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Abstract—The recently developed Multi-Channel Factor Anal-
ysis (MFA) is a method for extracting a latent low-dimensional
signal that is present across multiple channels and corrupted by
unobserved single-channel interference and idiosyncratic noise. In
MFA, only the channel structure and dimensionality of the signal
and interference subspaces are specified in advance, which raises
the concern that the signal, interference, and noise covariances
may not be uniquely determined by the observation model. This
paper presents necessary and sufficient conditions on the channel
sizes and subspace dimensions to guarantee the identifiability
of MFA, ensuring that the second-order spatial properties of
the latent components can, in principle, be recovered from the
multi-channel observations.

Index Terms—factor analysis (FA), identifiability, multi-channel
factor analysis (MFA)

I. INTRODUCTION

The aim of Factor Analysis (FA) is to obtain a parsimo-
nious model for the second-order properties of a multivariate
observation. The observation is represented as the sum of a
signal, which lives in an unknown low-dimensional subspace,
and idiosyncratic noise. Classical or single-channel exploratory
Factor Analysis (FA) was originally developed in the field
of psychometrics [1], and is now a widely used technique in
multivariate data analysis. In array processing, FA is frequently
used to analyze the output of uncalibrated systems where the
noise variance is anisotropic and unknown [2]-[4].

Of central import to this paper, the recently developed
method of Multi-Channel Factor Analysis (MFA) [5] extends
FA to the multi-channel and multi-sensor setting, to allow for
the presence of channel-specific interference. Similarly to the
signal, the channel-specific interferences also live in unknown
low-dimensional subspaces, but those subspaces are constrained
to lie within the observation spaces for the individual channels.
In this fashion, the signal, which has multi-channel effects, can
be distinguished from interference, which separately affects
distinct channels, as well as idiosyncratic noise. MFA has
significant utility for detection and estimation of a weak signal
which presents across multiple channels in the presence of
channel-specific interference, which is a problem encountered
in array processing [6]—[8].
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However, to ensure that the second-order model obtained
from MFA can be meaningfully interpreted, the decomposition
into signal, interference, and noise must be unique. Further,
it should be possible to give guarantees for the uniqueness
of the MFA decomposition using only the channel structure
of the observations and the dimensionality of the signal and
interference vectors. The problem of the identifiability of MFA
is that of obtaining such guarantees.

This work presents conditions on the channel sizes and factor
numbers which certify the identifiability of MFA, thus allowing
for application of MFA to multi-channel signal processing
problems without concerns of non-interpretability.

A. Notation

Matrices and vectors are denoted by bold-face uppercase
and lowercase symbols respectively, while scalars are denoted
with light-face symbols. The zero matrix of size n X m is Oy, p,,
while the zero vector of size n is 0,,. The identity matrix of
size n x n is I,,. For the matrix D, DT is its transpose. The
space of real diagonal matrices of size n x n is Diag(n), with
Diag~(n) being the subset with non-negative diagonal entries.
The set of positive semidefinite matrices of size n is PSD(n).
The operator blkdiag applied to a list of matrices constructs
the block-diagonal matrix with said matrices as the on-diagonal
blocks. The expectation of a random quantity s is E/s]|. The
non-negative part of a scalar a € R is (a)+ = max{a,0}.

II. MODEL

Consider an array of C' potentially heterogeneous sensors,
each of which produces a real vector-valued observation. The
cth sensor provides the observation vector x. € R™, which
is composed of n. scalar measurements. To jointly analyze
the multi-sensor data, the observation vectors x1,...,X¢c are
taken to belong to distinct channels sensing a common source.

A. Observation Model

To model the channel-c observation x., three latent vectors
are defined, namely the signal s., interference i., and noise



u., which are specific to channel ¢ and are of size n.. The
channel-c observation is then synthesized as the sum,

Xc:Sc+ic+uC' (])

The signal s is as the expression of the shared source within
channel ¢, while i, is channel-c-specific influences which are
not confined to individual scalar inputs in that channel. The
idiosyncratic noise u. is then the remaining influences which
are particular to individual scalar measurements.

To allow for this parsing of the C' observations, the
observations for the individual channels are stacked vertically
into the all-channel observation as x = [x] ... x}|T. The
all-channel signal, interference, and noise vectors s, i, and u
are similarly obtained by stacking. The total number of scalar
inputs is n = ZCC:1 n., and the channel sizes are combined
into the length-C integer vector n = [n1,...,n.]". So, x,s,1i
and u are vectors in R".

