,UN )≤ε
ψ dH =

∫

U∈UN∩T

∫

H∈T :d(H,UN )≤ε,π(H)=U

NJπ(H)ψ(H) dH dU.

Now, ψ is smooth and hence ψ(H) = ψ(U) +O(ε). We thus have

∫

H∈T :d(H,UN )≤ε
ψ dH =

∫

U∈UN∩T
ψ(U)

∫

H∈T :d(H,UN )≤ε,π(H)=U

NJπ(H) dH dU

+O(ε) Vol(H ∈ T : d(H,UN) ≤ ε).
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The integral inside this last expression is unitary invariant and thus its value is a constant

cε. Moreover, the same argument applied to ψ ≡ 1 yields

Vol(H ∈ T : d(H,UN) ≤ ε) =

∫

U∈UN∩T
cε dU.

That is,

cε =
Vol(H ∈ T : d(H,UN) ≤ ε)

Vol(UN ∩ T )
.

We have then proved

∫

H∈T :d(H,UN )≤ε
ψ dH =

Vol(H ∈ T : d(H,UN) ≤ ε)

Vol(UN ∩ T )

(∫

U∈UN∩T
ψ(U) dU +O(ε)

)
=

Vol(H ∈ T : d(H,UN) ≤ ε)

(
−
∫

U∈UN∩T
Ψ(U) dU +O(ε)

)
.

The lemma follows from Proposition C.6.

Lemma C.14. Let ψ be a smooth mapping. Then,

lim
ε→0

∫
H∈T :d(H,UN )≤ε ψ(H) dH

Vol(H ∈ CN : d(H,UN) ≤ ε)
=

2d
2

Vol(UN ∩ T )

Vol(UN)
−
∫

U∈UN∩T
ψ(U) dU

Proof. From Theorem C.1 and using that the codimension of UN in CN is N2
we know that

Vol(H ∈ CN : d(H,UN) ≤ ε) = Vol(UN)εN
2

Vol(x ∈ RN2

: ‖x‖ ≤ 1)(1 +O(ε)),

where limε→0O(ε) = 0. The lemma now follows from Lemma C.13.

Proof of Proposition C.7

This result is almost inmediate from Lemma C.14 and Proposition C.5. Let ξ be the mapping

de�ned in (C.14). We have computed the Normal Jacobian of ξ and the volume of the

preimage of ξ in Section C.5.1. From Theorem C.3,

∫

(U,V)∈U2
N−d

Ψ(ξ(U,V)) d(U,V) =

∫

H∈UN∩T
Ψ(H)

Vol(ξ−1(H))

NJξ
dH =

Vol(UN−2d)

∫

H∈UN∩T
Ψ(H) dH.

Hence, as Ψ does not depend on C, and writing Ψ(H) = Ψ(A,B) (note the abuse of

notation),

∫

H∈UN∩T
Ψ(H) dH =

1

Vol(UN−2d)

∫

(U,V)∈U2
N−d

Ψ

(
(Id 0)VH ,U

[
Id
0

])
d(U,V).
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Normalizing we get

−
∫

H∈UN∩T
Ψ(H) dH = −

∫

(U,V)∈U2
N−d

Ψ

(
[Id 0]VH ,U

[
Id
0

])
d(U,V).

Now, generating random unitary matrices U,V and then taking [Id 0]VH ,U

[
Id
0

]
is the

same as generating two random elements in the Stiefel manifold U(N−d)×d. The proposition

is proved.

C.5.2 Proof of Theorem 5.4
Recall that we have de�nedHε in (C.12), and we want to compute the limit (C.13):

lim
ε→0

Vol(HI ∩Hε) Vol(S)

Vol(Hε)
−
∫

H∈HI∩Hε
det(ΨΨH) dH =

lim
ε→0

Vol(S)

Vol(Hε)

∫

H∈HI∩Hε
det(ΨΨH) dH.

Now, we use Fubini’s theorem to convert the last integral into an iterated integral

∫

H(k1,l1)∈T ,d(H(k1,l1),UN )<ε

· · ·
∫

H(k1,l1)∈T ,d(H(kr,lr),UN )<ε

det(ΨΨH) dH(kr,lr) · · · dH(k1,l1),

where (k1, l1), . . . , (kr, lr), r = K(K − 1) are all the pairs (k, l) with k 6= l, ordered with

respect to some (irrelevant) criterion. From Proposition C.7, the last inner integral satis�es:

∫

H(k1,l1)∈T ,d(H(kr,lr),UN )<ε

det(ΨΨH) dH(kr,lr) = O(ε∗) + Vol(H ∈ CN : d(H,UN) ≤ ε)×

2d
2

Vol(UN−d)2

Vol(UN) Vol(UN−2d)
−
∫

(AH ,B)∈U(N−d)×d

det(ΨΨH) d(A,B),

where Ψ is computed for

H(kr,lr) =

[
0d A
B 0(N−d)

]
.

Here, O(ε∗) is an expression such that

lim
ε→0

O(ε∗)

Vol(H ∈ CN : d(H,UN) ≤ ε)
= 0.

By repeating the procedure and using Fubini’s theorem again to convert the iterated integral

into a unique multiple integral, we conclude:

∫

H∈HI∩Hε
det(ΨΨH) dH = O(ε∗) + Vol(H ∈ CN : d(H,UN) ≤ ε)K(K−1)×
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(
2d

2
Vol(UN−d)2

Vol(UN) Vol(UN−2d)

)K(K−1)

−
∫

(AH
kl,Bkl)∈U(N−d)×d,k 6=l

det(ΨΨH) d(Akl,Bkl),

where Ψ is computed for

Hkl =

[
0d Akl

Bkl 0(N−d)

]
.

Here, O(ε∗) is an expression such that

lim
ε→0

O(ε∗)

Vol(H ∈ CN : d(H,UN) ≤ ε)K(K−1)
= 0.

On the other hand, also from Fubini’s theorem we have

Vol(Hε) = Vol(H ∈ CN : d(H,UN) ≤ ε)K(K−1).

The claim of the Theorem 5.4 follows.
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