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1. Introduction

The design of microwave and millimeter-wave circuits
and the increasing integration of hybrid and monolithic
circuits has reinforced the need of accurate large and
small-signal device models to improve the performance of
these circuits and to minimize the number of design and
fabrication steps required. Therefore, it is very important
for efficient CAD tools to have good modeling
approaches able to predict the small and large-signal
nonlinear dynamic behavior of GaAs devices, such as
metal semiconductor field effect transistor (MESFET), or
high electron mobility transistor (HEMT).

Conventional nonlinear techniques applied to device
modeling, such as closed-form equations [1,2], Volterra
series [3], or the use of look-up tables [4], are difficult to
implement in commercial simulators because of their high
memory requirements or their computational burden.

Recently, some attempts have been made to model the
nonlinear behavior of active devices and circuits by using
neural networks [5,6]. Neural networks have the

capability of approximating any nonlinear function and
the ability to learn from experimental data; therefore, they
are good candidates to solve device-modeling problems.
However, practically all these neural approaches only
consider the use of the Multilayer Perceptron (MLP) and,
in this case, the memory requirements to give a good
approximation, and the computational requirements to
carry out the training of the network are high.

In order to avoid these problems we have proposed
two models: the Generalized Radial Basis Functions
(GRBF) network [7], for small-signal modeling, and the
Smoothed Piecewise Linear (SPWL) model [8] for large-
signal regimes. Both models require a low number of
parameters and, at the same time, their computational
requirements to train the models are lower than those of
the above mentioned methods (including the MLP).

The paper is organized as follows. In Section 2 the
problem of modeling microwave transistors is stated. In
Section 3 the GRBF and SPWL models are described. In
Section 4 the main results obtained are presented, and in
Section 5 a global model is proposed, which characterize
the whole device behavior. Finally, in Section 6, the main
conclusions are exposed.

2. Modeling of MESFET and HEMT transistors

In this section we state the problems encountered when
modeling microwave devices such as MESFET or HEMT
transistors. Generally, to model a transistor there are two
clearly different kinds of regimes, the large and the small-
signal regimes, which usually are modeled separately.

2.1. Small-signal modeling of transistors

In a MESFET or a HEMT, the predominant nonlinear
element is the drain-to-source current, �ds, which depends
on the drain-to-source, ,ds, and the gate-to-source, ,gs,
bias voltages. This dependence is denoted as the �-,
characteristic. As it is shown in [9], the �th-order



intermodulation output power varies fundamentally as the
square of the �th derivative of the �-,� characteristic.
Therefore, if we want to be able to model the small-signal
intermodulation behavior, our model must accurately fit
not only the nonlinear function but also its derivatives. In
particular, when we apply a small-signal RF input around
a bias point, the drain current �ds depends on the bias point
(,ds, ,gs) and on the instantaneous small-signal voltages
(�ds, �gs). We can approximate �ds by the following
truncated Taylor series expansion
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where �dso is the dc drain current and ("m, ... , "d3) are
coefficients related to the �th-order derivatives of the �-,
characteristic evaluated at the bias point. Therefore, after
obtaining a set of real measurements, our small-signal
modeling problem consists in fitting a function (model)
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� , which approximates the nonlinear

mapping from the input space of bias voltages,
),( gsds ,,=� , to the output space of model parameters

),,,,,,,,( d3md2m2dm3d2mdm2dsmdso """""""""(�
66

=� .

Once this model is available, the drain current will be
reconstructed by using the truncated Taylor series
expansion (1).

2.2. Large-signal modeling of transistors

The large signal behavior of MESFET or HEMT
transistors is governed by the nonlinear dynamic pulsed
�-,�characteristic that depends on the quiescent bias point
[10]. Therefore, in this case the drain current �ds depends
on the bias point ),( gsds ,,  and on the pulsed voltages

),( gsds �� applied over the bias point. Now, our large-signal

modeling problem consists in obtaining a function
14 : ℜ→ℜ

/6
� , which approximates the nonlinear

mapping from the input space of bias and pulsed voltages,
),,,( gsdsgsds ��,,=�  to the output space ds )( �

/6
=�� .

3. Proposed networks

In this section we describe the GRBF and SPWL
networks that we have proposed to solve the above
modeling problems.

