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ABSTRACT

Traditional acoustic echo cancelers use a linear model to represent

the echo path. Nevertheless, many consumer devices include loud-

speakers and audio power amplifiers that may generate significant

nonlinear distortions, creating the need for acoustic echo cancelers to

produce a nonlinear filter response. To address this issue, we propose

a nonlinear acoustic echo cancellation algorithm based on the frame-

work of kernel methods. We model the echo path as a Hammerstein

system, and we propose a resource-efficient strategy to identify the

nonlinear and linear parts. While the basic algorithm is presented as

an iterative batch method, we show that a simple extension allows

it to be used in online scenarios as well. Results for both types of

scenarios show that the algorithm produces good results on a system

with a clipping nonlinearity and a realistic room impulse response.

Index Terms— acoustic echo cancellation, nonlinear distor-

tions, kernel methods, Hammerstein systems

1. INTRODUCTION AND PROBLEM STATEMENT

The widespread utilization of smartphones, laptops and other de-

vices has modified the conception of today’s communication sys-

tems, considering hands-free operation and mobility a must. In order

to avoid acoustic echoes that may turn the communication uncom-

fortable, teleconferencing and videoconferencing applications used

on these devices include an acoustic echo canceler (AEC) [1].

Fig. 1 describes a general setup of the acoustic echo cancella-

tion problem. We have access to the speech or audio signal x(n),
which is generated by the far-end user and fed into the loudspeaker.

The microphone outputs a signal d(n) = yh(n) + e0(n) where

yh(n) = x(n) ∗ h(n) is the echo signal to be canceled, h(n) rep-

resents the impulse response that describes the echo path, ∗ denotes

convolution and e0(n) is the background noise at the microphone

position. The goal of the AEC is to estimate a copy of such echo

signal, denoted as y(n), seeking to minimize the power of the can-

cellation error e(n) = d(n) − y(n) = yh(n) − y(n) + e0(n) to

avoid that the far-end user receives a delayed and modified version

of his/her voice x(n). Since the echo path h(n) depends highly

on different factors that affect the acoustic propagation in the room

and that can vary with time (such as the position of the microphone,

loudspeaker, objects in the room and temperature), AECs include an

adaptive filter as a key component to adaptively cancel the echo.
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Fig. 1. General setup of the acoustic echo cancellation problem.

Fig. 2. Block diagram of the systems involved in the echo path,

where the main sources of nonlinear distortion (the audio power am-

plifier and the loudspeaker) have been blue-highlighted.

However, the aforementioned devices usually include low-cost

loudspeakers with amplifiers driven at high power levels, which

cause non-negligible and easily perceived nonlinear distortions.

Traditional AECs are based on linear adaptive filters, which rely

on the assumption of a purely linear echo path. In the presence of

nonlinear distortions these linear AECs provide insufficient cancel-

lation, and they should be extended to include nonlinear models that

enable them to eliminate the nonlinear distortions [2–4].

Fig. 2 represents a block diagram of an echo path including

the typical electroacoustic chain: Digital-to-analog converter, power

amplifier and loudspeaker at the emitter side; acoustic propagation

in the room with room impulse response (RIR) hRIR(n); and micro-

phone and analog-to-digital converter at the receptor side. Though

all of these elements are potential sources of nonlinearities (except-

ing the acoustic propagation denoted as hRIR(n) that is linear in na-

ture), the most important nonlinear distortions are caused by the ac-

tion of the loudspeaker and the power amplifier.

Many techniques have been proposed in the literature on non-

linear acoustic echo cancelation (NAEC). One of the most popu-

lar approaches in the last years is based on adaptive Volterra filters

(VFs) [5–7]. However, the very high computational cost associated



with the operation of VFs limits its use only to cases where the order

of the nonlinearity is quadratic or cubic at most [8, 9]. Some recent

improvements that lower the computational complexity of the basic

VF scheme can be found in [3, 10].

In addition to VFs, several different structures have been pro-

posed to model nonlinear distortions, such as even mirror Fourier

nonlinear filters [11], block-based Wiener-Hammerstein models [12,

13], functional link adaptive filters [14], and nonlinear transforma-

tions based on different curves such as polynomial saturation curves

[15], sigmoid functions [16], and spline functions [17].

More recently, kernel methods [18] have had considerable suc-

cess in nonlinear signal processing. Nevertheless, they have not yet

been applied widely to real-time applications such as NAEC, mainly

due to the challenges present in designing online and adaptive ker-

nel algorithms. In particular, kernel methods typically have compu-

tational requirements that exceed the budget of real-time implemen-

tations [19], and online kernel methods require to include specific

mechanisms to avoid that their computational requirements grow un-

boundedly during operation [20]. An online kernel-based NAEC

was recently proposed in [21]. It modeled the acoustic echo path

as a black-box input-output system, for which it used a specifically

tuned kernel with a linear and a nonlinear part, and to maintain its

computational complexity fixed it used a sliding-window strategy.

