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Abstract—This letter addresses the problem of order estima-
tion for uniform linear arrays (ULAs) with multi-switch antenna
selection in the small-sample regime. Multi-switch antenna se-
lection results in a data matrix with missing entries, a scenario
for which existing order estimation methods that build on the
eigenvalues of the sample covariance matrix do not perform well.
A direct application of the Davis-Kahan theorem allows us to
show that the signal subspace is quite robust in the presence
of missing entries. Based on this finding, this letter proposes
a matrix completion (MC) subspace-based order estimation
criterion that exploits the shift-invariance property of ULAs.
A recently proposed shift-invariant matrix completion (SIMC)
method is used for reconstructing the data matrix, and the
proposed order estimation criterion is based on the chordal
subspace distance between two submatrices extracted from the
reconstructed matrix for increasing values of the dimension of
the signal subspace. Our simulation results show that the method
provides accurate order estimates with percentages of missing
entries higher than 50%.

Index Terms—Order estimation, Uniform linear array, MIMO,
Multi-switch antenna selection, Matrix completion

I. INTRODUCTION

The problem of estimating the number of signals received
by an array of sensors, also known as source enumeration or
order estimation problem is a classical problem in array signal
processing. It has applications in numerous fields such as
wireless communications, radar, biomedical, and geophysical
signal processing [1], [2]. Classical approaches to solving
this problem are based on information-theoretic criteria [3]–
[6], which use order fitting rules based on functions of the
eigenvalues of the sample covariance matrix (SCM) penalized
by the model complexity. The performance of these methods
drastically degrades in the so-called small-sample regime [7]
in which the number of antennas and samples are within the
same order of magnitude.

Motivated by the recent use of large-scale arrays, different
order estimation methods based on random matrix theory are
proposed in the literature for the small-sample regime [7]–[9].
These methods, however, usually provide poor results when
the data matrix has missing entries, which is the problem
considered in this letter.

A data matrix with missing entries might occur when i)
one or more sensors are damaged, or ii) only a few sensors are

This work was supported by the Ministerio de Ciencia e Innovación
(MICINN) of Spain, and AEI/FEDER funds of the E.U., under grants
PID2019-104958RB-C43/C41 (ADELE) and BES-2017-080542.

intentionally sampled to reduce the overall hardware cost. The
latter is the case when using a multi-switch antenna selection
architecture [10], [11] in which, at every time instant, a random
switch selects a subset of antennas whose RF signals are
downconverted and further processed. The data matrix with
multi-switch antenna selection has therefore missing entries. A
low-rank matrix completion (MC) approach [12] that exploits
the shift-invariance property (SIP) of ULAs has recently been
proposed in [11] to recover the complete data matrix as if
it had been received by the full array. Once the data matrix
has been reconstructed, the direction-of-arrival (DOA) of the
received signals can readily be estimated. A similar idea has
been applied in [13] for multiple-input and multiple-output
(MIMO) radar. The shift-invariant matrix completion (SIMC)
method proposed in [11], however, assumes that the number
of sources is known.

This letter addresses the order estimation problem in the
missing data scenario for uniform linear arrays (ULAs) in
the presence of spatially white noise. The eigenvalue-based
order estimation methods such as LSMDL [8] and BIC [9]
do not perform well with missing entries. In addition, as we
have already pointed out, existing MC reconstruction methods
require the order to be known. In this letter, based on the
Davis-Kahan theorem [14], [15] we first show that the signal
subspace changes gradually with missing data. Motivated by
this result, we propose a subspace-based order estimation
criterion, which exploits the shift-invariance property of ULAs.
The proposed approach uses the SIMC algorithm [11] for
increasing values of dimension and the order is estimated by
evaluating chordal subspace distance (CSD) [16] between two
submatrices extracted from the reconstructed matrix.

II. PROBLEM STATEMENT

Let us consider K narrowband signals impinging on a large
half-wavelength ULA with M antennas. For a fully digital
receiver with M RF-branches, the received signal at time
instant or snapshot n is

z[n] = [a(θ1), · · · ,a(θK)] s[n] + e[n] = A s[n] + e[n], (1)

where e[n] is the noise vector, s[n] = [s1[n], . . . , sK [n]]T

is the signal vector with complex gains sk[n], A =
[a(θ1), · · · ,a(θK)] is the steering matrix and a(θk) =[
1 e−jθk · · · e−jθk(M−1)

]T
is the M × 1 complex ar-

ray response to the kth source with electrical angle θk,
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which is unknown. The signals are assumed to be uncor-
related, and the noise is spatially white: they are modeled
as s[n] ∼ CNK(0,Σ) with Σ = diag(σ2

1 , . . . , σ
2
K), and

e[n] ∼ CNM (0, σ2I), respectively. Using the signal model
in (1), the full M ×M covariance matrix is

R = E
[
z[n]zH [n]

]
= Rs + σ2I (2)

where Rs = AΣAH . After collecting N snapshots, the full
data matrix Z=

[
z[1], . . . , z[N ]

]
can be written as Z=X + E,

where E=
[
e[1], . . . , e[N ]

]
, and X=AS is the noiseless signal

component with S=
[
s[1], . . . , s[N ]

]
.