3.1. Generalized Radial Basis Functions network

The Generalized Radial Basis Functions (GRBF)
network is an extension of the Radial Basis Functions
(RBF) network that relaxes the radial constraint for the

basis kernels allowing different variances for each
dimension of the input space. In that way it is possible to
reduce the number of required basis functions, and
therefore the number of parameters.To perform a general

0- ℜ→ℜ :� mapping, the k-th output of the GRBF
network is given by
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where � indexes the different GRBF units, �L�(,) = λLN��L(,)
and �L�(,) is the activation function of each unit
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where ,M is the j-th element of input vector ,.
The GRBF can be seen as a RBF network for which

the Euclidean norm is replaced by a weighted norm. To
show this, Eq (3) can be written as
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and �L�is a diagonal matrix given by
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Restricting this matrix to be diagonal, we are allowing
different variances along each input dimension, but we do
not allow the elliptic basis functions to rotate.

The basis functions are initialized by a variant of the
Orthogonal Least Squares (OLS) algorithm [11] which is
able to work with elliptical kernels. The error function to
be minimized is the quadratic error
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and the variances and the centers of the network are
adapted by using the following equations of the gradient
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where �� indexes the input patterns, � the output
dimensions, and �N(�S) and 
N(�S) are the desired output
and the network error respectively, of the �-th output
dimension for the �-th input pattern. With the centers and
variances fixed, the dependence with the λLN�parameters is



linear, and therefore its optimum values are easily
calculated by least-squares. This adaptation process is
iteratively repeated until a suitable error is reached.

3.2. Smoothed Piecewise Linear model

The Smoothed Piecewise Linear (SPWL) model is an
extension of the well-known Canonical Piecewise Linear
model proposed by Chua [12]. This model, as it is shown
in [13], can be seen as a neural network. Basically, the
model implements a general mapping 10! ℜ→ℜ�  as
follows

 ,  + +)(
1=

∑ −=
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L
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where�� and αL  are vectors of dimension �, D and��L are
vectors of dimension /, � is an /�×�� matrix, βL is scalar
and < , > denotes the inner product. The model divides the
input space into different regions by means of several
boundaries implemented by hyperplanes of dimension

1−�  (defined by the expression inside the absolute
value function), and it carries out the function
approximation by means of the combination of hinging
hyperplanes of dimension �, which are the result of
joining linear hyperplanes over the boundaries defined in
the input space. In any region the model is composed by a
linear combination of linear hyperplanes, and the
transitions at the boundaries are governed by the absolute
value function. Therefore, this model inherits some
properties from the absolute value function: it is
continuous but not derivable along the boundaries.
Moreover, the second and higher order derivatives are
zero except at the boundaries where they are
discontinuous.

To overcome this drawback, the SPWL model
substitutes the absolute value function for a smooth and
derivable function in order to smooth the transition at the
boundaries dividing the input space. Several possibilities
exist to smooth the absolute value function allowing, at
the same time, a parametric control of the “sharpness” of
the transition. We have proposed the following smoothing
function

) ) cosh( (ln 
1

 = �,( ..�
��                (11)

where γ is a parameter that allows to control the
smoothness of the transition. There are several reasons to
select this function. For instance, its derivatives do not
present overshootings unlike some other commonly used
smoothing functions (.tanh(.), for instance): this is a clear
advantage when we try to fit both a function and its
derivatives. In the other hand, the first derivative of (11)
is ) tanh(�,(’ ..�
� γ= , which is the activation function

of a universal approximator such as the MLP. Finally, the
proposed SPWL model is given by

 )( )(
1=

∑ γ−=
L

LLLL
((�
��00 ������� α (12)

The training of this network is carried out by means of
an optimization method equivalent to the proposed by
Chua for the Canonical Piecewise Linear model [12].

Let us consider that we want to approximate a
mapping ℜ→ℜ 0 using a set of / input-output samples
(�O(�O), �=1,...,/ with �O=(,1�O, ,2�O(   (�,M�O). Assuming that
αι,Μ 0≠ , we can eliminate one coefficient from each
boundary by rewriting <αL(�> - βL, as

( )
L000�L�L�LL

�,,�,�,�� +−+++= −− 112211 �� ����������(13)

where �L(�) denotes the �th boundary evaluated at �.
Finally, taking into account that �  and � in (7) are now a
vector �=(��,...,�0)7,  and a scalar 	, respectively; our
generic SPWL model, with θ  boundaries, can be written
as
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The model parameters can be grouped into two vectors: �S
grouping the coefficients associated to the linear
combination of components,

