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ABSTRACT

This paper addresses the passive detection of a common sig-
nal in two multi-sensor arrays. For this problem, we derive
a detector based on likelihood theory for the case of one-
antenna transmitters, independent Gaussian noises with arbi-
trary spatial structure, Gaussian signals, and known channel
subspaces. The detector uses a likelihood ratio where all but
one of the unknown parameters are replaced by their maxi-
mum likelihood (ML) estimates. The ML estimation of the
remaining parameter requires a numerical search, and it is
therefore estimated using a sample-based estimator. The per-
formance of the proposed detector is illustrated by means of
Monte Carlo simulations and compared with that of the de-
tector for unknown channels, showing the advantage of this
knowledge.

Index Terms— Generalized likelihood ratio (GLR), hy-
pothesis test, multi-sensor array, passive radar.

1. INTRODUCTION

In recent decades, passive radar systems [1] have gained a
lot of attention. This is a type of bistatic radar [2] where the
transmitter is non-cooperative, that is, there is no control over
the transmitted signal. There are many systems that can be
used as non-cooperative transmitters, a.k.a. illuminators of
opportunity, such as terrestrial TV and FM broadcast trans-
mitters, mobile phone base transceiver stations (i.e., 4G and
5G systems), communication or navigation satellites [2]. The
use of illuminators of opportunity is the basis for the appeal
of passive radar: 1) the system does not disclose its location,
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allowing for covert operation; 2) it is energy efficient; and 3)
it is simple and cheap to deploy.

The lack of control over the transmitted signal affects the
detection performance, as it has not been optimized for de-
tection. Thus, to achieve passive radar systems with satisfac-
tory performance, it is common to use an additional channel,
the reference channel. This second channel improves the per-
formance, but requires more advanced detectors. These two
channels are either obtained through beamforming or direc-
tional antennas [3]: The reference channel always receives
the signal transmitted by the illuminator of opportunity and
the surveillance channel only measures this signal when there
is a target that reflects it.

Passive detection with a reference channel has been stud-
ied over the last several years and many detection algorithms
have been proposed. In the case of single-input single-output
(SISO) channels, the standard detector is based on the cross-
correlation between the signal received by the surveillance
and reference channels. Although it resembles the matched
filter, this detector is not optimal because the signal of the ref-
erence channel is contaminated by noise [4]. To overcome
this problem, [5] derives a generalized likelihood ratio test
(GLRT). There are also many papers that consider multiple-
input multiple-output (MIMO) channels. For instance, [6]
used generalized coherence [7] to propose an ad-hoc detector
for passive detection. However, there are also many papers
that consider principled detectors. The work in [3] derived
the GLRT for an unknown deterministic (first-order model)
transmitted signal in spatially and temporally white noise, and
known/unknown channels. The GLRT for stochastic (second-
order model) waveforms was derived in [8–11], considering
different models for the spatial correlation of the noise. A
systematic review of GLRTs under different assumptions are
summarized in [12].

In this work, we consider the detection of a signal trans-
mitted by a one-antenna illuminator of opportunity, which is
assumed Gaussian distributed (second-order model), and the
noises at the surveillance and reference arrays are indepen-
dent and with arbitrary spatial structure. However, contrary



