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ABSTRACT

This paper presents a new Bussgang-type technique for
blind deconvolution of spiky signals. Based on a Gaus-
sian mixture model for the spiky signal, the method
obtains a deconvolution filter and a zero-memory non-
linearity to estimate the signal. A new updating pro-
cedure for the mixture parameters (and, therefore, for
the nonlinear estimator) is included in the algorithm: it
allows to apply the algorithm without any prior knowl-
edge about the signal and noise. A simulation example
illustrates the performance of the proposed method.

1. INTRODUCTION

The subject of this paper is the restoration of a spiky
signal {z;} distorted by a linear time-invariant system
{h:} (possibly nonminimum-phase) and corrupted by
additive noise {n;}, given only the output data se-
quence z; = z; *h; +n;, and some statistical knowledge
of the input signal (i.e., blind deconvolution). This
problem has a wide variety of applications in digital
signal processing like geophysical exploration modeling
(seismic deconvolution), ultrasonic analysis or biome-
dical engineering.

It is well known that the conventional linear predic-
tion methods based on second-order statistics are inca-
pable to solve the problem when the system is nonmini-
mum-phase. Consequently, many techniques for blind
deconvolution have been proposed in the literature.

An approach is maximum likelihood deconvolution
[1]: it assumes a Bernoulli-Gaussian model for the in-
put and, based on this model, obtains the maximum
likelihood estimates of the nonzero positions and am-
plitudes of the sparse signal, the model parameters and
the filter coefficients. However, the maximization of the
global likelihood function is rather difficult and compu-
tationally expensive.

Recently, other algorithms that utilize the higher-
order statistics (curnulants) of the observations have
been proposed in blind deconvolution and equalization
problems [2,3]. These methods guarantee global con-

vergence to the desired solution but they are also com-
putationally expensive. Besides, to obtain reliable es-
timates of the higher-order statistics, long data lengths
are needed.

From a different point of view, Wiggins [4,5] intro-
duced minimum-entropy deconvolution (MED) in seis-
mic deconvolution, seeking an inverse filter that max-
imizes the kurtosis of the deconvolved data (or, equi-
valently, minimizing the entropy or randomness at the
output of the filter). Related with the MED-type al-
gorithms, Godfrey and Rocca proposed the zero mem-
ory non-linear deconvolution [6] (also called Bussgang
method [2]). This technique makes use of rough esti-
mates of the input data obtained from the observations
by means of a matched nonlinear function (like a soft
threshold), which depends on the probability distribu-
tion function (pdf) of the input data. In fact, as it is
pointed out in [7], the MED-type algorithms are also
Bussgang methods: in this case the deconvolution fil-
ter is the solution of a nonlinear set of equations which
can be solved using an iterative procedure similar to the
one proposed in [6]. The type of nonlinearity controls
the final solution and the direction of convergence, thus
establishing the differences among these methods. In
general, these nonlinearities depend on the pdf of the
input signal and the convolutional noise; consequently,
the application of these techniques requires a careful
selection of the estimator parameters.

In this paper, we propose a new Bussgang-type al—
gorithm for blind deconvolution of spiky signals which
includes a procedure for updating the estimator pa-
rameters; therefore it can be applied without any prior
knowledge about the signal and noise.

2. A NEW INVERSE FILTER CRITERION

The proposed method assumes that the distribution of
the spiky signal can be approximated with a mixture
of a narrow (subscript n) and a broad (subscript b)
zero-mean Gaussians. The narrow Gaussian models
the smaller peaks, whereas the broad one models the



true peaks (or reflectors):
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where 7, and 7, are the mixing proportions of the two
Gaussians and are therefore constrained to sum 1.

As long as o2 is small, the Gaussian mixture a-
pproximates the distribution of a spiky signal; more-
over, when o2 tends to zero, (1) becomes a Bernoulli-
Gaussian distribution {1] which is a model widely used
in seismic deconvolution cases.

Let {y;} be the output of a deconvolution filter {f;}
of length L + 1; considering a sequence of observations
{z:} of length M we have
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being N=M+ L.

As it is shown in [5], convolution always increases
the Gaussian character of the pdf, therefore the decon-
volution filter should remove this effect by making its
output to fit (1) again. For doing so, we propose to ob-
tain an inverse filter which maximizes at its output a
measure of the relative entropy between mixture model
(1) and a Gaussian distribution with the same variance,
le.,
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where p; (y;) is the probability density of y; under Gau-
ssian j in the mixture, and f(y;) is a Gaussian pdf with
variance 02 = m,02 + myof. This objective function is
used to drive the pdf of the inverse filter’s output away
from the initial Gaussian distribution f(y) towards the
mixture model p(y).

The maximization of (3) with respect to the filter
coeflicients gives
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where the factors r;(y;) are the posterior probabilities
of a particular sample y; being generated by a particu-
lar Gaussian j, and they are given by
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Now, taking into account that 8y;/0fm = zi—m and

substituting (2) for the rightmost y; term in (4), we
obtain
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The set of equations (6) can be written in matrix
notation as
R, .f=g (7N

where R,, is the Toeplitz autocorrelation matrix of
the observations and g is the crosscorrelation vector
between the observations and a nonlinear estimation of
the input signal, which is given by

t=g(y) = _3{_____)_ (8

The set of equations (6) can be solved using the iter-
ative procedure proposed in [6]: starting from an initial
inverse filter an estimate of the input signal is obtained
using (8); this new estimate is croscorrelated with the
observations and a new inverse filter is obtained solving
(7). In each iteration the energy of the estimated signal
must be normalized to a fixed value. This procedure is
iterated until convergence is obtained.