The signal s is assumed to lie within some subspace of R",
of which only the dimension g < n. is known. Therefore,
s can be written as s = Af for some A € R"*" and f €
R™, where the range of A is the signal subspace and f is
a vector of latent factors which are common across channels.
The n X rg common factor loading matrix A can be written as
A =[A] ... AL]T, where the n. x 7o submatrix A contains
the rows of A corresponding to x. within the stacked x. So,
the channel-c signal s, = A f is then the sensing of the shared
input f in channel ¢, with A controlling how f is sensed.

In contrast, the channel-c interference component i. is
assumed to lie within an unknown dimension-r. subspace
of the channel-c observation space. That is, i. can be written
as i, = B.g. for some B, € R"*" whose range is the
interference subspace in channel ¢ and a vector of latent factors
g. which is unique to channel c. The total number of unique
factors across all channels is r = Zle rc. The all-channel
unique factor loading matrix B is obtained by diagonally
stacking the matrices into B = blkdiag(By,...,B¢), which
is of size n x r. The unique factors are vertically stacked into
the length-r vector g = [g],...,g[]".

With the above definitions, the first-order model for the
all-channel observations is

x=Af+Bg+u. 2)

In addition to the channel structure and sizes of the observed
data, a key presupposition of MFA is the common factor number
ro and unique factor numbers rq,...,rc. For simplicity of
notation, the factor number are combined into the integer vector

r = [ro,71,...,7¢c|" of length C' + 1.

B. Covariance Specification

The observation vector x and the latent vectors s,i and u
are taken to be random quantities, whose second moments are
of interest. In the expressions of the signal and interference in
terms of the common and unique factors, s = Af and i = Bg,,
the loading matrices A and B are fixed unknown parameters
while the factors f and g are random unobserved vectors.

As the focus of MFA is the second-order properties of the
multi-channel data, all random quantities are assumed to have
mean zero. The second moments of s and i are respectively

Rss = ARgAT and Rj = BR,B',

where Rg = E[ffT] and Rgg = Elgg']. To allow for the
desired interpretations of s and i, factors of different types are
assumed to be uncorrelated. That is,

Effg'] =0,,, and FElg.gl]= 0, r, c#c.

This assumption and the structure of B ensure that Ry; is block-
diagonal, with C blocks of sizes n; x nj through ng X nc.
For the all-channel noise vector u, the noise components
corresponding to distinct scalar inputs are assumed to be
uncorrelated but the variances are unconstrained, so

® = E[uu']

is a diagonal covariance matrix. The noise u is further assumed
to be uncorrelated with the latent factors,

Euf']1=0,,, and Elug!]=0,,,c=1,...,C.

With these specifications on the moments of the latent
vectors, the covariance of the all-channel observation is

Rxx = Rss + Rii + @
= ARgA" + BRy B + @.

Estimation of the three covariance components enables
subsequent analyses of practical interest, such as detecting
the existence of a cross-channel signal and predicting the latent
vectors s,i and u from the observed x.

In the above description of how x is synthesized from latent
factors f and g and the noise u, the common factor covariance
Ry is unconstrained while the unique factor covariance Ry; is
block-diagonal but otherwise unconstrained. However, without
further information about either the loading matrices A, B
or the factor covariances Rg, Rgg, the pairs (A, Rg) and
(B,Rgg) are non-identifiable using knowledge of x alone.
This follows as any change of basis on the factor spaces which
takes (A, f) to (AT, Ty 'f) and (B,,g.) to (B.T., T.'g.)
leaves s and i, unchanged. In this paper, this indeterminacy
is resolved by requiring that the factors f and g be unit-
scale and uncorrelated, R¢ = I, and Rgg = I,.. Alternative
normalizations, such as taking A, B to have unit norm columns
and Rg and Rj; to be diagonal with non-increasing diagonal
elements, are useful for some analyses.
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III. IDENTIFIABILITY OF MFA

Without further assumptions on the unobserved signal, inter-
ference, and noise, the only information that the observations
contain about the statistical properties of the latent vectors is in
Rxx. If a distinct triple (R, R};, @) of matrices structured
as in Section II sums to the same observation covariance Ry,
then MFA can yield no meaningful conclusions about s, i, and
u. If only one such triple of appropriately structured matrices
sums to Ry, then the MFA decomposition of Ry is identified

for the specified channel sizes and factor numbers.



