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ABSTRACT

We study the relationship between online Gaussian process

(GP) regression and kernel least mean squares (KLMS) algo-

rithms. While the latter have no capacity of storing the entire

posterior distribution during online learning, we discover that

their operation corresponds to the assumption of a fixed poste-

rior covariance that follows a simple parametric model. Inter-

estingly, several well-known KLMS algorithms correspond to

specific cases of this model. The probabilistic perspective al-

lows us to understand how each of them handles uncertainty,

which could explain some of their performance differences.

Index Terms— online learning, regression, Gaussian pro-

cesses, kernel least-mean squares

1. INTRODUCTION

Gaussian Process (GP) regression is a state-of-the-art Bayesian

technique for nonlinear regression [1]. Although GP mod-

els were proposed in the seventies [2], they did not become

widely applied tools in machine learning until the last decade,

mainly due to their computational complexity.

Through what is known as the “kernel trick”, GP regres-

sion extends least squares to nonlinear estimation. By do-

ing so, GP regression can be considered the natural Bayesian

nonlinear extension of linear minimum mean square error es-

timation (MMSE) algorithms, which are central in signal pro-

cessing [3]. Closely related to GPs are kernel methods [4],

which have been successfully applied to several nonlinear sig-

nal processing problems, such as classification with support

vector machines and kernel PCA for nonlinear dimensional-

ity reduction. The main difference between Bayesian meth-

ods such as GPs and kernel methods is that the former provide
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a full probability distribution of the estimated variables, while

the latter obtain only a point estimate.

Several kernel extensions of classical adaptive filters have

been proposed in the literature (see for instance [5, 6] and the

references therein). These algorithms, referred to as kernel

adaptive filtering are mainly divided into two families, sim-

ilar to the linear adaptive filtering literature: (i) kernel least-

mean-squares (KLMS) algorithms [7, 8, 9], which are based

on stochastic gradient minimization of the mean square error

and have linear complexity per iteration w.r.t. the number of

data points; (ii) and kernel recursive-least-squares (KRLS) al-

gorithms [10], which recursively solve the least-squares prob-

lem, using quadratic complexity per iteration.

In [11], an online formulation of GP regression was ob-

tained by deriving KRLS from a Bayesian point of view.

An equivalent formulation for online GPs was presented in

[12], though we will follow [11] as it offers a more intuitive

choice for the variables and it provides a direct connection

with KRLS algorithms. The online GP formulation from [11]

adds two notable features to the KRLS literature: it allows the

use of maximization techniques to set the hyperparameters

without using cross-validation, and it provides an uncertainty

measurement of the estimate.

KLMS algorithms are much more popular than KRLS,

due to their low complexity. Interestingly though, as far as

we know, there has not been a similar fully probabilistic in-

terpretation of KLMS algorithms. Note that there exist some

Bayesian interpretations of the LMS algorithm [13, 14], one

of which considers kernels, albeit in a simplified setting [15].

In this work we provide a novel derivation of KLMS start-

ing from a Bayesian model based on GPs. Using the sequen-

tial update rule of online GPs and a systematic approxima-

tion of its posterior covariance matrix, we are able to derive a

KLMS formulation that generalizes the two main KLMS for-

mulations, namely the KLMS algorithm [7] and the KNLMS

algorithm [8]. The connection we establish with Gaussian

processes sheds new light on the manner in which KLMS al-

gorithms deal with uncertainty.
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2. ONLINE GP REGRESSION

2.1. Gaussian process regression

Consider a set of N input-output pairs D = {xi, yi}
N
i=1,

where xi ∈ R
D are D-dimensional input vectors and yi ∈ R

are scalar outputs. We assume that the observed data can be

described by the following model,

yi = f(xi) + εi, (1)

in which f represents an unobservable latent function and

εi ∼ N (0, σ2
n) is zero-mean Gaussian noise.

A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distribution

[1]. To indicate that a random function f(x) follows a Gaus-

sian process we write it as

f(x) ∼ GP(m(x), k(x,x′)).