We consider a multi-switch antenna selection receiver [10],
[11] in which L out of the M antennas are randomly selected
at each time instant or snapshot to be downconverted and sam-
pled at baseband. The resulting L ×N samples are arranged
in a matrix Zd ∈ CM×N with the missing entries replaced by
zeros. The sampling process can be compactly expressed as
Zd=PΩ(Z), where Ω ⊆ {1, . . . ,M} × {1, . . . , N} is the set
of observed (antenna, time) indexes, and PΩ is a projection
operator that sets to zero the missing entries and leaves the
observed ones unchanged.

The problem addressed in this letter is, given the observed
data matrix Zd, to estimate the number of sources K. We
assume that K satisfies K � L < M .

III. SUBSPACE PERTURBATION WITH MISSING DATA

Order estimation methods such as LSMDL [8] and BIC [9],
which are based on the eigenvalues of the sample covariance
matrix (SCM) given by R̂= 1

NZZH , do not perform well with
missing entries, i.e. when Z=Zd. This motivates to the study
of subspace-based order estimation methods [17]–[20]. In this
section, we study the impact of missing data on the principal
angles of the signal subspace of the covariance matrix in (2).
To do so, we analyze the problem from a matrix perturbation
standpoint, noting that the eigenvectors of the signal subspace
of R̂ are also left singular vectors of Z associated with the
K largest singular values. A perturbed matrix is a matrix
altered after the addition of a second matrix. Here, we regard
Zd as a perturbed version of Z, with the perturbation being
caused by the missing entries. The Davis-Kahan theorem [14],
[15], adapted to our setup in Theorem 1, is a useful tool to
measure the angular difference between singular vectors of
two matrices.

Theorem 1: [15] Let Z, Zd ∈ CM×N have singular values
σ1 ≥ . . . ≥ σmin(M,N) and σ̂1 ≥ . . . ≥ σ̂min(M,N) respec-
tively. Fix 1 ≤ r ≤ s ≤ rank(Z) and assume that min(σ2

r−1−
σ2
r , σ

2
s − σ2

s+1) > 0, where σ2
0 :=∞ and σ2

rank(Z)+1 := −∞.
Let d = s − r + 1, and let U = [ur,ur+1, . . . ,us] ∈ CM×d
and Û = [ûr, ûr+1, . . . , ûs] ∈ CM×d, where ur and ûr are
the rth left singular vectors of Z and Zd, respectively. Then

|| sin Θ(Û,U)||F ≤ 2 (2σ1 + ‖Zd − Z‖2) (3)

min
(
d1/2‖Zd − Z‖2, ‖Zd − Z‖F

)
min(σ2

r−1 − σ2
r , σ

2
s − σ2

s+1)

In the Davis-Kahan theorem, sin Θ(Û,U) is defined en-
trywise, and Θ(Û,U) is a d × d diagonal matrix whose jth
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Fig. 1: CSD vs. Ps for M = 50, N = 50, K = 3, ∆θ = 10◦

and SNR = 20 dB for different values of t.

diagonal entry is the principal angle cos−1 ρj , being ρj the jth
singular value of ÛHU. Then, the lower || sin Θ(Û,U)||F is,
the more similar the subspaces spanned by the columns of Û
and U are. Since the singular vectors corresponding to the
largest singular values span the signal subspace, we set r = 1
and s = t in (3) and obtain the following upper bound

|| sin Θ(Ût,Ut)||F ≤
2(2σ1 + ‖Zd − Z‖2)‖Zd − Z‖F

σ2
t − σ2

t+1

(4)

where Ut=[u1, . . . ,ut] and Ût=[û1, . . . , ût]. The bound on
the proximity of the t largest left singular vectors of Z and
Zd in (4) increases with the Frobenius norm of the difference
between the perturbed matrix Zd and the complete matrix Z as
O
(
(M −L)1/2

)
, but also with (σ2

t −σ2
t+1)−1, which depends

on the difference between consecutive singular values of Z.
Since, in general, (σ2

K − σ2
K+1)>> (σ2

t − σ2
t+1) for t>K,

we expect the signal subspaces of Z and Zd to be similar,
as shown in expression (4) when particularized to t=K, but
much more dissimilar subspaces when some singular vectors
of the noise subspace are included in Ut and Ût, i.e. when
t>K in (4).

