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Abstract—In this paper, we propose a new structured Grass-
mannian constellation for noncoherent communications over
single-input multiple-output (SIMO) Rayleigh block-fading chan-
nels. The constellation, which we call Grass-Lattice, is based on
a measure preserving mapping from the unit hypercube to the
Grassmannian of lines. The constellation structure allows for on-
the-fly symbol generation, low-complexity decoding, and simple
bit-to-symbol Gray coding. Simulation results show that Grass-
Lattice has symbol error rate performance close to that of a
numerically optimized unstructured constellation, and is more
power efficient than other structured constellations proposed in
the literature.

Index Terms—Noncoherent communications, Grassmannian
constellations, SIMO channels, measure-preserving mapping.

I. INTRODUCTION

In communications over fading channels, it is usually as-
sumed that the channel state information (CSI) is typically
estimated at the receiver side by sending a few known pilots
and then used for decoding at the receiver and/or for precoding
at the transmitter. These are known as coherent schemes. How-
ever, in fast fading scenarios or massive MIMO systems for
ultra-reliable low-latency communications (URLLC), to obtain
an accurate channel estimate would require pilots to occupy a
disproportionate fraction of communication resources. These
new scenarios that have emerged with 5G and B5G systems
motivate the use of noncoherent communications schemes
in which neither the transmitter nor the receiver have any
knowledge about the instantaneous CSI.

Despite the receiver not having CSI, a large fraction of the
coherent capacity can be achieved in noncoherent communica-
tion systems when the signal-to-noise ratio (SNR) is high, as
shown in [1]-[4]. For the case of single-input multiple-output
(SIMO) channels, which is the one we focus on in this paper,
these works proved that at high SNR under additive Gaussian
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noise, assuming a Rayleigh block-fading SIMO channel with
coherence time 7" > 2 symbol periods, the optimal strategy
achieving the capacity is to transmit isotropically distributed
unitary vectors belonging to the Grassmannian of lines.

An extensive research has been conducted on the design of
noncoherent constellations as optimal packings on the Grass-
mann manifold [5]-[18]. Some experimental evaluation of
Grassmannian constellations in noncoherent communications
using over-the-air transmission has been reported in [19].
Existing constellation designs can be generically categorized
into two groups: structured or unstructured. Among the un-
structured designs we can mention the alternating projection
method [6], the numerical methods in [7]-[10], which optimize
certain distance measures on the Grassmannian (e.g., chordal
or spectral), and the methods proposed in [11] and [12], which
maximize the so-called diversity product [20].

On the other side, structured designs impose some kind of
structure on the constellation points, facilitating low complex-
ity constellation mapping and demapping. This is achieved
through algebraic constructions such as the Fourier-based
constellation in [13] or the analog subspace codes recently
proposed in [14], designs based on group representations [15],
[16], parameterized mappings of unitary matrices such as the
Exp-Map design in [17] or structured partitions of the Grass-
mannian like the recently proposed Cube-Split constellation
[18]. The Cube-Split constellation is of particular interest for
this work as it is the design most related to our proposal.
Cube-Split is based on a mapping from the unit hypercube
to the Grassmann manifold such that the constellation points
are distributed approximately uniformly on the Grassmannian.
However, the Cube-Split mapping only achieves uniformly
distributed points for 7' = 2. When T" > 2, Cube-Split ignores
the statistical dependencies between the components of the
codewords and applies the same mapping derived for T = 2.
These limitations are overcome with our proposed mapping,
named Grass-Lattice, which is a measure preserving mapping
between the unit hypercube and the Grassmannian for any
value of T' > 2. The fact that the Grass-Lattice mapping is
measure preserving guarantees that any set of points uniformly
distributed in the input space (the hypercube), is mapped onto
another set of points or codewords uniformly distributed in



the output space (the Grassmann manifold). The constella-
tion structure allows for on-the-fly symbol generation, low-
complexity decoding, and simple bit-to-symbol Gray coding.

Notation: Matrices are denoted by bold-faced upper case
letters, column vectors are denoted by bold-faced lower case
letters, and scalars are denoted by light-faced lower case
letters. The Euclidean norm is denoted by ||v|| and j denotes
the imaginary unit. The superscripts (-)T and ()" denote
transpose and Hermitian conjugate, respectively. We denote by
I,, the identity matrix of size n. CA/(0,1) denotes a complex
proper Gaussian distribution with zero mean and unit variance,
x ~ CN,,(0,R) denotes a complex Gaussian vector in C"
with zero mean and covariance matrix R. For real variables
we use X ~ N, (0, R). The Grassmannian of lines G (1,CT),
also called the complex projective space, is the space of one-
dimensional subspaces in CT". Points in G (1, CT) are denoted
as [x].