All values of f at any locations x are jointly normally dis-

tributed, with m(x) and k(x,x′) representing the mean func-

tion and covariance function, respectively.

In a Bayesian regression setting, we are interested in in-

ferring the predictive distribution of a new, unseen output y∗
given the corresponding input x∗ and the data D. In partic-

ular, we take a Gaussian process as the prior over the latent

function, and the vector of observations [y1, . . . , yn]
⊤ is re-

lated to the latent function through the likelihood function

p(y|f). When the observations are contaminated with zero-

mean Gaussian noise, as in Eq. (1), there exists a closed-form

solution for the posterior distribution over functions, i.e. the

distribution over the unknown function f(x) after incorporat-

ing all the observed data. Specifically, the posterior of the

function at any new location x∗ is described by

p(f∗|x∗,D) = N (f̂∗, σ̂
2
∗).

When m(x) = 0, which is a very common assumption, we

obtain the following expressions [1]

f̂∗ = k⊤

∗
(K+ σ2

nI)
−1y (2a)

σ̂2
∗ = k∗∗ − k⊤

∗ (K+ σ2
nI)

−1k⊤

∗ (2b)

where the covariances (or kernel) matrices K contain the el-

ements [K]ij = k(xi,xj) and we have introduced the short-

hand notations k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]
⊤ and k∗∗ =

k(x∗,x∗). The matrix inversion involved in Eqs. (2a) and

(2b) leads to O(N3) complexity.

2.2. Incremental GP updates

In an online scenario, the data pairs are made available on a

one-at-a-time basis, i.e. (xt, yt) arrives at time t. Instead of

recalculating the predictive distribution entirely once a new

data pair (xt+1, yt+1) arrives, i.e. by solving (2), it is more

interesting to perform an incremental update. In this section

we briefly review the sequential updates for online GP regres-

sion as presented in [11]. In order to avoid the unbounded

growth of the involved matrices, the online learning process

is typically coupled with a sparsification procedure.

At the t-th iteration of the online GP, the model contains

the variables

Mt = {Dt,µt,Σt,Qt},

where Dt is the observed data set that contains the data pairs

{xi, yi}ti=1; µt and Σt are the mean and covariance matrices

of the posterior p(ft|Dt) = N (µt,Σt); and Qt = K−1
t is the

inverse covariance matrix corresponding to Dt.

When a new data pair (xt+1, yt+1) is obtained, the poste-

rior distribution

p(ft+1|Dt+1) = N (ft+1|µt+1,Σt+1)

is updated as

µt+1 =

[

µt

ŷt+1

]

+
yt+1 − ŷt+1

σ̂2
yt+1

[

ht+1

σ̂2
ft+1,

]

, (3a)

Σt+1 =

[

Σt ht+1

h⊤

t+1 σ̂2
ft+1

]

−
1

σ̂2
yt+1

[

ht+1

σ̂2
ft+1

] [

ht+1

σ̂2
ft+1

]⊤

,

(3b)

where

qt+1 = Qtkt+1,

ht+1 = Σtqt+1,

and the vector kt+1 has elements [kt+1]i = k(xi,xt+1). Fur-

thermore, the output variance is obtained as

σ̂2
yt+1 = σ2

n + σ̂2
ft+1,

and the variance of the latent function evaluations is

σ̂2
ft+1 = kt+1 + k⊤

t+1(QtΣtQt −Qt)kt+1

= γ2
t+1 + qT

t+1ht+1.

In order to further simplify equations, the variable

γ2
t+1 = kt+1 − kT

t+1Qtkt+1

is introduced. The inverse kernel matrix Qt can be updated

efficiently through

Qt+1 =

[

Qt 0

0⊤ 0

]

+
1

γ2
t+1

[

qt+1

−1

] [

qt+1

−1

]⊤

. (4)

After applying Eqs. (3a), (3b), and (4), we obtain the updated

model Mt+1 = {Dt+1,µt+1,Σt+1,Qt+1}.