to [8–11], we consider that the channel subspaces are known,
which is a reasonable assumption when the array geometry
is known (e.g., for uniform linear arrays). For this detection
problem, we derive a detector based on likelihood theory. In
particular, the proposed detector is given by the likelihood ra-
tio test where all but one of the unknown parameters under
both hypotheses are replaced by their maximum likelihood
(ML) estimates. The remaining parameter is not estimated us-
ing the ML framework as the maximization problem does not
have a closed-form solution and numerical techniques would,
therefore, be necessary. Alternatively, this parameter is ob-
tained using a sample-based estimator. Finally, we illustrate
by means of Monte Carlo simulations the performance of the
proposed detector and compare it with that of [8, 9], which
consider unknown channels.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the passive detection problem in the case of
Gaussian signals as a test for the covariance structure of the
observations. The proposed detector is derived in Section 3
and its performance is evaluated in Section 4. Finally, Sec-
tion 5 presents the main conclusions of this work and future
research lines.
Notation: In this paper, matrices are denoted by bold-faced
upper case letters, column vectors are denoted by bold-faced
lower case letters, and scalars are denoted by light-face lower
case letters. The superscripts (·)T and (·)H denote transpose
and Hermitian, respectively. The trace and determinant of a
matrix A will be denoted, respectively, as tr(A) and det(A).
The set CL is the complex Euclidean space with the stan-
dard inner product. The matrix blkdiagL(A) denotes a block-
diagonal matrix built from the L×L blocks in the diagonal of
A. The notation x ∼ CNL(0,R) denotes a complex Gaus-
sian vector in CL with zero mean and covariance R.

2. PROBLEM FORMULATION

This work considers the passive detection of a common sig-
nal in two multi-sensor arrays. One reference array always
observes the transmitted signal, whereas one surveillance ar-
ray only observes the signal when the target is present. In
particular, we consider one transmitting antenna, L receiving
antennas in both arrays, known channel subspaces, and inde-
pendent noises with arbitrary covariance matrices. Thus, the
signal model is

H0 : y =

[
0
hr

]
x+ n,

H1 : y =

[
hs

hr

]
x+ n,

(1)

where y = [yT
s yT

r ]
T is the stack of the received signal at the

surveillance channel, ys ∈ CL, and at the reference chan-
nel, yr ∈ CL; hs ∈ CL and hr ∈ CL are the channels
between the transmitter and the surveillance and reference

arrays, respectively; and x is the transmitted signal. More-
over, n = [nT

s nT
r ]

T contains the independent noises at the
surveillance array, ns ∈ CL, and at the reference array,
nr ∈ CL, which are distributed as ns ∼ CNL(0,Σss) and
nr ∼ CNL(0,Σrr), with Σss,Σrr positive definite covari-
ance matrices without further structure.

A more precise definition of the hypotheses depends on
the assumptions on the transmitted signals. We consider that
x ∼ CN (0, σ2

x), with unknown variance σ2
x. Then, the co-

variance matrix under H1 is

R1 =

[
σ2
xhsh

H
s +Σss σ2

xhsh
H
r

σ2
xhrh

H
s σ2

xhrh
H
r +Σrr

]
.

Moreover, since we are assuming that the channel subspaces
are known, we can decompose them as hs = asus and hr =
arur, where us,ur are the basis vectors for the surveillance
and reference channel subspaces, with ∥us∥ = ∥ur∥ = 1,
and as, ar are unknown. Hence, we can rewrite R1 as

R1 =

[
qssusu

H
s +Σss qsrusu

H
r

q∗sruru
H
s qrruru

H
r +Σrr

]
,

where qss = σ2
x|as|2, qrr = σ2

x|ar|2, and qsr = σ2
xasa

∗
r ,

are unknown parameters. Here, qss, qrr > 0, and qssqrr =
|qsr|2. Under H0, the covariance matrix is easily obtained by
setting hs = 0, i.e.,

R0 =

[
Σss 0
0 qrruru

H
r +Σrr

]
.

To conclude, the detection problem comes down to the
following detection for the covariance structure of y:

H0 : y ∼ CNL(0,R0),
H1 : y ∼ CNL(0,R1).

(2)

3. DERIVATION OF THE DETECTOR

In this section, we will derive a detector based on likelihood
theory to solve (2) assuming that we have access to N inde-
pendent and identically distributed observations of y, Y =
[y1 · · · yN ]. The detector is based on the likelihood ratio,
where all but one of the unknown parameters are replaced by
their maximum likelihood estimates, and the remaining esti-
mate is based on a sample-based estimator.

