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Abstract—In this paper, we propose an algorithm for designing
Grassmannian constellations for noncoherent MIMO communi-
cations over Rayleigh block fading channels. The new algorithm,
named ManOpt, is based on a gradient ascent approach that
operates directly on the Grassmann manifold to maximize the
minimum pairwise chordal distance of the constellation. We
analyze the performance of the algorithm in terms of convergence
speed, minimum chordal distance achieved, and symbol error
rate (SER), and we compare it with some other Grassmannian
constellation designs. Our simulation results suggest that ManOpt
constellations have a higher packing efficiency (represented by
the minimum chordal distance), which translates into better SER
performance, with lower computational complexity than existing
algorithms for unstructured constellation designs.

Index Terms—Noncoherent, MIMO communications, Grass-
mannian constellations.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communications
systems, the channel state information (CSI) is typically esti-
mated at the receiver side by sending a few known pilots and
then used for decoding at the receiver and/or for precoding
at the transmitter. These are known as coherent schemes
and in slowly fading scenarios, when the channel remains
approximately constant over a long coherence time, the MIMO
channel capacity for coherent systems is known to increase
linearly with the minimum number of transmit and receive
antennas at high signal-to-noise (SNR) ratio [1], [2]. In fast
fading scenarios, however, to obtain an accurate channel esti-
mate would require pilots to occupy a disproportionate fraction
of communication resources. Even in slowly-varying channels,
CSI acquisition by orthogonal pilot-based schemes can result
in significant overheads in massive MIMO systems [3], and
the performance of coherent massive MIMO systems can be
degraded by channel aging [4]. These scenarios motivate the
use of noncoherent MIMO communications schemes in which
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neither the transmitter nor the receiver have any knowledge
about the instantaneous CSI (although they might have some
knowledge about the statistical or long-term CSI such as its
fading distribution).

Despite the absence of instantaneous CSI at the receiver,
noncoherent MIMO communication systems can achieve a
significant fraction of the coherent capacity at high SNR, as
shown in [5]–[7]. Under additive Gaussian noise and assuming
a Rayleigh block-fading channel, these works proved that at
high SNR and when the coherence interval, T , is larger than
or equal to twice the number of transmit antennas M (T ≥
2M ), capacity can be achieved by transmitting isotropically
distributed unitary matrices. The pre-log factor in the high-
SNR capacity expression is M(1−M/T ), so the noncoherent
multiplexing gain approaches the coherent multiplexing gain
as T → ∞. Codebooks formed by isotropically distributed
unitary space-time matrices correspond to optimal packings
in Grassmann manifolds [7], [8]. Therefore, in noncoherent
MIMO communication systems the information is carried by
the column span of the transmitted T ×M matrix, X, which
is not affected by the MIMO channel H. In other words, the
column span of X is identical to the column space of XH.

There has been extensive research on the design of non-
coherent structured and unstructured constellations as opti-
mal packings on the Grassmann manifold [9]–[14]. Some
experimental evaluation of Grassmannian constellations in
noncoherent communications using over-the-air transmission
has been reported in [15]. Existing constellation designs can be
generically categorized into two groups: structured or unstruc-
tured. Structured designs impose some kind of structure on the
constellation points through parameterized mappings such as
the exp-map design in [11], algebraic constructions such as
the Fourier-based constellation in [16], structured partitions
of the Grassmannian like the recently proposed cube-split
constellation [12], or designs based on group representations
[17], [18]. Structured designs may simplify either codeword
generation/storage or detection, but the packing efficiency is
lower than that achieved by unstructured codes, which in turn
translates into poorer performance in terms of symbol error
rate (SER). For this reason, in this paper we consider unstruc-
tured designs based on numerical optimization methods.



Among the unstructured designs we can mention the alter-
nating projection method [13], which enforces in each iteration
both structural and spectral properties of the Gram matrix
formed by the inner products between codewords, as well as
the numerical methods in [9], [10], which minimize certain
distance measures on the Grassmannian. For example, [9]
employs as a suitable distance metric the chordal distance
between subspaces, while [10] uses the spectral distance (the
cosine square of the minimum principal angle). The method
proposed in [9] is computationally costly because it works on a
Grassmann manifold whose dimension grows with the number
of constellation points. In this paper, we directly maximize the
minimum pairwise chordal distance by means of a gradient
ascent algorithm on the manifold that incorporates an adaptive
adaptation step. Overall, the proposed method is computation-
ally more efficient compared to other unstructured designs, and
achieves packings that approximate the existing upper bounds
and, in some cases, outperforms the best packings known to
date [19].