At each step t of the learning process, the predictive dis-

tribution of a new observation yt+1 given all past data is a

Gaussian p(yt+1|Dt) = N (yt+1|ŷt+1, σ̂
2
yt+1) with

ŷt+1 = q⊤

t+1µt = k⊤

t+1Qtµt (5a)

σ̂2
yt+1 = σ2

n + kt+1 + k⊤

t+1(QtΣtQt −Qt)kt+1. (5b)

For more details we refer the reader to [11, 16].



3. KERNEL ADAPTIVE FILTERING AND KLMS

Kernel methods are a class of machine learning algorithms

that are closely related to Gaussian processes. In many cases,

kernel methods obtain the same solution as their GP coun-

terpart. For instance, the most popular regression algorithm

in kernel methods, kernel ridge regression (KRR) [17], ob-

tains Eq. (2a) for predicting new outputs, which, in the kernel

methods literature, is expressed as

f̂∗ = α
⊤k∗ =

N
∑

i=1

αik(xi,x⋆). (6)

Vector α contains the “kernel weights”, which are found as

α
⊤ = (K + σ2

nI)
−1y. Nonetheless, kernel methods do not

follow a probabilistic Bayesian approach: their solution cor-

responds only to a point estimate, and they do not model the

entire predictive distribution. This implies, among others, that

kernel methods do not handle prediction uncertainty out-of-

the-box. GP regression, in contrast, provides the predictive

variance (2b) in addition to the predictive mean.

3.1. Kernel recursive least-squares

The kernel-methods counterpart of online GP regression is

kernel recursive least-squares (KRLS, see for instance [10]),

which obtains the KRR solution recursively. After receiving

t data points, the kernel weights obtained by KRLS are those

that solve the batch problem

αt = (Kt + σ2
nI)

−1yt. (7)

The same weights can be obtained in online GP regression by

computing

αt = K−1
t µt = Qtµt, (8)

which follows from Eq. (5a).

3.2. KLMS algorithms

Similar to online GP regression, updating the KRLS estimate

in Eq. (7) with a new data point requires quadratic complexity.

Kernel least-mean-squares (KLMS) algorithms alleviate this

computational burden by performing stochastic gradient de-

scent of the mean square error, resulting in linear complexity

per time step [6].

KLMS algorithms can be categorized into two classes,

depending on which kernel weights they update in each it-

eration to account for the prediction error1. We outline both

approaches briefly in the remainder of this section.

1Both approaches are different approximations of the same update formu-
lation in the kernel feature space; see [6] for details.

3.2.1. Type-I KLMS: concentrating the novelty

The first type of KLMS algorithm updates only one coeffi-

cient in order to compensate for the prediction error, at each

time step. When the weight vector is allowed to grow, this

update takes the form

α
(I)
t+1 =

[

αt

ηet+1

]

, (9)

in which et+1 = yt+1 − ŷt+1 is the instantaneous error.

Eq. (9) represents the basic update of what is known as

the KLMS algorithm, proposed in [7]. In order to avoid the

infinite growth of αt, a more sophisticated version of this

algorithm was presented in [9], known as Quantized Kernel

Least Mean Square (QKLMS). When QKLMS receives a da-

tum similar to a previously seen datum, for instance the i-th
base it has stored, it does not expand αt but instead updates

the corresponding weight αi.

3.2.2. Type-II KLMS: spreading the novelty

A different strategy consists in updating all coefficients of αt

in each iteration. This approach is followed for instance by

the Kernel Normalized Least Mean Square (KNLMS) algo-

rithm [8], whose update reads

α
(II)
t+1 =

[

αt

0

]

+ η
et+1

ǫ+ k2t+1 + ‖kt+1‖2

[

kt+1

kt+1

]

(10)

when αt is allowed to grow. Note that the rule (10) updates

all coefficients in each iteration. In order to avoid unbounded

growth, KNLMS follows a coherence criterion that promotes

sparsity.