Identification of Ryx requires two subproblems to be
solvable. First, it must be possible to uniquely isolate the
noise variance ® from the combined signal-and-interference
covariance Rgg + Rjj. Second, it must be possible to uniquely
separate Rgg + Rji, which is the noise-free part of the Rxx,
into the signal covariance Rg¢ and the interference covariance
Ri;. The observation covariance Rxx is identified if and only
if both subproblems have unique solutions.

However, as Rxx is not known a priori, it is instead
necessary to determine conditions on the channel sizes n and
factor numbers r which can guarantee that almost all Rxx will
admit a unique MFA decomposition. MFA for those channel
sizes and factor numbers is then generically identifiable. Proofs
of the propositions presented here are provided in the journal
version of this paper.

Requiring that these subproblems be solvable for all possible
R« is too restrictive, as degenerate cases will always exist.
As a simple example, if A,B are such that AAT + BBT
is diagonal, it is impossible to isolate ® from AAT + BBT.
Instead of precisely determining all ways in which identification
can break down, we instead find conditions on n and r that
guarantee that the non-identified Rxx make up a null set and
so are ignorable for practical purposes. This type of approach
is called generic identifiability, and it is used for single-channel
FA [9], [10], as well as for low-rank matrix completion [11]. In
this paper, a subset of a d-dimensional real vector space is null
if its image under a linear isomorphism to R? has Lebesgue
measure zero. A statement is generically true if it true for all
elements excepting a null subset.

A. Separation of Signal and Interference

For the MFA decomposition to be identified, the noise-free
part of the observation covariance, Rgs + Rj;, must be uniquely
separable into the signal covariance Rgs and the interference
covariance Rj;. This problem does not arise in exploratory
single-channel factor analysis. Although this unique separation
problem does not explicitly depend on the loading matrices
A and B, it is useful to frame the problem in terms of the
combined loading matrix [A B], which is of size n x (1o + 1)
and is obtained by horizontally concatenating A and B. In
this setting, unique separability is equivalent to whether

[A BJ[A B]" = [A BJ[A B]' C

implies that
A = AQq, and B, =B.Q., c=1,...,C, (5

for all A, A € R™*" and B, B being channel-structured block
diagonal as described in Section II, where Qg9 € R™*™ and

Qcc € R"*" are orthogonal matrices of the appropriate sizes.

A typical result in factor analysis (see, e.g., [12]) implies
that, for any equally sized real matrices X and Y, XX equals
YYT if and only if Y = XQ for some orthogonal Q of the
appropriate size. This is easily seen as X and Y share singular
values and left singular vectors. Application of this result to
[A B] and [A B] implies that [A B] = [A B]Q, where Q is

an orthogonal matrix which is patterned as

0 IEREERRREEE ro
Qoo Qo1 Qoc |0
Qi Qu Qic |m

= : : o ©)
Qco Qe Qcc|re

noting that blocks Q;; are not themselves orthogonal. Taking
Rss = AAT,R; = BBT and Ry = AAT, R; = BB, (4)
implies that Res + Ri; = Res + Ry, while (5) implies that
R.s = Res and Ry; = Ry;. If the off-diagonal blocks of Q
are required to be zero, then (5) will follow from (4) and so
AAT + BB will be uniquely separable.

This formulation highlights a difference between MFA
with 7y common factors and 71,...,rc unique factors and
a single-channel factor analysis of same data with rg + r
factors and channel structure ignored. In the latter case, the
product [A B]Q for any orthogonal Q yields a valid factor
loading matrix, as no distinction is made between factors
which influence multiple channels and those which are channel-
specific. For MFA, the distinction between these types of
factors is imposed by the requirement that B be block-diagonal
with block sizes determined by ni,...,n. and ri,...,7c.
Therefore, in MFA, the transformation [A B]Q = [A B] must
yield a B which also has the appropriate block structure. This
will clearly be the case if Q is block diagonal. However, the
converse is not true without restrictions on n and r, even if A
and B satisfy the lower-triangular conditions of [5, Sec. III].