This analysis is illustrated in Fig. 1, which shows the CSD
between Ut and Ût, defined as

dcs =
1√
2
‖UtU

H
t − ÛtÛ

H
t ‖F , (5)

versus the percentage of missing data (Ps) for different values
of t≥K, and for M = 50, N = 50, K = 3, ∆θ = 10◦ and
SNR=20 dB, where ∆θ is the source separation and SNR is
the signal-to-noise-ratio defined as SNR=10 log tr(Rs)

Mσ2 , where
tr(·) denotes the trace. Here, the number of sampled sensors
is L=bM(100−Ps)

100 c, where b·c is the floor function. Clearly
the signal subspace of Zd changes gradually compared to
the signal subspace of Z as the number of missing entries
increases, whereas for t>K the subspace distance increases
abruptly with Ps due to the addition of noise eigenvectors.
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IV. ORDER ESTIMATION USING MATRIX COMPLETION

This section discusses a novel approach for order estimation
with missing data that exploits the SIP of ULAs. The proposed
approach uses the recently proposed SIMC algorithm [11]
for increasing values of the signal subspace dimension, and
the order is estimated by evaluating the CSD between two
different estimates of the signal subspace extracted from the
reconstructed matrix.

A. Shift Invariance property (SIP)

When ULAs are used, a property called shift-invariance
holds, which forms the basis of the ESPRIT method [21], [22]
and its many variants. According to this property, if we extract
two subarrays of size M − 1 by keeping the first and the last
M−1 sensors of an M -sensor array, the steering matrices A1

and A2 of these subarrays are related by a unitary diagonal
matrix

A1diag(e−jθ1 , . . . , e−jθK ) = A2

and consequently they span the same subspace of dimension
K. In a noiseless case without missing data, if we extract K-
dimensional signal subspaces from R̂↑ and R̂↓, which denote
the sample covariance matrices built from the first and the
last M − 1 sensors of the array, the CSD between these two
subspaces is zero. In a noisy situation, the CSD will not be
exactly zero, but will have a small value for sufficiently high
SNR values. A large value of the CSD implies that the K-
dimensional subspaces extracted from R̂↑ and R̂↓ are far
apart from each other and, consequently, the shift-invariance
property does not hold.

B. Shift-invariant Matrix Completion (SIMC)

A technique to reconstruct the signal matrix from the sparse
Zd that exploits the SIP of ULA and the low-rank structure
of the noiseless data matrix has been proposed in [11]. The
problem of estimating the noiseless low-rank signal matrix X
from Zd ∈ CM×N , where Zd = PΩ(Z) and Z = X + E,
amounts to solving [12]

min
X∈CM×N

||X||∗ (6)

subject to ||PΩ(X− Zd)||F ≤ η
where ||X||∗ denotes the nuclear norm, and η > 0 is a
tolerance parameter that limits the fitting error.

Matrix X can be factored as X = WHH , where W ∈
CM×p and H ∈ CN×p, and p limits the rank of the
reconstructed matrix. Then, using the identity ||X||∗ =

minX=WHH
1
2

(∥∥W∥∥2

F
+
∥∥H∥∥2

F

)
, X can be estimated by

solving the optimization problem [23]

{Ŵ, Ĥ} = argmin
W∈CM×p

H∈CN×p

∥∥PΩ

(
Zd −WHH

)∥∥2

F

+ µ
(∥∥W∥∥2

F
+
∥∥H∥∥2

F

)
, (7)

where µ is a regularization parameter. The SIMC method in
[11] searches for a solution that satisfies the SIP by enforcing
the relation

wH
i T = wH

i−1 i = 2, . . . ,M (8)

where wH
i is the ith row of W, and T ∈ D, where D is the

set of p×p diagonal complex matrices not necessarily unitary.
To enforce (8), the SIMC cost function includes an additional
regularization term as follows

{Ŵ, Ĥ, T̂} = argmin
W∈CM×p

H∈CN×p

T∈D

∑
(i,j)∈Ω

∣∣Zd(i, j)−wH
i hj

∣∣2

+ µ
( M∑
i=1

‖wi‖22 +

N∑
j=1

‖hj‖22
)

+ α

M∑
i=2

‖wH
i T−wH

i−1‖22 (9)

where α is an additional regularization parameter. The solution
X̂SIMC = ŴĤH can be obtained by iteratively optimizing
(9) over each wH

i , hHj and T until convergence.
Finally, the SIMC method applies as a last post-processing

stage the Optimal Subspace Estimation (OSE) technique [24]–
[26], which takes X̂SIMC as input and provides a rank-p
covariance matrix R̂SIMC with the required shift-invariant
structure as output. For a full account of the SIMC method,
the reader is referred to [11].
C. Order Estimation via SIMC (OE-SIMC)