II. SYSTEM MODEL

We consider a noncoherent SIMO communication system
where a single-antenna transmitter sends information to a
receiver equipped with N antennas over a frequency-flat
block-fading channel with coherence time 1" symbol periods.
It is assumed that 7" > 2. Hence, the channel vector h € CV
stays constant during each coherence block of 7' symbols, and
changes in the next block to an independent realization. The
SIMO channel is assumed to be Rayleigh with no correlation
at the receiver, i.e., h ~ CN (0,1y), and unknown to both the
transmitter and the receiver.

Within a coherence block the transmitter sends a signal x €
CT, normalized as x¥x = 1, that is a unitary basis for the
one-dimensional subspace [x] in G (1, CT). The signal at the
receiver Y € CT*¥ is

1
Y:th—H/T—pW, (1)

where W € CT*N represents the additive Gaussian noise,
with entries modeled as w;; ~ CA (0,1), and p represents
the signal-to-noise-ratio (SNR).

In a noiseless situation, Grassmannian signaling guarantees
error-free detection without CSI because x and the noise-free
vector on a receive antenna y = xh represent the same point
in G(1,CT).

For unstructured Grasmmannian codebooks, the optimal
Maximum Likelihood (ML) detector (assuming equiprobable
codewords) is given by

% = arg max || Yx||?, 2)
xeC

where C represents the codebook of K codewords. Each
codeword carries log,(K) bits of information.

The computational complexity of the ML detector increases
with the number of codewords, K, since it is necessary to
project the observation matrix onto each and every codeword.
This is one of the main drawbacks of unstructured Grass-
mannian constellations especially when K is high. Another

drawback of unstructured codes is how to solve the bit labeling
problem, for which there are generally only suboptimal or
computationally intensive solutions. In the following section
we present a structured Grassmannian constellation, called
Grass-Lattice, which solves the two problems of unstructured
constellations: it can be decoded efficiently with a computa-
tional cost that does not grow with K, and it allows for a
Gray-like bit-to-symbol mapping function.

III. GRASS-LATTICE CONSTELLATION

A. Overview

The Grass-Lattice constellation for SIMO channels is based
on a measure preserving mapping from the unit hypercube
(product of the interval (0,1) with itself 2(7" — 1) times) to
the Grassmann manifold G (1, C”')

¥:T=(0,1)x--x(0,1) = G (1,C"),

2(T—1) times

where recall that 7—1 is the complex dimension of G (1,C7T).
Elements in Z are denoted by

(aab) = (a’la"' aaT—15b17'~-abT—1)a

Given the mapping ¢, if we choose a set of input points
uniformly distributed in the unit hypercube, the outputs points
will be uniformly distributed in G (1,C”). The goal is to
design structured codebooks that can be efficiently encoded
(no need to store the constellation) and decoded (the real and
imaginary parts a;, b; can be decoded independently). To this
end, we quantize the (0,1) interval with 27 equispaced points,
where B > 1 is the number of bits per real component, and
generate a Grass-Lattice constellation with |C| = 22(T—DF
codewords. The rate of the code is R = 22(T=V5/ T b/s/Hz.

The Grass-Lattice mapping is composed of three consecu-
tive mappings ¥ = 3 o Y2 o ¥, which are described in the
following subsections.

ak, by, € (0,1).

B. Mapping 94

Mapping )1 maps points uniformly distributed in the unit
hypercube Z to points normally distributed in C*~!. The idea
is to apply component-wise the inverse transform sampling
method, which takes uniform samples on [0,1] and returns
the inverse of the cumulative distribution function with the
desired distribution. More formally, we have the following
classic result that is presented without proof.

Lemma 1 Let ay, by be independent random variables uni-
formly distributed in [0,1]: ar, ~ U[0,1] and b, ~ U[0,1],
and let z;, = F~Y(ay,) + jF~'(by) where

F(z) = % /r e~ ds. 3)

Then, both R(z) = F~'(ax) and $(2x) = F~1(by) are in-
dependent Gaussian random variables that follow a N'(0,1/2)
distribution, and hence z, ~ CN(0,1).