In fact, if the dimensions of the signal and interference
subspaces are too large relative to the channel sizes, such non-
separability is typical. The following condition provides an
upper bound on r, above which almost all Rgs + Rj; will not
be uniquely separable into Rgg and Ry;. This can be obtained
by application of a theorem for confirmatory FA [13], which
evaluates the needed linear constraints on the loading matrix
to ensure it is locally determined.

Condition 1. The channel sizes n and factor numbers r satisfy

1 & c

— — < — .
ror + 5 ;rc(r re) < ;Tc(n ne) @)
Proposition 1. If the channel sizes n and factor numbers r
are such that (4) implies AAT = AAT and BBT = BBT
for almost all MFA loading matrices A, A € R gpd
B,B e R™*" patterned as in Section II, then Condition I is
satisfied.

The above proposition provides an upper bound on which
values of n and r could allow the noise-free part of the
observation covariance to be generically uniquely separable. On
the other hand, the following proposition provides a sufficient
condition on [A B] which ensures that, if [A B]Q preserves
the channel structure of B, Q will be block diagonal and yields
the unique separability of AAT + BBT. It is proven by an
extension of the technique of [14], which proves a related
result in confirmatory FA, to the block-structured case.



Proposition 2. For MFA loading matrices A € R™"*™ and B €
R™ ™ patterned as in Section II, suppose that, after possibly
renumbering the channels, the submatrices My, ..., M¢ of
[A BJ have full column rank, where M. is

A<c B<c

M. = {AX 0

}, M; =[A] ... AL]",  (®
with Ac. = [A] .. AT )T, As. = [AL, .. AL]" and
B.. = blkdiag(B1,...,B._1). Then any orthogonal Q
patterned as (6) with [A B]Q = [A B] for some MFA loading
matrices A € R"™™ and B € R™ " must have Qi; = 0 for
all i # j.

Although framed in terms of the loading matrices A and
B, Proposition 2 also provides a result about Rgg + Ry; itself.
To see this, suppose A, A’ € R"*" and B,B’ € R"*" are
MFA loading matrices such that [A B|[A B|"T = Rgs +Rj; =
[A’ B'][A’ B]". If the conclusion of Proposition 2 is true for
A and B, then it is similarly true for A’ and B’, which follows
from the fact that [A’ B'] equals [A B]Q’ for some Q' and
the product of block-diagonal matrices is block-diagonal. So,
if Rgs + Rj; equals AAT +BBT for any A and B such that
the hypothesis of Proposition 2 applies, then Rgs + Rj; can
be uniquely separated into Rgg and Rj;.

However, as Rgs+ R is not known, it is instead desirable to
establish conditions on the channel sizes n and factor numbers
r which ensure that Proposition 2 applies generically. The
following conditions, which are established by investigating
the structure of the submatrices My, ..., M, suffice to ensure
that Proposition 2 applies and hence that Rgs + Rj; is uniquely
separable in almost all cases. Although Condition 2 as stated
depends on the channel numbering, Proposition 3 shows that
the choice of channel numbering does not in fact affect the
generic separability.

Condition 2. The channel sizes n and factor numbers r satisfy

c—1
ro+ Yk <n—ne, ©)
k=1

forallc=1,...,C.

Proposition 3. (Generic Separability of Rgs+Ri;) If Condition
2 is satisfied for some channel ordering, then the hypothesis
of Proposition 2 is satisfied for A € R"*™ and B € R"*"
patterned as in Section II, excepting a null set of A and B.

Proposition 3 combined with Proposition 2 gives sufficient
conditions on the channel sizes and factor numbers to allow
for generic unique separability of Rgss + Rj;. Conversely,
Proposition 1 gives necessary conditions on n and r for the
same conclusion. To assess the size of the gap between the
two sets of conditions, note that if the inequalities in (9) hold
with equality, the necessary condition (7) will also hold with
equality. So, for some values of n and r, the necessary and
sufficient conditions coincide. This provides reason to believe
that the gap between the two conditions is not too large, which
is supported by the quantitative comparisons in Section IV.