�S�	� ( )7
0


(
(�((�(	 θ�� 11 (15)

and �U, grouping the parameters defining the boundaries of
the domain space

�U = ( )70��0�� �(�(�(�((�((� θθθ ���� 1111111 −−         (16)

The error function to be minimized is given by
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The algorithm begins by fixing the initial location of
each partition boundary, i.e., the vector �U. Generally, they
are chosen randomly. Then, the approximation error
�(�S
�U) is a quadratic function of �S, and its minimum is
given by

( ) $\$$]
1−

= 7
S             (18)

where  ( )7
1

\��\ K1=\ , � is the following �0θ01×/
matrix, which can be partitioned as
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where � denotes a row of /� ones, 
 is an �×/ matrix
with elements, 

ML��
.� =ML , and �� is an θ×/ matrix with

elements ( )γ= ),(
MLM�L

��
�� � .



Once the optimal �S parameters (for a given initial �U
partition) are calculated, the algorithm estimates a new
optimal partition �U. This partition is found by calculating
the gradient � and the Hessian �, which specify the
optimal searching direction to modify��U according to

��1������ ���� �����(20)

The gradient, � and the Hessian � are given by

.*HJ 2= , (21)
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and � is the following matrix
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where �k
 are ��2×/� matrices with elements

))(tanh(
MNML�

N

M�L
�,� �γ= , and � is an θ×/� matrix with

elements ))(tanh(
MLM�L

�� �γ= .

The second term of (22) involves the second derivative
of the SPWL model, ( ))(sech2

OL
� � , which is a localized

function along the boundaries: only points close to the
boundaries contribute to this term. In practice, it has been
observed that a great computational saving (without any
noticeable degradation) can be achieved by dropping out
this term from the Hessian, that is, we use ����� 72= .

Once the search direction� (20) has been calculated, the
new boundaries are estimated as

��� α+=           (25)

where α = argmin(�(�S,�U+α�)). With this new partition
the process is repeated: the optimal coefficients �S are
calculated for these new boundaries, and then the optimal
partition is reestimated again, until a given error is
reached.

4. Results

In this section we present the results obtained with the
two networks described in the previous section,  and they
are compared with those provided by the Multilayer
Perceptron (MLP) network as an appropriate reference.
The three models have been used to model a NE72084
MESFET from experimental measurements. Moreover, a

brief study of the computational burden needed for the
models is also presented.

4.1. Small-Signal Results

For the small-signal model we dispose of a set of
measurements of the parameters included in the Taylor
series (3), ),,,,,,,,( d3md2m2dm3d2mdm2dsmdso """""""""(� ,

which compose the output of the small-signal model. In a
first approach we use an individual network to model
each output of this model. This approach leads to the
results presented in Table I. The accuracy of the models is
measured in terms of the signal to noise (SNR) ratio, in
dB, for each scalar output. It can be seen that the SPWL
and the GRBF model provide better results than the MLP
in almost all the functions to be modeled. However, there
is not a network that provides the best results globally.
This is due to the different nature of the basis functions of
each network. Depending on the shape of the function to
be modeled, a different basis function is more suitable.
Therefore, and obvious solution would be to use a mixed
model combining these two kind of networks, selecting
for each output the network providing the best results.
This solution, although provides good results, presents a
relatively high number of parameters to be implemented
in a simulator. In order to reduce the number of
parameters, a second approach consists in using a
common network to perform the whole mapping globally.
Table II presents the results obtained with such a solution.
It can be seen that, in this case, the SPWL model provides
globally the best results. These results are slightly lower
than those provided by the previous solution, but the
saving in the number of parameters is relevant. In general
terms, the second approach seems to be more reasonable
because of the economy of requirements to its
implementation in commercial simulators, but for some
specific applications that could require a very high
accuracy, the first approach can be employed.

4.2. Large-Signal Results

For the large-signal model, the results obtained using
the different neural models are shown in Table III. The
results presented correspond to solutions with a low
number of parameters to facilitate the implementation of
the solution in simulators. In this case, the SPWL model
clearly provides the best results. The GRBF network, on
the other hand, provides results similar to the MLP.