C. Mapping 92

In Lemma 2 we describe the mapping v5, which maps
normally distributed points in CT~! to points uniformly dis-
tributed in the unit ball

Ber-1(0,1) = {w e CT71 ||w| < 1}
Lemma 2 Letz = (z1,...,2r_1) bea (T — 1)-dimensional

Gaussian vector with i.i.d. components z, ~ CN(0,1). More-
over, let

froal) =7 (2(5(;)” / QR ds)

T2 1/(2(T-1))
1 2 12k
=2 (1 —e "y k') (4)

k=0

1/(2(T-1))

Then, the random vector w = U9(z) = zfr_1(||z]]) is
uniformly distributed in the unit ball Ber-1(0, 1).

PROOF.  The proof is given in Appendix A. |

D. Mapping 93
In Lemma 3 we present the mapping ¢/3, which maps

uniformly distributed points in the unit ball Ber-1(0,1) to
points uniformly distributed in G (1,C7).

Lemma 3 The mapping
P¥3: wWE IB(CT—1(O7 1) — G (1,(CT)

N . [\/1 - |w1
W

is measure preserving. So in order to generate a uniform random
element [x] in G (1,CT), one may generate a random uniform

element w in Ber—1(0, 1) and output [/1 — [[w]2, wT]T.

PROOF.  The proof is given in Appendix B. ad

E. Main result

The following theorem summarizes the measure preserving
Grass-Lattice mapping for SIMO channels.

Theorem 1 Let us consider a noncoherent SIMO communi-
cation system with coherence time T' > 2 and let (a,b) =
(a1y...,ap—1,b1,...,bp_1) be any point in the unit hyper-
cube . Let the mapping ¥ : T — G (1,C™') be given by:

st = [T

where:
o w=2zfp_1(||z]|), where fr_; is defined in (4).
o z = (21,...,27_1)T with 2z, = F~Y(ag) + jF~(bg),

where F(x) is given in (3).
Then, ¥ has a constant Jacobian and thus it is measure preserv-
ing.

PROOF.  The proof is given in Appendix C. a

IV. ENCODING AND DECODING

As the measure preserving map is defined on an open
interval (0,1)2(T=1 for a given number B of bits per real
component, we consider 27 equispaced points on the interval
[a, 1 —ql:

R 1 -2«

Tp=Qa+p 5B 1
where « is a parameter that can be optimized for performance
(see Sec. V). The discretization of the real and imaginary (I/Q)
components as in (5) allows us to use a simple bit-to-symbol
Gray mapper. Therefore, the uniformly distributed points on
the unit cube a1,b1,...,a7_1,bp_1 are chosen randomly
from the regular lattice defined by (5). The procedure for
computing the codeword to be transmitted x for an input
ai,bi,...,ar_1,bpr_q is then:

1) Compute z, = F~(ag) +jF ' (by), k=1,...,T—1,
where F(z) is the cdf of a N'(0,1/2). The point z is
isotropically distributed as z ~ CN(0,Ir_1).

2) Compute w = zfr_1(||z||), where fr_1(-) is given in
(4). The point w is uniformly distributed in Ber-1(0, 1).

3) Output x = [{/1— |[w]||2,wT]T. The point [x] with
representative x is uniformly distributed in G (1,CT).

The cardinality of the structured Grassmannian constellation
is |C] = 22B(T=1) and the spectral efficiency or rate is R =
2B — 9B (1 - L) bisHz.

For the Grass-Lattice decoding, let us first consider the
case where the number of receive antennas is N = 1, so the
received T' x 1 signal is y = xh + n. Let y = (v, v), then
the decoder performs the following sequence of steps:

1) Compute w = v|uvg|/(vg|ly]|) (the chordal distance from

1 — [[w|?,w"]T to y in G(1,CT) is minimal for this
choice of w).

2) Solve the equation sfr_1(s) = |wl], for instance by
bisection, and let z = sw/||w]||. Denote by z1, ..., 271
its complex components.

3) Compute ay = F(R(z1)), by = F(S(z1)), where F(z)
is the cdf of a N/(0,1/2).

4) Finally, a, = |ax] and by = |bx] where |z] denotes
the nearest point to x in the lattice (5).

For N > 1, we just perform a denoising step at the decoder
before doing steps 1-4 above. To do so, we use the fact that the
signal of interest xh™ in (1) is a rank-1 component of Y. From
the Eckart-Young theorem, the best rank-1 approximation in
the Frobenius norm of Y is given by A\;rg™, where \; is the
largest singular value of Y, and r and g are the corresponding
left and right singular vectors. We then take r = (vg, V) as
a denoised 7' x 1 vector of observations and compute the
sequence of steps 1-4 above. Interestingly, r is the solution
of

0<p<2¥—1, &)

arg  max [Y"r|?,

reCT: ||r||2=1
so it can be viewed as a relaxed version of the ML decoder
presented in (2) where the discrete nature of the constellation
has been relaxed. Therefore, r is a rough estimate of the
transmitted symbol x on the unit sphere.