B. Isolation of Noise

For an MFA observation covariance Ry obtained by (3) to
be identified, the diagonal noise variance ® must be uniquely
isolable from the low-rank portion of the observation covariance
Rss +Rii. A problem of this type has been studied extensively
in the literature on single-channel FA, as it is the crux of the
identifiability problem for exploratory single-channel FA [9].
In MFA however, the multi-channel aspect of the observations
alters the noise variance isolation problem, as the low-rank
part of the observation covariance has additional structure not
present in exploratory single-channel FA. This prevents direct
application of previous results, but the technique of [10] used
to prove the generic identifiability of the noise variance in
single-channel FA can be generalized to MFA.

In single-channel FA, the central criterion for determining
identifiability of the noise variances is

é(n,r,p) = rir 1) - plo+1) —plr—p)—mn,

for observation dimension n, factor number r, and p € N. The
inequality ¢(n,r,2r —n) > 0 is equivalent to the Ledermann
bound [15] for n > 6, which provides the threshold for
identifiability in the single-channel case [9], [10].

For MFA, unique isolation of the noise variances depends
on a similar criterion,

c
1/)(11, r, p) =n+ QS('nﬁ To, PO) + Z ¢(nm Tes pC) +TC(TO - ,00),
c=1
for non-negative integer vector p = [pg, p1,...,pc]". It can
be seen that 1) is not a function of the total number of factors
ro + r alone, but instead depends on how those factors are
distributed. So, the channel structure influences whether ® can
be uniquely isolated from Rgs 4+ Ry;, even though @ itself is
not channel-structured.

Unlike in the single-channel case, the isolation of ® requires
that the minimum value of ¢ be positive over a class of n’, r’
reduced from the original n,r, due to the constraints of the
channel structure on the interference component. The following
condition sets out the required class of reduced n’,r’, over
which ¢(n’,r’, p) > 0 for all valid p and for all members of
the class ensures that ® can be uniquely isolated. The set of
reductions and valid p is M, defined below.

Condition 3. The channel sizes n and factor numbers r satisfy
ro + 1 < n. In addition, let 1* be the smallest criterion value
over possible MFA reductions,

P = (n,’gil)r;eMw(n',r’7p) (10)
where M C N¢x N¢+1x NCH contains (v, 1, p) satisfying
n.,<ne c=1,...,C,
r.=(re—(n.—n.))y, c=1,...,C,
ro = l[ro = Xeli(ne — nl =)+, (1n

pe <min{r.,2(ry + 1) —n.}, c=1,...,C,
po = min{ro, 2ry + Zle 21, — p. — nL},
and Zil n!. > 0. Either ¥* > 0 or M is empty.
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Fig. 1. Comparison of maximum identifiable common factor number ¢

under two sets of conditions, for varying channel sizes. Channel structure
depicted is three homogeneous channels, with the number of unique factors
per channel indicated by the facet heading.

As in [10], (A,B,®) is said to have identified noise
variances if AAT + BBT + & = AA + BB + & implies
that ® = ®, where (A, B, ®) and (A, B, ®) are as defined
in Section II with equal channel sizes and factor numbers. The
following Proposition shows that Condition 3 is sufficient for
(A, B, ®@) to generically have identifiable noise variances. So,
when n and r satisfy Condition 3, the noise variances can be
uniquely isolated from Rgg + Rj; except for a null set.

Proposition 4. (Isolation of ®) If Condition 3 is met, (A, B, ®)
have identified noise variances except for a null subset of
(A, B, ®).

IV. DISCUSSION

This section explores the quantitative relations between
Conditions 1 —4 and their associated identifiability results. For
single-channel FA, the intuitive understanding of identifiability
is that taking the number of factors to be substantially smaller
than the total number of observations will ensure the uniqueness
of the FA decomposition. For multi-channel FA, however, the
channel structure of the data and the inclusion of two types of
latent factors renders intuitive assessment of identifiability more
challenging. To improve this intuition, Section IV-A discusses
the identifiability in the special case where the channels are
equally sized with equal unique factor numbers, while Section
IV-B discusses how substantial inequality between channels
influences identifiability. Finally, Section IV-C describes the
relationship between the two identifiability subproblems.
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Fig. 2. Comparison of maximum identifiable common factor number 7o
under two sets of conditions, with two heterogeneous channels. Large channel
size is fixed at npjg = 30 with 735 = 15 unique factors. Small channel size
varies, with fixed number of unique factors rsa11 = 5.

