
Abstract

Signals generated by iterating nonlinear maps are
highly attractive in a wide range of signal processing
applications. Among the different possible one-
dimensional chaotic systems, an important class is
composed of the so-called skew tent maps. In this
paper, an algorithm for the optimal estimation of this
class of signals in the presence of noise is developed
based on the Maximum Likelihood (ML) method.
The resulting algorithm is quite demanding computa-
tionally, so suitable suboptimal schemes are proposed
that show good performance at a much reduced
computational cost. Computer simulations are
included, and the performance of the different
approaches compared with the associated Cramer-Rao
Lower Bound (CRLB).
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1. Introduction

Chaotic signals, signals obtained by iterating a non
linear dynamical system in chaotic state, have become
an active field of research [1]. Classical signal
processing techniques do not perform adequately for
this class of signals that show a noise-like behavior,
although deterministic in nature. Therefore, it is
important to develop new algorithms suited for this
type of signals. In particular, there is a need for robust
and efficient algorithms for the estimation of these
signals in noise.
Estimation of chaotic signals in noise has been
addressed in numerous papers. In [2] the performance
of the ML estimator for chaotic signals generated by
one-dimensional maps is analyzed.  The estimator is
found to be inconsistent, so the asymptotic distribu-
tion for large data records is invalid. However, for a

high Signal to Noise Ratio (SNR) the ML estimator is
asymptotically unbiased and attains the CRLB. In [3]
an algorithm for chaotic signal estimation based on
the connection between the symbolic sequence and
the initial condition is presented, which is shown to
attain the CRLB at high SNR. This approach is
closely related with the halving method presented in
[4], where a dynamical programming ML estimator is
proposed. Finally, in [5] a recursive implementation of
the ML estimator for chaotic signals generated by tent
maps is derived. However, no ML estimator has been
derived for skew tent maps. Chaotic signals generated
by iterating skew tent maps have been applied in
communications [6], and their spectral properties have
been found to be identical to those of a stochastic
first-order autoregressive (AR) process [7].
In this paper we develop an algorithm for ML
estimation of chaotic signals whose dynamics are
governed by the skew tent map.  The resulting method
is quite demanding computationally, so two subop-
timal approaches are also proposed that reduce consi-
derably the computational cost, maintaining a good
performance nevertheless. All the three estimators are
inconsistent, but attain the CRLB for high SNR.

2. Skew tent maps

The signals that we consider in this work are
generated according to
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where F is a mapping of the unit interval into itself
([0,1]→[0,1]) given by
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which is called skew tent map, with known parameter
a, where 0<a<1. When a=0.5, F becomes the tent
map.
The phase space of non-linear maps can be divided in
a collection of non-overlapping regions. This process
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is known as partition of the phase space [3]. If a
symbol from a known alphabet is assigned to each of
the regions, the dynamics of the map may be characte-
rized by following the different regions that the map
visits during its dynamical evolution. The analysis of
chaotic signals using these sequences of symbols
(known as itineraries) is covered by the field of
symbolic dynamics [3].  In the particular case of skew
tent maps, we divide the phase space in two regions
E1=[0,a] and E2=[a,1], and we associate a symbol
s[n] to each x[n] according to

( )anxsignns −= ][][  (3)

The Function F is generally non-invertible, as it has
two inverse images given by
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However, with s[n] known, a useful representation of
the chaotic signal may be obtained by using the
inverse mapping (4). Any element of the sequence
may be obtained by backward iteration from x[N]
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with s[n] given by (3).  Thus, knowing the itinerary
and any value of the signal, we can reconstruct the full
sequence. We will denote s=[s[0], s[1], ..., s[N-1]] the
itinerary associated with a certain chaotic signal. We
will define Ri the region of the phase space comprised
between xi

min and xi
max, and associated with a certain

itinerary si. This is the region where the initial
condition x[0] must lie to generate sequences with
itinerary si. We will define as well an indicator
function (sometimes called characteristic function)
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As the skew tent maps are onto, all the itineraries are
possible, and there are 2N regions associated with the
2N possible itineraries of length N.  The easiest way of
obtaining the limits of the region Ri is iterating back-
wards from a using (4), leading to what is called a
natural partition of the phase space [8].

3. ML estimation of chaotic sequences

The problem we are considering is the estimation of a
chaotic sequence from N+1 noisy observations

 ][,],1[],0[ Nyyy K        (7)

obtained according to
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where n[n] is a stationary, zero mean, white Gaussian
noise sequence with variance σ2, and x[n] is a chaotic
sequence generated using (2), by iterating some
unknown x[0]∈[0,1] according to (1), for some known
parameter 0<a<1.
As the sequence of observations is a collection of
independent Gaussian random variables with equal
variance, ML estimation produces the initial condition
that minimizes the Mean Square Error (MSE)
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where Fn is the n-fold composition of F. A direct
minimization of (9) using, for example, gradient
descent techniques, cannot be applied to this problem,
because the error surface is highly irregular with
many local minima [5]. It seems that the minimization
of such an error surface demands exhaustive search
solutions. This is not the case, however, if we take a
closer look to the MSE, drawing the different regions
Ri. An example is shown in Figure 1, where the MSE
for x[0]=0.7218, N=6 and a=0.8 is plotted in the range
[0.68,0.75].  It is clear that the MSE curve is quadratic
within the limits of each region, so there is a unique
minimum in each region.
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Figure 1. Error surface for x[0]=0.7218, N=6 and
a=0.8 in the range [0.68,0.75]. The dashed lines mark
the limits of the regions Ri.