The encoding and decoding for the Grass-Lattice constel-
lation can be performed on the fly, without the need to store
the entire constellation. At the decoder, after performing steps
1-4 above, the complexity is that of a symbol-by-symbol
detector per real component, similar to the decoding of a QAM
constellation.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of the pro-
posed Grass-Lattice constellation, and compare it to other
Grassmannian constellations. Since we compare constellations
with different spectral efficiencies, we will show figures of
SER or BER versus E} /Ny (SNR normalized by the spectral
efficiency). Let us first evaluate the influence of «, which
determines the length of the lattice used for each real com-
ponent in (5), on the SER (same influence as on the BER).
Fig. 1 shows the SER variation for a fixed SNR = 20 dB,
T € {4,6}, N =2 and B € {1,2}. As we can see, @ may
have a significant impact on the SER performance. Further,
the SER varies significantly with the number of bits, B, used
to encode each real component. For the rest of experiments in
this section, we will choose the value of « that provides the
lowest SER at SNR = 20 dB (the optimal value of o does not
differ significantly for other SNRs). This value is precomputed
offline and then used throughout the entire simulation.

Fig. 2 shows the SER as a function of Ej/Ny for the
proposed Grass-Lattice codebook for 7' = 2 symbol periods
and N = 1 antenna. For comparison we include in the plot the
structured Cube-Split [18] and Exp-Map [17] constellations, as
well as the unstructured Grassmannian constellations proposed
in [12] that minimize the asymptotic PEP union bound. For
Grass-Lattice and Cube-Split we use B € {2,3} bits per
real component, while for UB-Opt and Exp-Map we choose
constellations with the same spectral efficiency as the ones
provided by Grass-Lattice. In Fig. 2 we can observe that
Grass-Lattice outperforms the other structured constellations
and it performs slightly worse than the unstructured UB-Opt
constellation in terms of SER. Notice that UB-Opt uses the
optimal ML detector in (2), whereas Grass-Lattice uses a
suboptimal detector with much lower complexity.

Figs. 3 and 4 show the BER versus E,/Ny performance
of Grass-Lattice constellations compared to Cube-Split and
Exp-Map for T = 2, N = 1 and B € {2,3} (Fig. 3) and
T =4, N=2and B € {1,2,3} (Fig. 4). For Grass-Lattice,
we use a Gray encoding scheme that maps groups of B bits
to I/Q symbols defined in (5). A Gray-like encoder is also
used for Cube-Split and Exp-Map. Due to the lack of an
optimal bit-to-symbol mapping for unstructured constellations,
we omit UB-Opt in these figures. As we can see, Grass-Lattice
constellations offer a superior performance in terms of BER
than the other structured designs, which becomes more evident
when the coherence time 7" is smaller.

Finally, Fig. 5 shows the spectral efficiency or rate in
b/s/Hz against E,/Ny at BER=10"* for different values
of T and N = 2 for the Grass-Lattice and Cube-Split
constellations. For given values of 7' and B, the spectral
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Fig. 1. SER as a function of « of the Grass-Lattice constellation for 7' €

{4,6}, N =2, B € {1,2} and SNR = 20 dB.

efficiency of the Grass-Lattice code is n = (2B (T'— 1))/ T
and the spectral efficiency of Cube-split is given by n =
(logy T+ 2B (T —1))/ T. We notice from these two ex-
pressions that Cube-Split does not allow for a bit-to-symbol
mapping when T’ is not a power of 2, so Grass-Lattice achieves
a wider range of spectral efficiencies. For example, we can
see in this figure that Grass-Lattice allows you to design
constellations for T' € {3, 6, 14}. For values of T' € {2,4, 8},
for which Grass-Lattice and Cube-Split constellations can
be both designed, we see that Grass-Lattice is more power
efficient than Cube-Split when 1" or B grows. This could be
at least partially explained by the fact that Cube-Split ignores
the statistical dependencies between the different components
of the codeword x for T > 2.