Under H0, since Σss,Σrr are positive definite covariance
matrices without further structure, R0 is a block-diagonal ma-
trix whose blocks are only positive definite. Then, the ML
estimate is

R̂0 = blkdiagL(S) =

[
Sss 0
0 Srr

]
,

where the sample covariance matrix is

S =
1

N
YYH =

[
Sss Ssr

SH
sr Srr

]
.



The compressed log-likelihood is1

log ℓ(R̂0;Y) = − log det(Sss)− log det(Srr).

Under H1, the problem is much more challenging. In fact,
as will be seen, it is not possible to obtain the ML estimates
of all unknown parameters. First, let us rewrite R1 as

R1 =

[
Rss qsrusu

H
r

q∗sruru
H
s Rrr

]
, (3)

where Rss and Rrr are L×L positive definite matrices with-
out further structure and Rsr = qsrusu

H
r is a rank-one ma-

trix. To simplify the estimation, we define the following trans-
formed parameters [13]: Θa = Rrr and

Θb = Rss − |qsr|2us(u
H
r R−1

rr ur)u
H
s .

This defines a one-to-one mapping between the transformed
parameters {Θa,Θb, qsr} and the original (or natural) pa-
rameters {Rss,Rrr, qsr}. With these definitions, the log-
likelihood under H1 can be rewritten as

log ℓ(Θa,Θb, qsr;Y) = − log det(Θa)− tr
(
Θ−1

a Srr

)
− log det(Θb)− tr

(
Θ−1

b M(qsr,Θa)),

where

M(qsr,Θa) = Sss + |qsr|2ηr(Θa)usu
H
s

− qsrusu
H
r Θ−1

a SH
sr − q∗srSsrΘ

−1
a uru

H
s ,

and
ηr(Θa) = uH

r Θ−1
a SrrΘ

−1
a ur.

It is easy to show that the ML estimate of Θb is Θ̂b =
M(qsr,Θa), which yields

log ℓ(Θa, Θ̂b, qsr;Y) = − log det(Θa)− tr
(
Θ−1

a Srr

)
− log det(M(qsr,Θa)).

The ML estimate of qsr can be obtained as

q̂sr = argmin
qsr

det(M(qsr,Θa)).

A few lines of algebra show that the determinant can be ex-
pressed as

det(M(qsr,Θa)) = [1− η∗sr(Θa)qsr − ηsr(Θa)q
∗
sr

+|qsr|2
(
ηsηr(Θa) + |ηsr(Θa)|2 − ηsα(Θa)

)]
det(Sss),

where ηs = uH
s S−1

ss us,

ηsr(Θa) = uH
s S−1/2

ss CS1/2
rr Θ−1

a ur,

1In the following, we will omit terms in the log-likelihood that do not
depend on data.

and
α(Θa) = uH

r Θ−1
a S1/2

rr CHCS1/2
rr Θ−1

a ur,

with the coherence matrix defined as C = S
−1/2
ss SsrS

−1/2
rr .

Setting the derivative of det(M(qsr,Θa)) to zero, we get

q̂sr(Θa) =
ηsr(Θa)

|ηsr(Θa)|2 + ηs(ηr(Θa)− α(Θa))
,

and the compressed log-likelihood is therefore

log ℓ(Θa, Θ̂b, q̂sr(Θa);Y) = − log det(Sss)

− log det(Θa)− tr
(
Θ−1

a Srr

)
+ log

(
1 +

|ηsr(Θa)|2

ηs(ηr(Θa)− α(Θa))

)
. (4)

The maximization of (4) with respect to Θa is extremely diffi-
cult and would rely on numerical procedures. To avoid them,
taking into account that Θa = Rrr, we propose to use a
sample-based estimate: Θ̂a = Srr. Then, the compressed
log-likelihood is

log ℓ(Θ̂a, Θ̂b, q̂sr;Y) = − log det(Sss)− log det(Srr)

+ log

(
1 +

|ηsr|2

ηs(ηr − α)

)
,

where q̂sr = q̂sr(Srr), ηr = ηr(Srr) = uH
r S−1

rr ur,

ηsr = ηsr(Srr) = uH
s S−1

ss SsrS
−1
rr ur,

and
α = α(Srr) = uH

r S−1
rr S

H
srS

−1
ss SsrS

−1
rr ur.