Since R̂SIMC satisfies the shift-invariance property, the
CSD between the p-dimensional subspaces extracted from
R̂↑SIMC := R̂SIMC(1 : M − 1, 1 : M − 1) and R̂↓SIMC :=
R̂SIMC(2 : M, 2 : M) should take a small value when p = K
and a large value otherwise. The explanation of this behavior
is that the MC algorithm does not provide an accurate signal
subspace estimate for p < K, whereas for p > K the extracted
signal subspace will include some noise directions. In both
situations, the CSD increases. In summary, this reasoning
shows that the CSD reaches its minimum for p = K, this
minimum value being zero in a noiseless situation. Based
on this observation, an order estimation criterion is proposed,
which first reconstructs R̂SIMC for increasing values of p, and
then estimates the CSD between two p-dimensional subspaces
extracted from R̂↑SIMC and R̂↓SIMC as follows.

Let U↑∈C(M−1)×p and U↓∈C(M−1)×p be the p largest
eigenvectors of R̂↑SIMC and R̂↓SIMC , respectively. The order
estimation criterion using SIMC, denoted as OE-SIMC, is

K̂OE−SIMC = argmin
1≤p≤pmax

‖U↑U↑H −U↓U↓
H‖F

p
(10)

where pmax is an overestimation of K. Since U↑ and U↓ are
extracted for an increasing number of dimensions, the order
estimation criterion in (10) is normalized with the number of
eigenvectors used in each case. A summary of the proposed
method is shown in Algorithm 1.

With regards to the computational cost of the method, SIMC
requires O((M +N)p3) multiplications per iteration to solve
(9), plus the cost of the OSE step which is O(M2N) +
2O((Mp)3). In addition, OE-SIMC requires a compact SVD
with a cost of O(Mp2) to obtain the eigenvectors required to
compute the CSD. The overall cost of OE-SIMC is obtained
after multiplying these quantities by pmax.
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Algorithm 1: Order Estimation via SIMC (OE-SIMC)
Input: Zd, pmax
Output: Order estimate K̂OE−SIMC

for p = 1, . . . , pmax do
Find R̂SIMC using SIMC and extract R̂↑SIMC and
R̂↓SIMC

Find U↑ and U↓ as the p largest eigenvectors of
R̂↑SIMC and R̂↓SIMC

Estimate the number of sources using (10)

V. SIMULATION RESULTS

In this section, the performance of the proposed order
estimation criterion is illustrated by means of Monte Carlo
simulations. For all examples, we assume that K equal-power
uncorrelated narrowband signals with a separation of ∆θ

are impinging on a ULA with M half-wavelength separated
antennas. We consider pmax=bM/5c, L denotes the number
of randomly sampled sensors per snapshot, and Ps denotes the
percentage of missing entries in the data matrix.
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Fig. 2: K̂ vs. SNR for M = 50, N = 50, Ps= 75%, L= 12,
K=3 and ∆θ=10◦.

The first experiment shows the estimated number of sources
K̂ (mean value) vs. SNR for M = 50, N = 50, Ps = 75%,
L = 12, K = 3 and ∆θ = 10◦. For comparison, we select
LSMDL [8] and BIC [9] as eigenvalue-based methods, and
the subspace averaging (SA) method proposed in [19]. Fig.
2 shows that OE-SIMC and SA provide good results. On the
contrary, LSMDL and BIC perform poorly with missing data
and, therefore, they are not included in the next experiments.

In the next experiment, we consider a scenario with M=50,
N = 50, SNR = 10 dB, K= 5 and ∆θ = 10◦. Fig. 3 depicts
the probability of correct detection (Pd) when Ps is varied
between 0% and 95%. As observed, SA performs well for
a wide range of Ps values, but OE-SIMC outperforms SA
and provides good results with percentages of missing entries
higher than 75%.
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Fig. 4: Pd vs. N for Ps = 75%, SNR = 20 dB, K = 5 and
∆θ=10◦ for i) M=50 and L=12, and ii) M=100 and L=25.

In the last experiment, Pd vs. N is evaluated for two
scenarios: i) M=50 and L=12, and ii) M=100 and L=25,
when other parameters are fixed to Ps=75%, SNR=20 dB,
K=5 and ∆θ=10◦. As Fig. 4 shows, for M=50 SA requires
around 150 snapshots to perform well but OE-SIMC starts
providing good results when N is as small as 20. For M=100,
SA starts performing well in the small-sample regime, but the
performance of OE-SIMC is almost unaffected by M .

VI. CONCLUSIONS

In this letter, we have studied the order estimation problem
with missing entries for multi-switch antenna selection re-
ceivers. We showed that the signal subspace changes gradually
with missing entries and then proposed a subspace-based order
estimation criterion based on the chordal subspace distance
between two submatrices extracted from the reconstructed data
matrix after matrix completion. The simulation results indicate
that the proposed method performs well in the small-sample
regime, even with a small percentage of sampled antennas.
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