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Abstract—It has been recently shown that for the 3-user single-
input single-output (SISO) interference channel with constant
channel coefficients, a maximum of 1.2 degrees-of-freedom (DoF)
are achievable using linear interference alignment schemes when
improper (a.k.a. asymmetric) Gaussian signaling is applied. In
this paper, we study the 4-user SISO interference channel and
provide inner and outer bounds for the total number of DoF
achievable for this channel. We prove that at least 4

3
DoF are

achievable for the 4-user channel using also linear interference
alignment techniques and improper signaling. A simple converse
proof shows that no more than 8

5
DoF are achievable for this

scheme. Simulation results seem to indicate that the inner bound
is in fact tight for this channel, and serve to illustrate the sum-
rate improvement with respect to time division multiple access
(TDMA) techniques.

Index Terms—Degrees-of-freedom (DoF), interference channel,
interference alignment, improper signaling, asymmetric signaling

I. INTRODUCTION

Interference alignment (IA) has emerged as a novel tech-
nique to deal with interference in wireless networks. Using this
approach, the interference coming from all users is confined
into a subspace that does not overlap with the signal subspace,
thus yielding an interference-free communication link for the
desired signal [1]. Interference alignment techniques using the
space, time and/or frequency dimensions have been proven to
be essential to achieve the maximum degrees-of-freedom DoF
in many interference channel scenarios. For instance, in [1] it
is shown that for the K-user single-input-single-output (SISO)
interference channel with time-varying coefficients, K

2 DoF
are achievable using IA. The situation when the SISO channel
coefficients remain constant is much more complicated, and it
was long conjectured that only 1 DoF was achievable for this
scenario [2].

Recently, Cadambe, Jafar and Wang disproved this conjec-
ture in [3] and showed that the 3-user SISO interference chan-
nel has 1.2 DoF (for generic channels drawn from a continuous
distribution). Along with the use of IA, another key ingredient
to achieve 1.2 DoF for this scenario is the use of improper
or noncircular complex Gaussian inputs (also referred to as
asymmetric signaling in [3]). The use of improper Gaussian
signaling has recently been shown to enlarge the achievable
rate region for the 2-user SISO interference channel even when
the interference is treated as noise [4], [5].

In this work, we study the achievable DoF for the 4-user
SISO interference channel with constant channel coefficients.
We focus also on linear interference alignment schemes based
on asymmetric complex signaling, and provide inner and
outer bounds. Specifically, our main result shows that at
least 4

3 DoF are achievable for this channel. More concretely,
each user is able to transmit one complex data stream in 3
symbol extensions.1 In the proof of our results we exploit
some important differences between the 3-user and the 4-user
channels. In particular, a fundamental limitation for the 3-user
channel, which states that any given vector cannot align with
the interference at more than one undesired receiver [3], is
overcome for the 4-user channel.

By means of simulation results, in the paper we also
compare the average sum-rate performance of the proposed
signaling scheme with respect to conventional TDMA tech-
niques. The analysis of the IA solutions obtained using an
alternating minimization algorithm [7] allows us to conjecture
that the DoF inner bound is tight and, in consequence, that
the 4-user SISO interference channel with constant channel
coefficients has 4

3 DoF. We also study the total number of
DoF when the number of users, K, grows.

The rest of the paper is organized as follows: Section II
describes the system model. In Section III we highlight a
fundamental difference between the 3-user and the 4-user
channel that will be used in our achievability proof. The main
contribution of this work is described in Section IV, where
the inner and the outer bounds are derived. In Section V
we present some numerical examples, including achievability
results for different number of users. Finally, we conclude the
paper in Section VI.

II. SYSTEM MODEL

We consider a 4-user complex Gaussian interference chan-
nel with single-antenna users, as depicted in Fig. 1. We
assume that the channel coefficients remain constant during the
transmission of a whole data block and are perfectly known

1It is interesting to mention that, as shown in [6], the 4-user SIMO channel
when each receiver is equipped with 2 antennas and the channel coefficients
are time-varying has 8

3
DoF (i.e., twice the total DoF with constant channels

and single antenna receivers, as proved in this paper). Furthermore, the
achievability result in [6] requires 3(n+1)8 symbol extensions for any n ∈ N,
whereas we get 4