In this paper we follow a different kernel-based approach. We

model the echo path as a Hammerstein system, which is motivated

by Fig. 2, and we design a kernel-based identification algorithm for

this model. By using a Hammerstein model we take away some

of the flexibility that exists in black-box approaches, which in turn

allows us to learn the input-output relationship with far fewer data

and therefore less computational resources.

The rest of the paper is organized as follows: Section 2 includes

a detailed explanation of the proposed Hammerstein system identifi-

cation algorithm based on kernel methods, which will be experimen-

tally assessed in Section 3 in a typical nonlinear acoustic echo can-

cellation scenario. Section 4 contains the conclusions of this work

as well as an advance of the future research lines.

2. KERNEL-BASED IDENTIFICATION OF

HAMMERSTEIN SYSTEMS

We will model both parts of the Hammerstein system separately:

For the nonlinear part we use a regression technique based on kernel

methods, and for the linear part we employ standard filtering theory.

The proposed algorithm aims to learn both representations jointly.

2.1. Kernel methods and ridge regression

Kernel methods are based on a nonlinear transformation of the input

data x, scalars in our case, into a high-dimensional feature space,

in which it is more likely that the transformed data Φ(x) are lin-

early separable. Due to its high dimensionality, however, it is im-

practical to perform explicit calculations in feature space. Never-

theless, inner products in this space can be calculated by using a

positive definite kernel function satisfying Mercer’s condition [22]:

κ(x, x′) = 〈Φ(x),Φ(x′)〉. This idea, known as the “kernel trick”,

allows to perform inner-product based algorithms implicitly in fea-

ture space by replacing all inner products with kernels in the input

space. A commonly used kernel function is the Gaussian kernel

κ(x, x′) = exp(−|x− x′|2/2σ2), (1)

where σ is the kernel width.

Given a set of N input-output data pairs {x(n), d(n)}Nn=1, the

technique of kernel ridge regression (KRR) [23] aims to obtain the

projection w that minimizes the cost function

JKRR =

N
∑

n=1

|d(n) −Φ(x(n))⊤w|2 + cw⊤
w, (2)

where c is a Tikhonov regularization constant. Since w lies in the

high-dimensional feature space, it is impractical to calculate explic-

itly. Fortunately, the Representer Theorem [18] states that w can be

expressed as a linear combination of the transformed training data

Φ(x(n)), which, in turn, allows to employ the kernel trick.

In order to reduce the complexity of the method we will use only

a subset of all training data to represent w, specifically

w =

M
∑

m=1

αmΦ(xs

m), (3)

and we will refer to the chosen points xs

m as the support points. If

all training data are used for the support, i.e., M = N , the obtained

solution is optimal. For M < N an approximation to the optimal w

is obtained. Based on Eq. (3) and the kernel trick, the output of the

estimated nonlinear function for a test input x′ becomes

f(x′) = Φ(x′)⊤w =
M
∑

m=1

κ(x′, xs

m)αm, (4)

By substituting (3) in (2) and adopting a matrix notation, the cost

function (2) reads

JKRR = ‖d−Kα‖2 + cα⊤
Ksα, (5)

where K is the kernel matrix with elements Knm = κ(x(n), xs

m),
d = [d(1), d(2), . . . , d(N)]⊤ contains the stacked output data, α =
[α1, α2, . . . , αM ]⊤, and Ks is the M ×M kernel matrix calculated

only for the support points. The solution is obtained as

α = (K⊤
K+ cKs)

−1
K

⊤
d. (6)

2.2. Batch identification algorithm

As motivated in Section 1, we model the observed echo path as a

Hammerstein system, i.e., a cascade of a nonlinearity and a linear

filter. The output of the microphone then becomes

d(n) = h(n) ∗ f(x(n)) + e0(n), (7)

where h(n) is the linear impulse response, including the impulse

response of the echo path hRIR(n) and other linear parts, and f(·)
represents the nonlinear distortion. In order to identify both parts of

the system, we propose to minimize the following KRR-based cost

function:

J = ‖d− h ∗Kα‖2 + cαα
⊤
Ksα+ chh

⊤
h, (8)

with respect to α and h. Here, d = [d(1), . . . , d(N)]⊤, h =
[h(1), . . . , h(L)]⊤, and the operator ∗ refers to the convolution of

h on the columns of K. In contrast to the previously introduced for-

mulations, this cost function does not have a closed form solution.