VI. CONCLUSIONS

We have proposed a new Grassmannian constellation for
noncoherent communications in SIMO channels based on a
measure preserving mapping from the unit hypercube to the
Grassmannian of lines. Thanks to its structure, the encoding
and decoding steps can be performed on the fly with no need
to store the whole constellation. Further, it allows for low-
complexity and efficient decoding as well as for a simple Gray-
like bit labeling. Simulation results show that this constellation
outperforms other structured constellations in the literature in
terms of SER and BER under Rayleigh block fading channels,
in addition to being more power efficient. Further research will
be done to study the extension of Grass-Lattice to the MIMO
case.

APPENDIX
A. Proof of Lemma 2

Let us define d = T — 1. The function f; is the unique
solution of
)

FOPHE) + 16 (1) = 1

Td+1) lim tf(t) =1,

t—o00
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Fig. 2. Grass-Lattice SER curves in comparison with UB-Opt, Cube-Split
and Exp-Map constellations for T'=2, N =1 and B € {2, 3}.
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Fig. 3. Grass-Lattice BER curves in comparison with Cube-Split and Exp-
Map constellations for 7= 2, N = 1 and B € {2, 3}.

which satisfies ¢t f(t) € [0,1) and can be written in terms of an
incomplete Gamma function. It is easy to see that 95 : C¢ —
Bca(0,1) is a diffeomorphism. Let us compute the Jacobian
of ¥ if z is (real) orthogonal to z then

DVy(2z)z = zfa(2])),

while for z = z/||z|| we have

z z

Diy(2);— = —fa(llzl) + zfa(ll2])

2l =]

(B
- ( A )).

For any orthonormal basis of C? = R?? whose last vector is
z/||z|| we have that the image by DV is an orthogonal basis.
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Fig. 4. Grass-Lattice BER curves in comparison with Cube-Split and Exp-
Map constellations for T'=4, N =2 and B € {1,2,3}.
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The Jacobian of 95 at z is then just the product of the lengths
of the resulting vectors:

o llzli?

Jaca(z) = fallz)* = (F(lzl)+lz] £ (12]) = Td+1)

Given any integrable mapping g : Bca(0,1) — R, the expected
value of g(w) when w follows the distribution of the lemma
is:

= [ st as
_ w / _, 9(0a(z))Jacvo(z) da

which by the Change of Variables Theorem equals

I'd+1
#/ g(w) dw.
™ weBqq(0,1)



This is the expected value of g in Bca (0, 1), since the volume
of Bea(0,1) is precisely 7¢/T'(d + 1).

B. Proof of Lemma 3

Due to space limitations, we present here a sketch of
the proof, relegating the full proof to a forthcoming journal
paper. We will see that the Jacobian of 1J5 is constant and
equal to 1, which proves the lemma from the Change of
Variables Theorem. In order to compute the Jacobian, we
denote the directional derivative of 3 along the direction
w; by Dds(w)(W;). Since the function 5 is not complex
analytic, we need to consider its domain as a real space
of dimension 2(7" — 1). Therefore, we choose orthonormal
vectors Wy, ..., War_4, Which are complex orthogonal to w,
and complete the basis of CT~! = R2T-1_ with the two
vectors Wor_3 = jw/||w| and war_o = w/||w|. The
Jacobian of 15 is the volume of the parallelepiped spanned by
uy,...,Uar_2, where 0; is the projection of Dds(w)(w;)
onto the orthogonal complement of [{/1 — [[w|2,wT]T. A
straightforward computation yields

W, = ‘2] 1<i<2T —4,
bars = IV TVE),
w(l—[[w|*)/[[w]

iy [l T=TwTZ)
2T wlwl

These are all mutually orthogonal vectors and hence the
parallelepiped they span has volume equal to the product of
their norms, which is equal to 1.

C. Proof of Theorem 1
Let G: G (1, (CT) — C be integrable. From Lemma 3,

1
Vol(G (1,CT)) /[X]GGO,CT) G(bel) dx] =

= Vo 0] e © ([ s ) o

llwl<1

where Vol(S) denotes the volume of the set S. From Lemma
2, this equals

T171 / o ([\/1 J|£|ZfTa|1(||||)Z||)||2J) e l2l® gy,
m 2€CT—1 ZIr—1iiiz

which in turn from Lemma 1 equals
[ @ ([m - ||sz_1<|z|>||2J> da.b)
(a,b)eT zfr—1(||z)

2k = F~ (ag) + jF 1 (by).

All in one, we have proved that the point

with w = zfr_1(||z]|), is uniformly distributed in G (1,CT).

where

z=(21,...,27_1)",
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