3
DoF with only 3 symbol extensions and constant channels.



to all transmitters and receivers. Each transmitter-receiver pair
communicates over the same frequency band and time slots,
thus interfering with one another. With these considerations,
the discrete-time signal received by the ith user, during the
nth channel use can be expressed as

yi[n] =
4∑
j=1

hijxj [n] + ri[n] (1)

where hij = |hij | eφij is the complex channel coefficient
between transmitter j and receiver i, xj [n] is the signal
transmitted by user j in the nth time slot and ri[n] is the
additive white Gaussian noise (AWGN) at receiver i, with zero
mean and variance σ2. Eq. (1) can be alternatively represented
using only real variables as follows[

<{yi[n]}
= {yi[n]}

]
︸ ︷︷ ︸

yi[n]

=
4∑
j=1

|hij |
[

cos (φij) − sin (φij)
sin (φij) cos (φij)

]
︸ ︷︷ ︸

R(φij)

·

[
<{xj [n]}
= {xj [n]}

]
︸ ︷︷ ︸

xj [n]

+

[
<{ri[n]}
= {ri[n]}

]
︸ ︷︷ ︸

ri[n]

, (2)

where <{·} and ={·} denote the real and imaginary parts, re-
spectively. R(φ) is a rotation matrix, which has the following
properties

R (φ)
−1

= R (−φ) ,

R (θ)R (φ) = R (φ)R (θ) = R (φ+ θ) . (3)

Considering S symbol extensions, the signal received by the
ith user is then given by

<{yi[Sn]}
= {yi[Sn]}

...
<{yi[S(n+ 1)− 1]}
= {yi[S(n+ 1)− 1]}


︸ ︷︷ ︸

ȳi[n]

=
4∑
j=1

|hij | [IS ⊗R (φij)]︸ ︷︷ ︸
R̄(φij)

·


<{xj [Sn]}
= {xj [Sn]}

...
<{xj [S(n+ 1)− 1]}
= {xj [S(n+ 1)− 1]}


︸ ︷︷ ︸

x̄j [n]

+


<{ri[Sn]}
= {ri[Sn]}

...
<{ri[S(n+ 1)− 1]}
= {ri[S(n+ 1)− 1]}


︸ ︷︷ ︸

r̄i[n]

(4)

where ⊗ denotes Kronecker product and IS is the identity
matrix of size S. Note that R̄(φij) also satisfies (3).

The ith transmitter applies a precoding matrix that we
denote as Vi = [v1

i , . . . ,v
di
i ] ∈ R2S×di , where di is the

number of real symbols transmitted by user i. Therefore, the
signal transmitted by user i is given by

x̄i = Visi ∈ R2S , (5)

RX 1
𝑦1[𝑛] 

.

.

.

RX 4
𝑦4[𝑛] 

TX 1
𝑠1[𝑛] 

.

.

.

TX 4
𝑠4[𝑛] 

ℎ11  

ℎ44  

ℎ14  

ℎ41  

Fig. 1. The 4-user SISO interference channel.

where we have dropped the time index for the sake of clarity.
In (5), si ∈ Rdi is the vector of real transmitted symbols,
which is distributed as N (0, Idi).

It is interesting at this point to remind that if Vi had
complex structure

Vi =

[
<{A} −={A}
= {A} < {A}

]
, (6)

with A being a matrix of the appropriate dimensions, then
the transmitted signal x̄i would be proper and, consequently,
its pseudo-covariance matrix would vanish to zero, i.e.,
E[X̄iX̄ Ti ] = 0 [8], where X̄i is the complex form of x̄i,
i.e., X̄i = [xi[n], . . . , xi[n− S + 1]]T . In model (5), however,
no particular structure is imposed on the precoding matrices
and therefore the transmitted signals are improper. This also
provides more freedom in the design of the IA precoders. At
the receiver side, we apply a linear decoder (again without
any particular structure) to suppress the interference, Ui ∈
R2S×di . Hence, the output signal at the ith receiver can be
expressed as

zi =UH
i |hii| R̄ (φii)Visi + UH

i

∑
j 6=i
|hij | R̄ (φij)Vjsj

+ UH
i r̄i . (7)

With this setting, interference alignment is achieved if the
following conditions hold∥∥UH

i R̄ (φij)Vj

∥∥ = 0 , i, j ∈ {1, . . . , 4|i 6= j} , (8)

rank
(
UH
i R̄ (φii)Vi

)
= di , i = 1, . . . , 4 (9)

and then the total number of DoF is given by

DoF =
d1 + d2 + d3 + d4

2S
. (10)