A. Homogeneous Channels

A common measurement setup to which MFA is applicable
is the case of C' homogeneous multivariate sensors. That is,
the C' observation vectors X1, ...,Xc are obtain from distinct
but otherwise identical sensors, and so the channels associated
with each sensor have equal dimensions, n; = --- = n¢. If the
channels are treated as interchangeable, an additional simplify-
ing assumption is that the unique factor numbers associated
with each channel are similarly identical, r; = -+ = r¢. In
this case, identifiability of MFA depends only on the number
of channels C, the number of common factors rq, the shared
number of unique factors 1, and the shared channel size n;.
In this case, Conditions 1 and 2 have simpler form, as given
in the following Corollary.

Corollary 1. For C channels with ny = -+ =n. and 1, =
-+« = ro satisfying vy < ny, Condition 1 is

ro < (€ =1)(n1 —r1/2).
and 1 < %(2n1 +1—+/8ny+1)

Condition 3, however, is not simplified by the assumption
of homogeneity, as the class of reduced n’, r’ quantified over
in (10) includes non-equal channel sizes and factor numbers.

For C = 3 channels with vy = 2,5,10 unique factors
per channel, Figure 1 compares the maximum r( satisfying
Condition 1 and satisfying both Conditions 2 and 3. As
Proposition 1 shows that Condition 1 must be met for Rgs+Rj;
to be separable, MFA with (n1, () above the top line (indicated
with circles) in Figure 1 cannot be identifiable. Conditions 2
and 3 together imply that both identification subproblems are
generically solvable, and so MFA with (n,79) below the
bottom line will be generically identifiable.

B. Heterogeneous Channels

In the case where the channels are of different sizes or have
differing numbers of unique factors, the identifiability of MFA
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under Conditions 1 — 3, for C' = 4 homogeneous channels each with shared
channel size ranging from n1 = 3 to n1 = 40 and r1 = 3 unique factors.

depends on all of n and r rather than any unidimensional
summaries thereof. As MFA is equally applicable to datasets
obtained from heterogeneous sensors, understanding identifia-
bility for channels of differing sizes is practically relevant.

In Figure 2, the maximal identifiable ry under the same
two sets of conditions as defined in Section IV-A are plotted,
for C' = 2 heterogenous channels. The larger channel has
fixed size npig = 30 and ry,i; = 15 unique factors. The smaller
channel size Ngman ranges from ngmay = 3 0 Ngman = 30 with
Tsmall = O Unique factors. It can be seen that the heterogeneity
in the channel sizes affects MFA identifiability in a step-wise
fashion, as different inequalities become binding at different
levels of channel size imbalance.

C. Fartial Identifiability

As Figure 3 illustrates, there are channel sizes and factor
numbers for which one of the two identifiability subproblems
has a unique solution but not the other. If Condition 3 is
satisfied but Condition 1 is violated, the noise variances can be
uniquely isolated from the combined signal-and-interference
covariance Rgs + Rj; but the latter term does not uniquely
determine (Rgs, Ryj). In this case, the identified @ can be
interpreted, allowing estimation of some quantities of interest
such as the relative contribution of idiosyncratic noise to the
overall observation variability. The other case, where the noise-
free part of the MFA covariance can be uniquely separated
into (Rsgs, Ry;) but the idiosyncratic noise ® is not guaranteed
to be isolable, is of less practical relevance as MFA is most
applicable to the uncalibrated case where @ is to be estimated.

V. CONCLUSION

Multi-channel factor analysis decomposes a multivariate,
multi-channel observation into signal, interference, and noise.
For MFA to be practically useful, it must be possible to certify
the uniqueness of the associated covariance decomposition
using only what is specified a priori, namely the channel
sizes and dimensions of the signal and interference subspaces.

The identifiability question for MFA is divides into two
questions: can the signal and interference covariances be
uniquely separated in the absence of noise, and can the
idiosyncratic noise variances can be uniquely isolated from
the systemic part of the observation covariance?

The main results presented in this paper ensure that the two
questions lead to unique solutions in the generic sense (that
is, excepting a null set of degenerate cases). The relationships
between the various identifiability conditions are explored in
Section IV, which also illustrates that MFA is identifiable
for common and unique factor numbers which are reasonable
relative to the channel sizes. In sum, the results of this paper
provide theoretical support for MFA and justify its application
to real-world array processing problems.
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