4. FROM ONLINE GP TO KLMS

The update of the KLMS kernel weights, αt, can be obtained

in terms of the online GP’s predictive mean, µt, by elaborat-

ing αt+1 = Qt+1µt+1, which results in

αt+1 =

[

αt

0

]

+
et+1

σ̂2
yt+1

[

(QtΣtQt −Qt)kt+1

1

]

. (11)

Comparison of Eq. (11) with Eqs. (9) and (10) indicates that,

in order to obtain a KLMS-like update rule, the covarianceΣt

is to be replaced by the following parametric model:

Σt = Kt (βKt + I) , (12)

which implies

QtΣtQt −Qt = βI. (13)

This substitution indicates that, instead of Eq. (2b), the fol-

lowing predictive variance is assumed

σ̂2
ft+1 = kt+1 + β‖kt+1‖

2. (14)



The update of the predictive mean, Eq. (11), then simplifies

to an expression that does not contain Σt nor Qt,

α
β
t+1 =

[

αt

0

]

+
et+1

σ2
n + kt+1 + β‖kt+1‖2

[

βkt+1

1

]

. (15)

The update rule of Eq. (15) has linear complexity with respect

to the number of processed data points, t+ 1.

4.1. Specific cases: β = 0 and β = 1

Setting β = 0 in Eq. (15) yields the update rule

α
β=0
t+1 =

[

αt
1

σ2
n
+kt+1

et+1

]

. (16)

This rule is very similar to the KLMS update (9), and even

identical when the learning rate is set to η = 1/(σ2
n + kt+1).

Note, furthermore, that β = 0 indicates that the posterior co-

variance from Eq. (12) reduces to

Σ
β=0
t = Kt. (17)

In other words, for β = 0 we obtain a KLMS model that

implies a fixed posterior covariance, equal to the prior covari-

ance. The predictive variance, Eq. (14), simplifies to

σ̂2
ft+1|

β=0 = kt+1. (18)

Under the adopted framework, this is the model that underlies

algorithms such as KLMS from [7] and QKLMS from [9].

By setting β = 1 in Eq. (15), the update rule becomes

α
β=1
t+1 =

[

αt

0

]

+
et+1

σ2
n + kt+1 + ‖kt+1‖2

[

kt+1

1

]

(19)

which is very similar to the update of KNLMS, shown in

Eq. (10). The implied posterior covariance then reads

Σ
β=1
t = KtKt +Kt, (20)

and the predictive covariance from Eq. (14) now becomes

σ̂2
ft+1|

β=1 = kt+1 + k
⊤

t+1kt+1. (21)

Interestingly, this KLMS model implies a predictive covari-

ance, for each point in space, that is larger than the prior co-

variance kt+1. Furthermore, a closer inspection of the second

term in Eq. (21) shows that the predictive variance grows as

more training data is processed. According to the GP frame-

work, this is the model that underlies type-II KLMS algo-

rithms, in particular KNLMS from [8], for which β = 1, and

in general any algorithm that corresponds to β > 0.

As seen through the adopted probabilistic perspective, the

capability of Type-II KLMS algorithms to update all coeffi-

cients with each new data point is related to an increase in

prediction uncertainty. These effects are illustrated in Fig.

1, which compares the interpreted predictive uncertainty for
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Fig. 1. Comparison of the predictive variance of three al-

gorithms, for 3 data points (top plot, data is marked as blue

crosses), 8 data points (middle), and 25 data points (bot-

tom). The predictive mean of GP regression is indicated as

the black curve that passes through the observations. The grey

zone marks the GP mean plus/minus two standard deviations

σ̂y , corresponding to the GP’s 95% confidence interval. The

dashed line marks the confidence interval for type-I KLMS

(β = 0), and the dash-dot line marks the confidence interval

for type-II KLMS with β = 1.

the different algorithms. GP regression exhibits the expected

behavior, i.e. uncertainty shrinks around the observed data

points. Type-I KLMS (β = 0) assumes a fixed predictive co-

variance, regardless of the number of observed data and the

distances between them. The behavior of type-II KLMS (for

instance with β = 1) is rather counterintuitive: its update pro-

cedure increases the predictive variance as more data points

are observed, and this happens in the neighborhoods of those

points. While an in-depth study is needed to extract solid

conclusions from this observation, it is interesting to note that

a similar behavior has been observed in the linear recursive

least squares (RLS) algorithm with forgetting factor, see [11].
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Fig. 2. Performance comparison for online prediction on the

KIN40K benchmark regression problem.