III. PRELIMINARY RESULTS

In [3], a fundamental limitation of the 3-user channel with
improper signaling, stating that a signal vector cannot align at
more than one undesired receiver without becoming aligned at
its own desired receiver, was shown to exist. This limitation
is in the end responsible for the impossibility of surpassing
the 1.2 DoF for this scenario2. and is a consequence of the

2Actually, the 3-user channel has 1.5 DoF for a subset of channel coeffi-
cients of measure zero [3]. For generic channels, however, we cannot achieve
more than 1.2 DoF.



following lemma, taken from [3] and reproduced here for
completeness.

Lemma 1: For any given complex vector v, and for any
given angles, α, β, such that

sin (α− β) 6= 0 , (11)

there exist real constants {g1, g2} ∈ R such that

v = g1ve
α + g2ve

β . (12)

Proof: See [3].
In the following lemma, we prove that this limitation does

not exist for the 4-user interference channel with constant
coefficients, thus opening the possibility of achieving more
than 1.2 DoF for this channel.

Lemma 2: Let us assume that d1 = d2 = d3 = d4 = d ≥ 2
and suppose that v1

1 is aligned within the interference subspace
at all undesired receivers, i.e.,

At Rx 2: R̄ (φ21)v1
1 ∈ span

([
R̄ (φ23)V3 , R̄ (φ24)V4

])
,

(13)

At Rx 3: R̄ (φ31)v1
1 ∈ span

([
R̄ (φ32)V2 , R̄ (φ34)V4

])
,

(14)

At Rx 4: R̄ (φ41)v1
1 ∈ span

([
R̄ (φ42)V2 , R̄ (φ43)V3

])
.

(15)

Let us also suppose that transmitter 2 aligns all its data streams
with interference at receiver 1, i.e.,

At Rx 1: R̄ (φ12)V2 ∈ span
([
R̄ (φ13)V3 , R̄ (φ14)V4

])
,

(16)
Then, except for a subset of channel coefficients with measure
zero, v1

1 can be distinguishable at the desired receiver, i.e.,
linearly independent of the interference subspace

R̄ (φ11)v1
1 /∈ span

([
R̄ (φ13)V3 , R̄ (φ14)V4

])
. (17)

Proof: (13)–(16) can be expressed as

eφ21V1
1 = V3e

φ23a + V4e
φ24b , (18)

eφ31V1
1 = V2e

φ32c + V4e
φ34f , (19)

eφ41V1
1 = V2e

φ42k + V3e
φ43 l , (20)

eφ12V2 = V3e
φ13M + V4e

φ14N , (21)

where Vj (V1
j ) is the complex form of Vj (v1

j ),
{a,b, c, f ,k, l} ∈ Rd×1 and {M,N} ∈ Rd×d. Now consider
the following equality

eφ11V1
1 = g1V1

1 + g2V1 + g3V1
1 , (22)

which holds for any given {g1, g2, g3} such that g1+g2+g3 =
eφ11 . Then, substituting (18)–(20) into (22), and considering
all possible vectors within the signal subspace yields

eφ11V1
1 =eφ13V3

[
g1e

(φ23−φ21−φ13)a + g3l
′+

g2e
(φ32−φ31−φ12)Mc

]
+ eφ14V4

[
g2f
′+

g1e
(φ24−φ21−φ14)b + g3e

(φ42−φ41−φ12)Nk
]
.

(23)

where l′ = e(φ43−φ41−φ13)l + e(φ42−φ41−φ12)Mk and f ′ =
e(φ34−φ31−φ14)f + e(φ32−φ31−φ12)Nc. In order for the right-
hand side of (23) to be in the interference subspace at receiver
1, the following must hold

=
{
g1e

(φ23−φ21−φ13)a + g2e
(φ32−φ31−φ12)Mc + g3l

′
}

= 0 ,

(24)

=
{
g1e

(φ24−φ21−φ14)b + g3e
(φ42−φ41−φ12)Nk + g2f

′
}

= 0 .