In the following we provide a detailed description of the data
model, the optimization problem and the proposed algorithm,
as well as some simulation results to assess its convergence
speed, the minimum chordal distance achieved and the symbol
error rate (SER) performance compared with other Grassman-
nian packings proposed in the literature.

II. SYSTEM MODEL

We consider a noncoherent MIMO communication system
in which a transmitter with M antennas transmits to a receiver
equipped with N antennas over a frequency-flat block-fading
channel with coherence time T symbol periods, with T ≥ 2M .
That is, the channel matrix H ∈ CM×N remains constant
during each coherence block of T symbols, and changes to an
independent realization in the next block. The MIMO channel
H is assumed to be Rayleigh with entries hij ∼ CN (0, 1)
and unknown to both the transmitter and the receiver.

Within a coherence block, the transmitter sends a unitary
matrix X ∈ CT×M , XHX = IM , that is a basis for the
subspace 〈X〉 ∈ G

(
M,CT

)
, where G

(
M,CT

)
denotes the

Grassmann manifold of M -dimensional subspaces on CT . The
signal at the receiver Y ∈ CT×N is

Y = XH +

√
M

Tρ
W, (1)

where W ∈ CT×N represents the additive Gaussian noise,
modeled as wij ∼ CN (0, 1), and ρ represents the signal-to-
noise-ratio (SNR).

The optimal detector is the maximum likelihood (ML)
detector, given by

X̃ = argmax
X∈C

tr
(
YHPXY

)
, (2)

where tr(X) denotes trace of X, C represents the codebook
of K codewords and PX = XXH is the projection matrix
to the subspace 〈X〉. Each codeword carries log2(K) bits of
information.

III. PROPOSED CODEBOOK DESIGN

A. Preliminaries

Natural geometric objects of relevance to this problem are
the Stiefel and Grassmann manifolds. The Stiefel manifold
St(M,CT ) is defined as the set of all M -dimensional frames
(semi-unitary T ×M matrices) in CT

St(M,CT ) = {X ∈ CT×M : XXH = IM}. (3)

The Grassmann manifold G(M,CT ) is the set of M -
dimensional subspaces on CT , that is a complex manifold of
dimension M(T −M) [20]. Elements of G(M,CT ) are rep-
resented by matrices in the Stiefel manifold X ∈ St(M,CT ).
This representation is not unique since X and XU, with
U ∈ U(M) a unitary M × M matrix, represent the same
element in G(M,CT ), so formally we should denote elements
of the Grassmannian as 〈X〉 where X ∈ St(M,CT ) and 〈X〉
is the class of equivalence of X under the quotient by the set
of U(M).

There are different ways of measuring the distance between
subspaces, all of them being ultimately different functions
of the principal angles between subspaces. Suppose that Xk

and Xj are two matrices whose columns form orthonormal
bases for the subspaces 〈Xk〉 and 〈Xj〉, which are ele-
ments in G(M,CT ). Then, the singular values of XH

k Xj

are (cos θ1, . . . , cos θM ), where θ1, . . . , θM are the principal
angles [21].

In the context of non-coherent communications, the chordal
distance (a.k.a. projection F-norm distance [22]) is of particu-
lar relevance, mainly because of its mathematical tractability.
It is defined as

d (〈Xk〉, 〈Xj〉) =
1√
2
‖XkXH

k −XjX
H
j ‖F

=

√√√√ M∑
i=1

sin2 θi, (4)

where ‖A‖F denotes the Frobenius norm of A. This will be
the distance measure used in this work.

B. Cost function

It was shown in [5]–[7] that the high-SNR capacity for
noncoherent MIMO systems is achieved by transmitting
isotropically distributed unitary space-time matrices X, that
is, transmitting subspaces that are uniformly distributed on
the Grassmann manifold G(M,CT ).

Motivated by this fact, the constellation C can be designed
by choosing |C| = K elements of G(M,CT ), represented by
their orthonormal bases {X1, . . . ,XK} with certain desirable
distance properties.

Note that both X and the noise-free observation XH repre-
sent the same symbol in G(M,CT ). Therefore, Grassmannian
signaling guarantees error-free detection without CSI in the
noiseless case. When the noise W is present, since its columns
are almost surely not aligned with the transmitted signal X,
the span of the received signal Y deviates from that of X with



respect to a distance measure, leading to a detection error if
Y is outside the decision region of the transmitted symbol.