5. EXPERIMENTS

We illustrate the relationship between the discussed algo-

rithms through a set of numerical experiments. We used the

Matlab implementations found in the KAFBOX toolbox [18].

The code for these experiments is available at http://

gtas.unican.es/people/steven.

5.1. Online regression on stationary data

In the first experiment, we wish to study the effect of different

values of β in the KLMS algorithm from Eq. (15), which we

will denote by β-KLMS. We evaluate this algorithm and three

established kernel adaptive filtering algorithms on the station-

ary KIN40K benchmark.2 This data set is obtained from the

forward kinematics of an 8-link all-revolute robot arm, and it

represents a very difficult regression problem. We randomly

select 5000 data points for online training, and 5000 points

for testing the regression.

The algorithms are considered in their evergrowing ver-

sion here, in order to highlight only the influence of β. The

KRLS-T algorithm, however, which implements the full on-

line GP regression, is given a limited memory of 500 bases,

for computational reasons. A Gaussian kernel was used for

all algorithms, with parameters determined offline by stan-

dard GP regression, as detailed in [11].

The results are shown in Fig. 2. Each point of the learn-

ing curves corresponds to the test error on the entire test set.

We observe that for β = 1, the β-KLMS algorithm obtains

similar performance to KNLMS from [8]. For β = 0, the

performance is almost identical to that of KLMS from [7].

2Available at http://www.cs.toronto.edu/˜delve/data/

datasets.html
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Fig. 3. Performance comparison for online prediction on a

nonlinear channel with an abrupt change.

5.2. Online prediction of time series with a model switch

In Fig. 3 we repeat a standard experiment from the kernel

adaptive filtering literature. In particular, we consider a non-

linear system comprised of a linear channel followed by a

nonlinearity, and the online regression task consists in pre-

dicting the next sample of the time series produced at its out-

put. An abrupt change in the linear channel is triggered after

500 time steps, in order to test the algorithms’ ability to re-

converge. The experiment is repeated 5 times with random

channel coefficients, and the average results are shown in Fig.

3. The same kernel was used for each algorithm.

In this experiment we observe that, as is usual in the LMS

and KLMS literature, the β-KLMS model exhibits tracking

behavior although it is based on a static data model. Further-

more, it does so without the need of including an additional

parameter to control the update step size.

6. CONCLUSIONS

We studied the connections between online GP regression and

KLMS, from a probabilistic perspective. We proposed a para-

metric model for fixing the posterior covariance that, when

plugged into the update equations for online GP regression,

yields the well-known equations of several KLMS algorithms.

This approach allowed us to analyze the way in which KLMS

algorithms implicitly handle uncertainty.

We furthermore categorized existing KLMS algorithms

into two classes, depending on which coefficients they update

during online operation: Type-I KLMS algorithms concen-

trate all novelty into a single coefficient, while type-II algo-

rithms spread the novelty over many coefficients. According

to the adopted probabilistic perspective, the former fixes its

uncertainty regarding new data while the uncertainty of the

latter grows as more data are processed.

Finally, while the proposed parametric model shows inter-

esting features as a KLMS algorithm, it has several aspects,

http://gtas.unican.es/people/steven
http://gtas.unican.es/people/steven
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html


such as the appropriate choice of the β parameter, that require

a further analysis. Furthermore, the use of GPs as models for

kernel adaptive filters could open the door to more sophisti-

cated low-complexity algorithms, for instance by considering

pseudo-inputs [19].
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[8] Cédric Richard, José Carlos M. Bermudez, and Paul

Honeine, “Online prediction of time series data with

kernels,” IEEE Transactions on Signal Processing, vol.

57, no. 3, pp. 1058–1067, Mar. 2009.

[9] Badong Chen, Songlin Zhao, Pingping Zhu, and José C.
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