(25)

Notice that, for general values of {a,b, c, f ,k, l,M,N}, there
are values of {g1, g2, g3} satisfying (22), (24) and (25). How-
ever, except for a subset of channel coefficients of measure
zero, the aforementioned coefficients can be selected such
that the linear system becomes inconsistent, thus making it
possible to distinguish the desired signal from interference and,
consequently, proving the lemma. To this end, let us consider
the following linear combination of (24) and (25)

=
{
g1

(
e(φ23−φ21−φ13)1Ta + e(φ24−φ21−φ14)1Tb

)
+

g2

(
e(φ32−φ31−φ12)1TMc + 1T f ′

)
+

g3

(
1T l′ + e(φ42−φ41−φ12)1TNk

)}
= 0 . (26)

Consider now the coefficients of g1 in (26). According
to Lemma 1, there is a value of 1Ta and 1Tb such
that e(φ23−φ21−φ13)1Ta + e(φ24−φ21−φ14)1Tb = 1, unless
sin(φ23 − φ13 + φ14) = 0, which only holds for a subset of
channel coefficients that has zero measure. Applying the same
idea to the coefficients of g2 and g3, (26) is reduced to

={g1 + g2 + g3} = 0 . (27)

As there are no values of {g1, g2, g3} satisfying both (22) and
(27), the lemma is proved.

Lemma 2 states that any given signal vector can actually
align with the interference at more than one undesired receiver
without becoming aligned within the interference subspace
at its own desired receivers, thus breaking the limitation
established in [3].

From the proof of Lemma 2, another difference between
the 3-user and the 4-user channels becomes evident. While
for the 3-user channel IA is achieved by individual or one-
to-one alignments (by this we mean that two interfering
vectors coming from two different users align along the same
direction), for the 4-user channel each interfering vector must
be a linear combination of all basis vectors of the interference
subspace. This fact was also observed in [6] for the 4-
user single-input multiple-output (SIMO) channel with time-
varying coefficients.

IV. DOF INNER AND OUTER BOUNDS

In this section we present the main results of this work,
which are formalized in the following theorem.

Theorem 1: Using the class of linear interference alignment
schemes described in this paper, the maximum number of DoF



that are achievable in the 4-user complex Gaussian interference
channel with constant channel coefficients, is bounded by

4

3
≤ d1 + d2 + d3 + d4

2S
≤ 8

5
. (28)

We prove the theorem in the following subsections.

A. Converse for Theorem 1

Proof: Let us take any 3 users among the 4 users to
form a 3-user SISO interference channel. According to [3],
asymmetric complex signaling is able to achieve a maximum
of 6

5 DoF, therefore

di + dj + dk
2S

≤ 6

5
∀i, j, k ∈ {1, 2, 3, 4} , i 6= j 6= k (29)

hold. Adding up the above expressions yields

3
d1 + d2 + d3 + d4

2S
≤ 24

5
⇒ d1 + d2 + d3 + d4

2S
≤ 8

5
,

(30)
hence proving the outer bound.

B. Achievability Proof for Theorem 1

Proof: Let us suppose that v1
1 aligns at all undesired

receivers. Therefore, (13)–(15) hold. Consequently, v1
1 must

lie in the intersection of 3 subspaces, i.e.,

v1
1 ∈ span

([
R̄ (φ23 − φ21)V3 , R̄ (φ24 − φ21)V4

])
∩

span
([
R̄ (φ32 − φ31)V2 , R̄ (φ34 − φ31)V4

])
∩

span
([
R̄ (φ42 − φ41)V2 , R̄ (φ43 − φ41)V3

])
.
(31)

Hence, the above subspaces must have an intersection of at
least one dimension. More generally, the number of streams
that user 1 is able to align simultaneously at the 3 undesired
receivers is equal to the dimension of the intersection (31).
This allow us to interpret the alignment for the 4-user channel
in a particular way: there are users who spend their DoF in
creating intersections, whereas other users spend their DoF
making their streams to lie within these intersections.

Now the question is how many DoF must be spent to create
an intersection. To answer this question, let us consider three
arbitrary subspaces, A, B, C, such that A ∩ B ∩ C = ∅.
In this situation, a maximum of two basis vectors of two
different subspaces, e.g. a ∈ A and b ∈ B, must be
modified so as to create an intersection of one dimension:
dim(A∩B∩C) = 1. Taking this into account, we consider now
a transmission scheme where each user wishes to send d real
streams over S symbol extensions, hence yielding 4d

2S DoF. In
this situation, users 3 and 4 design their precoders (spending
each one d dimensions) to create an intersection of dimension
d for user 1, who can now design its precoder to fall within
this intersection thus aligning its d streams at all undesired
receivers. Finally, user 2 can still align its d streams within
the interference subspace at receiver 1, while it is also aligned
at receivers 3 and 4 because it participates in the intersection
(31). Notice that, according to Lemma 2, the desired signal can
be distinguishable from interference at the desired receivers.