Consequently, our main goal is to design a codebook
C = {X1, . . . ,XK} that minimizes the symbol error rate
(SER). As usually, we use a pairwise error probability bound
instead of the SER for simplicity [23]. In this case, we are
limited by the worst pairwise error probability, which depends
on the minimum pairwise distance between codewords or
subspaces. Although the dependence of the pairwise error
on the distance between subspaces is in general difficult
to establish, different approximations have appeared in the
literature [16], [23]. The authors in [16] provided an upper
bound on the pairwise probability of error in terms of the
chordal distance between subspaces. Since then, the chordal
distance has been the most commonly employed measure
for the design of unstructured Grassmannian constellations.
Following these works, we consider the following optimization
problem

max
X1, . . . ,XK

min
k 6=j

d (〈Xk〉, 〈Xj〉)

s.t. XH
k Xk = IM ,

Xk ∈ CT×M , k = 1, . . . ,K

(5)

where d (〈Xk〉, 〈Xj〉) is the chordal distance defined in (4). A
closely related cost function has been considered in [9]. The
optimization carried out in [9] replaces the max function by
a smooth surrogate that couples all pairwise chordal distances
and then applies an optimization algorithm on a Grassmann
manifold of dimension G(M |C|,CT |C|), where |C| denotes
the cardinality of the constellation. Thus, the computational
complexity of this method grows rapidly with the number of
codewords. In the following subsection, we describe a simple
optimization technique at a much lower computational cost.

C. Manifold optimization (ManOpt)

To solve (5), we propose a gradient ascent approach that
operates directly on the Grassmann manifold G(M,CT ). The
algorithm starts from a random collection of K elements of the
Grassmann manifold G(M,CT ) and, at each iteration, tries to
separate as much as possible the closest codewords according
to the chordal distance. The optimization is performed on the
manifold, so the essential technical aspect of the algorithm is
the calculation of the gradient in the tangent space, which we
detail below.

As we have already discussed, points on G(M,CT ) are
equivalence classes of T ×M matrices, where the orthogonal
bases for the subspaces 〈Xj〉 and 〈Xk〉 are equivalent if Xj =
XkU for some U ∈ U(M). Therefore, the Grassmann man-
ifold may be defined as a quotient space St(M,CT )/U(M),
where U(M) denotes the orthogonal group of dimension M .
Mathematically, this defines a Riemannian structure in the
Grassmannian given by the Riemannian submersion

ϕ : St(M,CT ) → G(M,CT ) = St(M,CT )/U(M)
Xk 7→ 〈Xk〉.

(6)

The tangent space to the Stiefel manifold at Xk ∈
St(M,CT ) is easy to describe from the defining equation
XH

k Xk = IM given in (3)

TXk
St(M,CT ) =

{
Ẋk ∈ CT×M :

d

dt
|t=0 ((Xk + tẊk)

H

· (Xk + tẊk)) = 0
}

={Ẋk ∈ CT×M : ẊH
k Xk + XH

k Ẋk = 0},
(7)

where Ẋk denotes an arbitrary tangent vector at the point
Xk. The Riemannian submersion ϕ allows us to identify
the tangent space to the Grassmannian with the orthogonal
complement to the kernel of the tangent map of ϕ

TXk
G(M,CT ) ≡{Ẋk ∈ TXk

St(M,CT ) : Ẋk ⊥ XkU̇

for all U̇ ∈ TIMU(M)}
={(IT −XkXH

k )Ẋ : Ẋ ∈ CT×M}, (8)

which obviously does not depend on the chosen representative
for 〈Xk〉. In other words, (8) shows that the gradient of
any given cost function on the tangent space at 〈Xk〉 is
the unconstrained gradient, Ẋ, projected onto the orthogonal
complement of the column space of Xk.

Once we know the tangent space to the Grassmannian, we
can define the best direction to take one of its elements far
from another one, which will be the gradient of the function
f(〈Xk〉) = d(〈Xj〉, 〈Xk〉)2 at the point 〈Xk〉. The defining
property of the gradient ∇f(〈Xk〉) says that for all Ẋk =
(IT −XkXH

k )Ẋ we must have

<(〈∇f(〈Xk〉), Ẋk〉F ) =
d

dt
|t=0 ‖XjX

H
j −

(Xk + tẊk)(Xk + tẊk)
H‖2

=− 4<(〈(IT −XkXH
k )XjX

H
j Xk,

Ẋk〉F ), (9)

where <(·) denotes real part, which leads us to

∇f(〈Xk〉) = −4(IT −XkXH
k )XjX

H
j Xk, (10)

which is the gradient of d(〈Xj〉, 〈Xk〉)2 at 〈Xk〉.
At each iteration, the algorithm performs the following

steps:
1) Perform a random permutation of the codebook C =
{X1, . . . ,XK}, so that the optimization algorithm at
each iteration changes the starting codeword. In this way,
the method obtains better results in terms of convergence
speed and minimum chordal distance.