To obtain these minima we have to find a closed form
expression for the n-fold composition of F.  It is easy
to verify that F(x[n]) can be expressed as
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where b=2a(1-a), and using the symbol s[n]
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Finally, the n-fold composition is given by
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Using (12) we can express (9) in a region Ri as
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and the MSE may be expressed as
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Taking into account (12) and (14) it is easy to
conclude that the cost function is quadratic within the
limits of each region. Depending on the noise level
the minimum of each Ji(x[0]) may fall in or outside
the region Ri.  Differentiating (13) and solving for the
unique minimum we obtain an estimate of x[0] for a
given itinerary
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This is the ML estimate of x[0] for the given itinerary
only if ii Rx ∈]0[ˆ . Otherwise the minimum of J(x[0])
in the region Ri is given by the closest value in Ri to

 xi ]0[ˆ . Taking all this into account, the ML estimate
with a known itinerary si is given by
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And finally, the ML estimate of x[0] is associated with
the itinerary that produces the minimum MSE
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and the ML estimate is
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4. Suboptimal Approaches

The method derived in the previous section demands
the computation of 2N estimates, and comparing the
MSE produced by all of them to obtain the final ML
estimate. This approach may become quite costly
computationally for moderate sized records. In this
Section we will introduce two suboptimal approaches
that achieve a close to optimum performance, while
reducing the computational cost. Both of them are
based on estimating the itinerary and then applying
(16) and (18) to obtain the final estimate of x[0].
The first approach, that we will call hard-censoring
(H-C) ML, uses the same method proposed in [3] and
obtains the itinerary from the noisy observations

-a)nsign(yns ][][ˆ =                   (21)

and using (16) and (18) we obtain the estimate. It
should be noted that this approach produces the ML
estimate when (21) gives the ML estimate of the
itinerary, as opposed to [3].
The second approach, that we will call recursive ML,
is equivalent to the one proposed in [5], and is optimal
for the tent map (a=0.5). It obtains ML estimates for
registers of  increasing lengths from n=1 to N,  and
estimates s[n] as
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where ]|[ˆ nnx is the ML estimate of x[n] using the first
n samples of the register. The algorithm is pursued
recursively until the itinerary is completely estimated.
Then (16) and (18)  are used to obtain the final
estimate. Once again, when (22) gives the ML
estimate of the itinerary, this approach produces the
ML estimate of x[0].



5. Computer Simulations

In this section we analyze the performance of the
optimal ML estimator in comparison with the subop-
timal estimators. We consider a skew tent map with
a=0.9 and N=6. 999 initial conditions uniformly
distributed from 0.001 to 0.999 have been selected.
Table 1 shows the Mean Square Error (MSE) for the
three estimators obtained by Monte Carlo simulations
by averaging 1000 cases for each initial condition and
SNR.

Table 1 – Average MSE (in dB) of the three estimators

-10·log10(MSE)
SNR ML H-C ML Recursive ML

0 14.7 15.4 15.1
5 18.7 18.7 18.8
10 24.3 22.6 23.0
15 30.4 27.0 27.9
20 36.8 31.7 33.3
25 43.3 38.0 40.7
60 89.0 88.4 88.6

The ML estimator shows the best performance, is
asymptotically unbiased and attains the CRLB at high
SNR. The H-C ML estimator shows the worst perfor-
mance of the three, while the recursive ML estimator
lies in between the other two. An example of an MSE
curve is shown in Figure 2, for x[0]=0.833, N=6 and
a=0.9.

Figure 2. MSE of the three estimators proposed for
x[0]=0.833, N=6 and a=0.9.

6. Conclusions

In this paper we have developed an ML estimator for
chaotic signals generated by iterating skew tent maps
and observed in noise. The estimator is inconsistent

but achieves the CRLB for high SNR. As the optimal
estimator demands a high computational cost for
moderate sized data records, two suboptimal approa-
ches have been proposed. The first one obtains the
itinerary directly from the noisy data record, while the
second one obtains forward ML estimates of x[n]
recursively from its previous samples, and estimates
s[n] as the sign of these forward estimates. These two
approaches reduce considerably the computational
cost and show good performance, achieving the
CRLB for high SNR.
Future research lines include the development of ML
estimators for other piecewise-linear maps, the search
for effective algorithms for optimal estimation of the
itinerary and the derivation of Bayesian estimators of
chaotic signals.
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