3. NONLINEARITY OPTIMIZATION

A complete application of the proposed method re-
quires a careful selection of the parameters defining
the nonlinearity. Conventional Bussgang approaches
use a fixed nonlinearity: for instance, from three pa-
rameters that define the nonlinear estimator in [6], two
are fixed in advance (independent of iteration) and the
other changes to make the algorithm data-dependent.

To avoid this a priori selection, in this paper we pro-
pose a method, based on model (1), that updates the
mixture parameters (proportions and variances of the
Gaussians), and therefore the nonlinear function g(y),
in each step of the deconvolution process.

The mixture parameters can be grouped in vector
0 = (mn,0n,m,0s). A maximum likelihood estimate
of @ can be obtained applying the Expectation-Maxi-
mization (EM) algorithm [8]. To develop this idea, let
us start by defining the observed incomplete data as
the estimate of the input signal obtained from (8) after
iteration k: {Zx}. On the other hand, the unobserved
data are given by x = (d;,dz), where d;, j = 1,2; is
a set of Bernoulli random variables selecting the Gaus-
sian associated to each sample, i.e.,
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Using this particular choice for the complete data:
({#x},d1,d2), and denoting the current estimate of 6
after k iterations of the EM algorithm as f; it is easy
to see that the E-step of the next iteration is given by
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where E[] denotes expectation; then, the E-step is
equivalent to recompute the posterior probabilities for
the estimated signal. Once rj(#;) is known, in the
M-step we maximize J with respect to 6; taking the
derivative and equating it to zero gives
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It is known that the convergence rate of the EM al-
gorithm may be slow; to avoid this problem, we pro-
pose the following modification: after each new {Z:}
is obtained, only one iteration of the EM algorithm is
carried out to obtain a new estimate of 0.

On the other hand, note that each new estimate of 6
changes the cost function; therefore, to avoid stability
problems, it is important to force a slow change in the
parameters of the mixture. For this reason, we choose
the following updating procedure:
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v being a constant near to 1.

In fact, note that from four parameters in § only
two must be estimated in each iteration, since m, =
1—m,,, and one of the variances is fixed by the following
constraint

o2y =mnol + mol (15)

where 02 , is the variance of the estimate # at iteration
k.

This updating procedure allows to start the algo-
rithm with a very soft nonlinearity and, progressively,
to increase the nonlinear character of the estimator
as iteration proceeds; thus giving to the proposed al-
gorithm a greater flexibility than other Bussgang ap-
proaches. Specifically, if we are looking for a fully
sparse signal, the final nonlinearity can be used as a
detector; this is important in high noise situations since
in these cases the deconvolution filter is unable to re-
move completely the forward distorting filter and to
eliminate the noise at the same time. The partial re-
moval of the forward filter can be corrected after the
nonlinearity. The price we paid is that this updating
procedure makes the method slower than other Buss-
gang approaches which use a fixed and, generally, more
aggressive nonlinearity.

4. SIMULATION RESULTS

In this example we evaluate the performance of our
algorithm using synthetic signals according to the Ber-
noulli-Gaussian model [1], for which the signal follows a
Gaussian distribution with variance o2 with probability
A, and its value is zero with probability 1 — A. This
model can be viewed as a Gaussian mixture if we choose
7, = 1 — A and 02 = 0. Registers of five hundred
samples were generated according to the above model
(with A = 0.1 and o2 = 10), and then convolved with
a third-order nonminimum-phase ARMA system taken
from [9], with transfer function given by

H(z) = 1401271 —3.272522 + 1.411252~3
T 1-192-141.15252-2 — 0.16252=3 °

(16)

Finally, a zero-mean Gaussian noise was added to the
result to produce a SNR=20 dB; Fig. 1 shows the ob-
servations {z;}.
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Figure 1: Observations

A 25-tap deconvolution filter was used, with its cen-
tral tap initialized to fo = 1. To apply the proposed
method we initialize the mixture parameters with the
following values: 7, = my = 0.5, 02 = 02/2, where o is
the variance of the observations, and o7 is selected ac-
cording to (15). Figs. 2(a) and 2(b) show the estimated
sparse sequence obtained with the proposed method
and with Godfrey’s method, respectively. The pro-
posed method obtains a very accurate estimate while
Godfrey’s method tends to underestimate the small re-
flectors. Both methods fail to resolve closely spaced
peaks (sometimes two close peaks are merged). It
should be noted that although the deconvolved signals
(i-e., the output of the deconvolution filter) obtained
by both methods can be rather similar, the estimated
sparse sequences are very different since they are ob-
tained by using two different nonlinear estimators.
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Figure 2: Sparse sequence estimated with the proposed
method a) and with Godfrey’s method b). Circles de-
pict true spikes. The delay between the input signal
and the estimate has been removed.

Finally, Fig. 3 shows a comparison between the non-
linear estimator used in the proposed method and the
one used in Godfrey’s method. Our method starts with
a function almost linear; the updating procedure for
the mixture parameter modifies the estimator and af-
ter convergence (20 iterations) it yields a reasonable
nonlinear mapping. On the other hand, the fixed non-
linear estimator used in Godfrey’s method is much mo-
re aggressive with the smaller peaks: this improves the
convergence rate but leads to worse estimates.

5. CONCLUSIONS

This paper has presented a new Bussgang-type algo-
rithm for blind deconvolution of spiky signals. An im-
provement and novelty in comparison with other Buss-
gang approaches is the use of an updating procedure for
the parameters defining the nonlinear estimator (based
on a Gaussian mixture model for the input signal). It
has been shown that this technique achieves better es-
timates than Godfrey’s method (mainly in high noise
situations), but with a higher computational cost.
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