2) For k = 1, . . . ,K, find the closest element Xj to the kth
codeword, Xk, and construct the matrix ∆kj that yields
the best direction to get Xk far from Xj according to
(10)

∆kj = −
PX⊥

k
PXjXk

‖PX⊥
k

PXj
Xk‖F

, (11)



where PX⊥
k
= IT−XkXH

k is the projection matrix onto
the orthogonal complement of 〈Xk〉 and PXj

= XjX
H
j

is the projection matrix onto 〈Xj〉.
3) Move each Xk a certain amount, defined by the step-size

µ, in the direction defined by the gradient

X̃k = Xk + µ∆kj . (12)

4) X̃k is finally retracted to the manifold by computing the
Q factor in its reduced QR decomposition, which will
be the new Xk.

A difference of the proposed method when compared to
other numerical optimization methods for designing Grass-
mannian constellations, such as [9], [10], is that, in each
iteration, we update the position of every codeword of the
codebook at (almost) the same time. This is an important
aspect of our algorithm that improves the performance in
terms of convergence speed and, especially, minimum chordal
distance.

Another important aspect of the proposed algorithm is
that the value of the parameter µ is adapted using a line-
search procedure to speed up convergence. The rate at which
we change the value of µ is controlled by the parameter
α ∈ [1, 1.1]. After every iteration, if the algorithm does not
improve the minimum chordal distance of the codebook, µ is
decreased (µ/α). Otherwise, if there is an improvement, µ is
increased (µ · α).

The proposed algorithm uses two stopping criteria: a maxi-
mum number of iterations and a minimum improvement δmin

in the minimum chordal distance of the codebook. After each
iteration, the minimum chordal distance of the codebook is
recomputed and, if it has not increased more than δmin, the
algorithm stops.

The proposed Grassmannian constellation design algorithm
is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we provide some simulation examples to
assess the performance of the proposed algorithm (ManOpt)
in comparison to other numerical optimization algorithms for
designing Grassmannian constellations. All the experiments
are conducted using MATLAB that runs on a desktop with an
Intel(R) Core(TM) i7-6700 3.40GHz CPU and 32GB RAM.

Fig. 1 shows the time (averaged over 50 runs) required by
our algorithm (red curves) to generate constellations of sizes
ranging from 4 codewords up to 128 codewords for T = {4, 6}
and M = 2. The values of the different ManOpt optimization
parameters are µini = 10−1, µmin = 10−4, α = 1.001,
Nmax = 200 and δmin = 10−5.

Besides, we compare it to the time required by the al-
ternating projection (AP) algorithm (blue curves) [13]. This
numerical method for finding packings in Grassmannian man-
ifolds basically constructs a matrix (Gram matrix) that needs
to have some certain structural and spectral properties. By
alternately enforcing the structural condition and then the

Algorithm 1: ManOpt
Input: Coherence time T , number of transmit

antennas M , codebook size K, initial step-size
µini, minimum step-size µmin, adaptation rate
α, maximum number of iterations Nmax,
minimum required improvement δmin

1 Generate K random subspaces 〈X〉 in G
(
M,CT

)
2 Obtain initial minimum chordal distance d0
3 Initialize µ = µini and n = 1
4 do
5 Perform a random permutation of the codebook

C = {X1, . . . ,XK}
6 for k = 1 : K do
7 Find the closest element Xj to codeword Xk

8 Construct the matrix

∆kj = −
(IT−XkX

H
k )XjX

H
j Xk

‖(IT−XkXH
k )XjXH

j Xk‖F
that yields

the best direction to get Xk far from Xj

9 Move Xk in the direction defined by ∆kj as
X̃k = Xk + µ∆kj

10 Retract X̃k to the manifold by computing the
Q factor in its reduced QR decomposition,
which will be the new Xk

11 end for
12 Obtain minimum chordal distance dn
13 if dn > dn−1 then
14 Update codebook C with the new codewords

Xk, k = 1 : K
15 if dn − dn−1 < δmin then
16 End optimization
17 end if
18 Increase step-size µ = αµ
19 Move to next iteration n = n+ 1
20 else
21 Decrease step-size µ = µ/α
22 ∗(note that in this case lines 7 and 8 will not

be computed again)
23 end if
24 while (n ≤ Nmax and µ ≥ µmin)

spectral condition, the algorithm reaches a matrix that satisfies
both, from which we can extract a packing.