With this setting, the interference subspace at any receiver is
comprised of 3d vectors that overlap in d dimensions, hence
creating a 2d-dimensional subspace. Since the vectors belong
to R2S , for this partitioning to be feasible while still leaving
d dimensions at each receiver for the desired signal, the sum
of dimensions of the interference and desired signal subspaces
must not exceed the total dimension of the signal space, i.e.,

3d ≤ 2S ⇒ 4d

2S
≤ 4

3
. (32)

Since this scheme is able to achieve 4
3 DoF, the inner bound

is therefore proved.

C. Remarks

1) It is worth pointing out that, unlike other schemes such
as the one presented in [6] for the SIMO case, which requires
3(n + 1)8 symbol extensions to achieve 8

3 DoF, n ∈ N; our
proposed scheme is able to achieve the inner bound of 4

3 DoF
by using only S = 3 symbol extensions. Furthermore, it also
requires less symbol extensions than the 3-user case, where
S = 5 is needed to get 1.2 DoF [3].

2) It is important to notice that, to obtain the achievability
of 4

3 DoF, the interference from each transmitter aligns, in
general, within the subspace spanned by the rest of interfer-
ence vectors, i.e., every entry of {a,b, c, f ,k, l,M,N} is not
equal to zero in (18)–(21). To increase the achievable DoF
beyond 4

3 , the interference must be confined into a subspace
with fewer dimensions, thus allowing more signals to be
transmitted. Nevertheless, we conjecture that further reducing
the dimension of the interference subspace makes the desired
signals undistinguishable from the interference. In this case,
4
3 would be the maximum number of DoF that are achievable
using linear schemes. A formal proof, however, is yet to be
found.

V. NUMERICAL EXAMPLES

In this section we first present some numerical examples
to show the performance improvement of IA with improper
signaling scheme over conventional TDMA. We consider a
4-user, fully connected, Gaussian interference channel with
constant channel coefficients, where each user sends 1 com-
plex stream of data in S = 3 symbol extensions, hence 4

3
DoF are achieved. To obtain the IA precoders and decoders,
we resort to an alternating minimization algorithm similar to
that used in the proper signaling case [9], [10]. Basically,
the algorithm is the same but using only real quantities, with
the channels having the structure in (1), while the precoders
and decoders are unstructured, thus yielding improper signals.
Another difference is that, in the proper case, choosing unitary
precoders and decoders guarantees (9) with probability one. In
the improper case, however, this is not true anymore because
the structured real channels in (1) are not generic. To solve this
minor issue the alternating minimization algorithm has to be
initialized at different points until a feasible solution satisfying
both (8) and (9) is achieved.

In Fig. 2 we compare the sum-rate performance of TDMA
with proper signaling and IA with improper signaling. The
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Fig. 2. Sum-rate performance using TDMA (proper signaling) and IA with
improper signaling. Results averaged over 1000 random channel realizations.

improvement is evident not only at high SNRs, but even in the
medium and low SNR regimes. Finally, we have applied the
aforementioned alternating minimization algorithm to study
the achievable DoF when K > 4. Although this is by no
means an achievability proof, the results in Fig. 3 provide
us with an intuition on how the DoF behave with respect to
the number of users for Gaussian interference channel with
constant coefficients when improper signaling is used. We
observe that the achievable DoF increases with the number
of users, and seem to tend asymptotically to 1.5. Furthermore,
the obtained results match perfectly the curve 3K−1

2K when
K ≥ 8. Note that we have not been able to obtain more than
4
3 DoF for the 4-user channel, which supports our conjecture
that the derived inner bound is tight.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have shown that using linear interference
alignment and improper signaling at least 4

3 DoF and no more
than 8

5 DoF are achievable for the 4-user SISO interference
channel with constant channel coefficients. We have shown
that the limitation of improper signaling for the 3-user channel
that was pointed out in [3], does not exist for the 4-user
channel. In consequence, the 1.2 DoF limit established for
the 3-user channel can be surpassed when 4 users share the
channel. We conjecture that the inner bound of 4

3 DoF is in
fact tight. To rigorously proof this conjecture is our future
work.
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