Nevertheless, if an estimate of the linear coefficients, ĥ, were avail-

able, it would be possible to obtain the corresponding coefficients α̂

in closed form. In this case, the last term can be discarded as it does

not affect the minimization, and the cost function reduces to

Jα = ‖d−Khα̂‖2 + cαα̂
⊤
Ksα̂, (9)



Algorithm 1 Kernel-based identification of Hammerstein systems

(KIHAM)

Initialize ĥ through Eq. (14)

while J not converged do

Update Kh, and update α̂ through Eq. (10)

Update Kα and ĥ through Eq. (12) and Eq. (13)

end while

Output: α̂ and ĥ

where Kh = ĥ ∗K. The solution is given by

α̂ = (K⊤
h Kh + cαKs)

−1
K

⊤
h d. (10)

In turn, if an estimate α̂ were available, then ĥ could be obtained in

a similar fashion from Eq. (8). The cost function now reduces to

Jh = ‖d−Kαĥ‖
2 + ch‖ĥ‖

2, (11)

where Kα is an N×L matrix that contains the elements of the vector

kα = Kα̂ on its columns,

Kα =











kα(1) 0 . . . 0
kα(2) kα(1) . . . 0

..

.
..
.

. . .
..
.

kα(N) kα(N − 1) . . . kα(N − L+ 1)











. (12)

The solution is obtained as

ĥ = (K⊤
αKα + chI)

−1
K

⊤
αd. (13)

This suggests an iterative algorithm that alternates between up-

dating estimates of the linear channels h and the coefficients α of

the nonlinearity. Convergence is guaranteed because each update

may either decrease or maintain the cost function Eq. (8). The algo-

rithm is summarized in Alg. 1. Initialization may be performed by

setting the coefficients h to their linear solution,

ĥ = (X⊤
X+ chI)

−1
X

⊤
d, (14)

where X contains time-embedded vectors of the data x(n), stacked

as rows. A Matlab implementation of this algorithm is available at

http://gtas.unican.es/people/steven.

2.3. Online strategy

We propose a simple extension of the batch algorithm for applica-

tion in online and adaptive scenarios. The main source of nonsta-

tionarity in the echo path is the acoustic propagation described by

the RIR, which is comprised in the linear part of the Hammerstein

system model. The nonlinear distortions show only very small and

very slow changes that may typically be discarded. Therefore, once

the nonlinearity has been estimated satisfactorily using the batch al-

gorithm, it is reasonable to perform tracking only on the linear part.

The outline of the online strategy is as follows:

1. Start performing AEC by a standard linear adaptive filter on

x(n) and d(n), obtaining the linear filter ĥ(n).

2. At the same time, fill a buffer with x(n) and d(n).

3. When the buffer is filled with Nb input and output data, apply

the batch algorithm to obtain α̂(n) and a new estimate of the

linear filter, ĥ(n), which replaces the current estimate.

4. Continue adapting the linear filter, now using input f(x(n)),
calculated through Eq. (4), and output d(n).

The nonlinearity can be re-estimated periodically if significant vari-

ations in its response are expected.
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Fig. 3. Input vs. output of the nonlinear distortion, and input vs.

estimated output, in the offline experiment. Note that the true values

of the output are not directly observed.
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Fig. 4. True and estimated impulse response coefficients of the RIR,

in the offline experiment. A zoom from tap 200 to 400 is included.

3. EXPERIMENTAL EVALUATION

We now assess the capabilities of the proposed scheme in a typical

nonlinear echo cancellation scenario. To this end, we consider a

setup where the main source of nonlinearity is due to the clipping of

the power amplifier. The used clipping function is shown in Fig. 3.

The signal x(n) that is fed into the amplifier is generated as USASI

noise with a speech-like spectrum [24]. The room impulse response

that describes the acoustic propagation hRIR(n) has been measured

in a typical office and has been limited to 512 taps (considering a

sampling frequency of 8 kHz). Background noise e0(n) is generated

as zero-mean white noise, uncorrelated with x(n), and its variance is

set to obtain a signal to noise ratio of 30 dB at microphone location.

The figure of merit employed to measure the behavior of the al-

gorithms is the echo return loss enhancement, expressed in decibels

and defined as

ERLE(n) := 10 · log
10

E
{

d2(n)
}

E {e2(n)}
. (15)

We evaluate the performance of the proposed algorithm consid-

ering an offline and an online scenario.

3.1. Offline cancellation

In the offline scenario we consider that N = 2048 data pairs

{x(n), d(n)}Nn=1 are available. To these data we apply the proposed

KIHAM algorithm, as described in Alg. 1, with a Gaussian kernel.