As we can observe, for both values of T ManOpt clearly
outperforms AP. We can also see that an increase in the
coherence time T has more impact on our method than in
AP, due mainly to the size of the matrices involved in the
optimization, which are T × T for ManOpt and MK ×MK
for AP. However, the gap between both methods is significant
and for reasonable constellation sizes, ManOpt outperforms
AP in terms of speed.

Fig. 2 shows the minimum pairwise chordal distance ob-
tained for different ManOpt constellations (black dots) of sizes
ranging from K = 5 to K = 48 codewords, T = 4 and M = 1
compared to several theoretical upper bounds that appear in
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Fig. 1. Time required to generate Grassmannian constellations with AP and
the proposed ManOpt method as a function of K (number of codewords).

the literature.
The first bound is the well-known Rankin bound (blue

curve), which was first proved on spherical packings in [24]

d ≤
√
T − 1

T

K

K − 1
, K > T. (13)

The second one is the so-called orthoplex bound (pink
curve), which was obtained in [8]

d ≤
√
T − 1

T
, K > T 2. (14)

The last one is the Levenstein bound, whose original proof
appears in [25]

d ≤

√
K(T − 1)

(K − T )(T + 1)
, K > T 2. (15)

As we can see, our algorithm obtains very good packings
that approach the theoretical bounds, especially for K < 20
codewords.

To support this idea, we have also compared the best
packings known to date, given in [19], with some designs
obtained via ManOpt for T = 7 and M = 1. As we can
see in Table I, our method beats the best known packings
for 19 < K < 30. For K = {49, 48}, the packings in [19]
are proved (or conjectured) to be optimal and our algorithm
obtains the same chordal distance separation up to sixth
decimal place.

Finally, Fig. 3 and 4 shows the SER of ManOpt designs in
comparison with other Grassmannian constellations. For these
experiments, the parameters used to generate the codebooks
are µini = 10−1, µmin = 10−4, α = 1.001, Nmax = 200 and
δmin = 10−5.

Fig. 3 shows the SER curve for the proposed ManOpt
constellations (red curves) compared to the AP method (blue
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Fig. 2. Minimum chordal distance achieved by the ManOpt algorithm for
different constellation sizes with T = 4 and M = 1.

TABLE I
BEST FOUND PACKINGS FOR T = 7 AND M = 1 FOR DIFFERENT

CONSTELLATION SIZES K .

Number of codewords Minimum chordal distance
(K) Best known packing [19] ManOpt
19 0.950843 0.951084
22 0.946328 0.946798
23 0.944544 0.945397
24 0.943344 0.943977
29 0.937337 0.939793
30 0.936184 0.937866
48 0.935414 0.935414
49 0.935414 0.935414

curves) for T = 4, M = 1, N = {1, 2} and K = 64 code-
words. Here we can observe that our constellations slightly
outperform the AP designs, besides the design method having
lower computational complexity.

Fig. 4 shows the SER curve for ManOpt constellation (red
curve) for T = 4, M = 1, N = 2 and K = 256 codewords,
in comparison with AP and two structured Grassmannian
constellation designs: exp-map and cube-split. The first one
is built from space-time codes for coherent systems via a non
linear map (parameterization), which is called the exponential
map [11]. The second one is generated by partitioning the
Grassmannian of lines into a collection of bent hypercubes
and defining a mapping onto each of these bent hypercubes
such that the resulting symbols are approximately uniformly
distributed on the Grassmannian. As we can see, our de-
sign clearly beats the exp-map and cube-split algorithms and
slightly outperforms the AP constellation.

V. CONCLUSIONS

A fast algorithm for designing Grassmannian constellations
for noncoherent communications, named ManOpt, is proposed
in this paper, which is based on a gradient ascent approach
with adaptive step-size that operates directly on the Grassmann
manifold to maximize the minimum pairwise chordal distance.
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The proposed algorithm outperforms other numerical opti-
mization methods for designing Grassmannian constellations,
such as alternating projection, in terms of convergence speed,
minimum pairwise chordal distance and SER. It also offers
superior performance when compared to structured constella-
tion design methods, such as exp-map or cube-split, in terms
of minimum pairwise chordal distance and SER.
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