Finally, the likelihood ratio is

Λ =
ℓ(Θ̂a, Θ̂b, q̂sr;Y)

ℓ(R̂0;Y)
=

(
1 +

|ηsr|2

ηs(ηr − α)

)N

,

and the proposed detector is

λ = Λ1/N − 1 =
|ηsr|2

ηs(ηr − α)

H1

≷
H0

η, (5)

where η is a properly selected threshold.

4. NUMERICAL RESULTS

In this section, we evaluate, by means of Monte Carlo sim-
ulations, the performance of the detector in (5). Addition-
ally, we compare this detector with the detector that does not
know the channel subspace [8], which is given by the largest
canonical correlation (i.e., the largest singular value of C).
For each Monte Carlo simulation, we generate different chan-
nels and noise covariance matrices. The channel gains are
Rayleigh distributed and the noise covariance matrices are
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Fig. 1: ROC curves for an experiment with N = 64, L = 4
and SNRs = SNRr = −12 dBs

Wishart distributed, scaled to achieve a desired SNR, defined
as SNRi = 10 log10(rxx∥hi∥2/ tr(Σii)), where i = {s, r}.

Figure 1 displays the receiver operating characteristic
(ROC) curves of the two aforementioned detectors for an
experiment with N = 64, L = 4 and SNRs = SNRr =
−12 dBs. As this figure shows, knowing the channel sub-
spaces provide a significant performance gain. Figure 2
depicts the probability of missed detection, pm, for a fixed
probability of false alarm pfa = 10−4, for varying equal
SNRs = SNRr = SNR, N = 32, and L = 4. This fig-
ure also shows the advantage provided by the knowledge of
the channel subspace. Finally, Figure 3 shows the probabil-
ity of missed detection, for a fixed probability of false alarm
pfa = 5·10−3, for varying N , and SNRs = SNRr = −10 dB
and L = 4. This figure also shows that (5) outperforms the
GLR for unknown channels, and the performance advantage
seems to increase as N increases.

5. CONCLUSIONS

This paper has studied passive detection for one-antenna
transmitters when the channel subspaces of the surveillance
and reference arrays are known, and the noises at each ar-
ray are independent with an unstructured positive definite
covariance matrix. We have also assumed that the transmit-
ted signal is Gaussian distributed. The proposed detector
is based on likelihood theory where all but one of the un-
known parameters are replaced by their maximum likelihood
(ML) estimates. Under H1, it is not possible to derive the
ML estimate of one parameter without resorting to numeri-
cal methods. This parameter is the covariance matrix of the
reference channel and, therefore, an estimator based on the
sample covariance matrix of the channel is used. The pro-
posed detector is compared with the generalized likelihood
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Fig. 2: Probability of missed detection vs. SNRs = SNRr =
SNR for an experiment with N = 32, L = 4 and pfa = 10−4
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Fig. 3: Probability of missed detection vs. N for an ex-
periment with SNRs = SNRr = −10 dB, L = 4 and
pfa = 5 · 10−3

ratio test for unknown channel subspaces, which illustrates
the advantage of knowing the channel subspaces.

In the future, this work will be extended to consider trans-
mitters with more than one antenna, in which case the scalar
qsr becomes the matrix Qsr. Additionally, we also plan to
derive a numerical method to obtain the ML estimate of Θa

and evaluate if the proposed sample-based estimator achieves
a performance close to that of the numerical search.
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