We choose the number of support points to be M = 50, and we

place them equally spaced over the range of the input data, resulting
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Fig. 5. Online ERLE performance of the proposed method (“KIHAM”, considering buffer lengths of 756, 1024 and 2048), compared to a

linear NLMS filter, a quadratic VF (“VF2”) and an ad-hoc designed cubic VF (“VF3”).

in a separation of 0.14. The kernel width is chosen as σ = 0.25, in

line with rules of thumb from kernel density estimation [25]. The

regularization constants are set to cα = 10−2 and ch = 1.

The offline algorithm converges after 6 iterations, in this sce-

nario. Figs. 3 and 4 display the estimated nonlinearity and linear

channel, which match the true values very well.

3.2. Online cancellation

We now apply the proposed algorithm to an online setup during 20
seconds, at a sampling frequency of 8 kHz. An abrupt change in

the RIR is triggered after 10 seconds, in order to assess the algo-

rithm’s ability to reconverge. The parameters of the algorithm are

kept the same as in the previous experiment, except for the buffer

length, which is set to 768, 1024 and 2048 in three separate tests.

For the adaptive part of the algorithm, we use a normalized least-

mean squares (NLMS) filter with step size µ = 1.

In addition, we include the results obtained by a purely linear

NLMS filter with µ = 1, and by a VF with linear and quadratic ker-

nels that adapt with µL = 1 and µNL = 0.3, respectively, following

the Separate NLMS (SNLMS) algorithm [26]. For a fair compari-

son, only coefficients on the main diagonal of the quadratic kernel

are updated, since we assume it is known that the nonlinearity pro-

duced by the clipping has no memory. We have also applied the

scheme of [21] to this scenario, though our preliminary results are

not significantly better than the linear filter, and therefore we have

not included them in the comparison. This may be due to the non-

linearity of the distortion in our scenario, which seems particularly

hard to identify.

Fig. 5 compares the results obtained by all algorithms, averaged

out over 50 independent realizations of the experiment. The online

configuration of the proposed KIHAM algorithm obtains a proper

performance, reaching higher ERLE levels when the buffer length

increases. The linear NLMS filter produces fairly bad results for ob-

vious reasons. The result obtained by the VF filter (“VF2”) could

seem surprising (it behaves slightly worse than the linear filter), al-

though it coincides with that shown in [27]. The reason of this be-

havior is because the clipping operation in audio amplifiers only pro-

duces odd harmonics [28] and the VF is limited to identify nonlin-

earities of second order. This can be demonstrated by evaluating the

performance of a VF that has been designed ad-hoc considering only

linear and cubic kernels (again with only coefficients in the main di-

agonal for the case of the third-order kernel). As shown in Fig. 5

this ad-hoc VF (“VF3”) reaches a higher ERLE than that of both the

quadratic VF and the NLMS filter, but its convergence is slower than

the other algorithms.

We have also carried out additional experiments considering

harder clippings that give rise to larger levels of nonlinear distortion.

First results indicate that the proposed method maintains its perfor-

mance reasonably well, while the behavior of the other evaluated

schemes degrades quickly.

4. CONCLUSIONS AND FUTURE WORK

We have presented a novel kernel-based nonlinear acoustic echo can-

celer that models the echo path as a Hammerstein system. This

model assumes that the nonlinear distortion is caused mainly by the

clipping operation of the audio power amplifier and behavior of the

loudspeaker. The proposed algorithm jointly learns a kernel-based

representation to identify the nonlinearity of the Hammerstein sys-

tem and a linear filter to model the linear channel.

We described two different implementations of the algorithm: a

batch scheme and an online configuration. The batch algorithm iter-

ates between updating the nonlinearity and the linear filter until con-

vergence is reached. The online strategy extends this scheme with an

adaptive linear filter to update the time-varying linear channel. Ex-

periments show that the batch algorithm is capable of satisfactorily

identifying both the nonlinearity and the linear channel of the Ham-

merstein echo path, and the online version allows to adapt the model

correctly in time-varying scenarios. The quality of the solution im-

proves as more data is used for the estimation of the nonlinearity.

Future research will focus on the implementation of a fully on-

line version that updates the nonlinearity in an online manner, in-

cluding while it is filling its buffer. In addition, we will evaluate

the performance of our proposal considering other scenarios, such

as nonlinear distortions with memory.
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Corrigendum

In the published version of this paper, a factor 1

2
was present in the

cost functions (2), (5) ,(8), (9), and (11), though it was not taken into

account for further calculations. We have left this factor out.