4.3. Computational Burden of the Models

Another interesting aspect to be considered is the
computational burden associated to each model. Here we
present a brief study of this cost presenting the training
time of each model. The simulations have been obtained
working with MATLAB  in a Pentium Celeron PC. The
SPWL model obtains the fastest training. To give an idea
of the training time differences,  for example, a mean
value of approximately 14 minutes is required for the
SPWL(12) to converge in the large signal model in order
to obtain the results presented in Table III. In the same
training conditions, the GRBF(7) requires roughly 32
minutes and the MLP(11) needs more than 1 hour and a
half. In the small signal modeling with a single network,
the SPWL(7) required a mean of 7 minutes, while the
GRBF(8) needed roughly 15 minutes, and the MLP(8) 47
minutes approximately. Therefore, with respect to the
computational burden, the SPWL network presents the

fastest training, and the GRBF is faster than the MLP
network. Moreover, it can be taken into account that all
these networks present the problem of local minima, and
several simulation have to be performed to obtain a
suitable solution, which increases the penalization for a
slow training.

5. Global Model Proposed

In the previous sections we have treated the problem of
modeling a transistor as it is usually faced: the large and
small-signal behaviors of the transistors are modeled
separately. We have obtained a model for each regime.
Therefore, one model must be selected in function of the
kind of regime in which the transistor will work.

In order to avoid this, we propose to use a single global
model to completely characterize the transistor behavior.
This model consists in a combination of the two best sub-
models previously obtained: one for the large-signal
regime, and other one for the small-signal regime. The
global model is performed weighting the outputs of the
two submodels in a reasonable way. The first and
simplest approach would be to define an appropriate
boundary between the large and the small signal regimes
and make a “hard” decision between the two sub-models.
A more elaborate alternative would be to implement a
smooth transition between the two regimes. In any case,
this kind of solution provides a single model that would
be able to adequately characterize the whole behavior of a
transistor. Fig. 1 shows a block diagram of this global
model.

Nparam �ds "d2 "d3 "ds "m1 "m2 "m2d "m3 "md "md2

MLP(6) 25x10 38.4 24.9 20.1 37.6 42.4 38.4 21.5 21.2 32.4 20.1
GRBF(5) 25x10 44.3 29.1 21.5 38.8 43.7 34.3 22.2 25.2 34.3 22.2
SPWL(6) 22x10 45.4 28.8 19.8 43.3 46.5 36.7 22.7 23.0 35.2 19.9

Model Parameters SNR

MLP (5) 31 24.60 dB
GRBF (4) 36 24.95 dB
SPWL (5) 31 28.70 dB
MLP (9) 55 26.44 dB
GRBF (6) 54 27.55 dB
SPWL (10) 56 31.58 dB
MLP (11) 67 27.36 dB
GRBF (7) 63 28.00 dB
SPWL (12) 66 32.67 dB

Npar �ds "d2 "d3 "ds "m1 "m2 "m2d "m3 "md "md2

MLP(8) 114 29.8 17.9 17.7 34.0 36.2 29.0 20.2 19.6 24.6 17.6
GRBF(8) 114 29.7 17.5 18.5 30.4 31.0 26.2 22.4 22.0 24.2 18.9
SPWL(7) 115 36.1 17.6 17.6 33.6 39.6 27.1 20.4 17.8 29.1 18.5
MLP(11) 153 30.9 22.8 19.2 34.6 37.9 29.0 23.2 21.4 25.8 18.4
GRBF(11) 154 32.2 19.4 19.7 33.7 36.0 31.2 23.5 23.0 29.1 21.5
SPWL(10) 151 42.3 27.6 18.8 41.2 41.6 31.7 22.3 21.0 32.1 22.0

Table I: Small-signal results using individual networks for
each output. The number between parentheses indicates the

number of basis functions employed for each model

Table II: Small-signal results for a single network.

Table III: Large-Signal results



6. Conclusions

In this paper we have presented a comparative study of
several neural networks solutions for the large and small
signal modeling of MESFET and HEMT transistors.

For the large-signal behavior, the SPWL model
provides clearly the best results. For the small-signal
regime, when using a single network, the SPWL model
provides also the best solution globally. But when a very
high accuracy is needed, the option of a mixed model,
using independent SPWL and the GRBF networks for
each output, can be employed, with the price of a higher
number of parameters.

Relative to the computational burden, the SPWL has
shown to be the more economic network, and the GRBF
network, in any case, requires a lower computational
burden than the MLP.

Finally, we have proposed a global model combining
in a simple way the sub-models obtained for both the
large and small-signal regimes. This model allows a
whole characterization of the device, avoiding the need of
working with several models for the same device.
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