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Vı́t Tuček , and Gunnar Peters

Abstract—In this paper, we propose a new structured Grass-
mannian constellation for noncoherent communications over
single-input multiple-output (SIMO) Rayleigh block-fading chan-
nels. The constellation, which we call Grass-Lattice, is based on
a measure preserving mapping from the unit hypercube to the
Grassmannian of lines. The constellation structure allows for on-
the-fly symbol generation, low-complexity decoding, and simple
bit-to-symbol Gray-like coding. Simulation results show that
Grass-Lattice has symbol and bit error rate performance close
to that of a numerically optimized unstructured constellation,
and is more power efficient than other structured constellations
proposed in the literature and a coherent pilot-based scheme.

Index Terms—Noncoherent communications, Grassmannian
constellations, SIMO channels, measure-preserving mapping.

I. INTRODUCTION

IN communications over fading channels, it is usually as-
sumed that the channel state information (CSI) is typically

estimated at the receiver side by periodic transmission of a few
known pilots and then it is used for decoding at the receiver
and/or for precoding at the transmitter. These are known as
coherent schemes. The channel capacity for coherent systems
is known to increase linearly with the minimum number of
transmit and receive antennas at high signal-to-noise (SNR)
ratio [1], [2] when the channel remains approximately constant
over a long coherence time (slowly fading scenarios).

However, in fast fading scenarios or massive multiple-input
multiple-output (MIMO) systems for ultra-reliable low-latency
communications (URLLC), to obtain an accurate channel esti-
mate would require pilots to occupy a disproportionate fraction

This work was supported by Huawei Technologies, Sweden under the
project GRASSCOM. The work of D. Cuevas was also partly supported
under grant FPU20/03563 funded by Ministerio de Universidades (MIU),
Spain. The work of Carlos Beltrán was also partly supported under grant
PID2020-113887GB-I00 funded by MCIN/ AEI /10.13039/501100011033.
The work of I. Santamaria was also partly supported under grant PID2019-
104958RB-C43 (ADELE) funded by MCIN/ AEI /10.13039/501100011033.
A short preliminary version of this paper was presented at the 2022 IEEE
Global Communications Conference: Signal Processing for Communications
(Globecom 2022 SPC).
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of communication resources [3], [4]. These new scenarios that
have emerged with 5G and B5G systems motivate the use of
noncoherent communications schemes in which neither the
transmitter nor the receiver have any knowledge about the
instantaneous CSI.

Despite the receiver not having CSI, a significant fraction
of the coherent capacity can be achieved in noncoherent
communication systems when the signal-to-noise ratio (SNR)
is high, as shown in [5]–[8]. For the case of single-input
multiple-output (SIMO) channels, which is the one we focus
on in this paper, these works proved that at high SNR under
additive Gaussian noise, assuming a Rayleigh block-fading
SIMO channel with coherence time T ≥ 2, the optimal
strategy achieving the capacity is to transmit isotropically
distributed unitary vectors belonging to the Grassmannian of
lines or projective space [7], [8]. Equivalently, these constel-
lations correspond to packings on the sphere. Therefore, in
noncoherent SIMO communication systems the information is
carried by the column span of the transmitted vector, which
is not affected by the SIMO channel.

An extensive research has been conducted on the design of
noncoherent constellations as optimal packings on the Grass-
mann manifold [9]–[23]. Some experimental evaluation of
Grassmannian constellations in noncoherent communications
using over-the-air transmission has been reported in [24].
Existing constellation designs can be generically categorized
into two groups: structured or unstructured. Among the un-
structured designs we can mention the alternating projection
method [10], the numerical methods in [11]–[14], which
optimize certain distance measures on the Grassmannian (e.g.,
chordal or spectral), and the methods proposed in [15] and
[16], which maximize the so-called diversity product [25].

On the other side, structured designs impose some kind of
structure on the constellation points, facilitating low complex-
ity constellation mapping and demapping. This is achieved
through algebraic constructions such as the Fourier-based
constellation in [17], the uniquely factorable constellations in
[18] or the analog subspace codes recently proposed in [19],
designs based on group representations [20], [21], parameter-
ized mappings of unitary matrices such as the Exp-Map design
in [22] or structured partitions of the Grassmannian like the
recently proposed Cube-Split constellation [23]. The Cube-
Split constellation is of particular interest for this work as it is
the design most related to our proposal. Cube-Split is based on
a mapping from the unit hypercube to the Grassmann manifold
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such that the constellation points are distributed approximately
uniformly on the Grassmannian. However, the Cube-Split
mapping only achieves uniformly distributed points for T = 2.
When T > 2, Cube-Split ignores the statistical dependencies
between the components of the constellation points and applies
the same mapping derived for T = 2. These limitations are
overcome with our proposed mapping, named Grass-Lattice,
which is a measure preserving mapping between the unit
hypercube and the Grassmannian for any value of T ≥ 2.
The fact that the Grass-Lattice mapping is measure preserving
guarantees that any set of points uniformly distributed in
the input space (the hypercube), is mapped onto another
set of points uniformly distributed in the output space (the
Grassmann manifold). The constellation structure allows for
on-the-fly symbol generation, low-complexity decoding, and
simple bit-to-symbol Gray-like coding. There exist other ways
of obtaining uniformly distributed points in the Grassmannian,
e.g. by using random Gaussian matrices [26], but the resulting
constellations would not have any kind of structure and would
make it necessary to apply an exhaustive detector.

This paper extends the work presented in [27], which
presents an overview of the Grass-Lattice constellation for
SIMO channels. The proposed constellation is based on the
composition of three mappings, which together produce a
measure preserving mapping of the unit hypercube to the
Grassmannian of lines. The first mapping transforms points
uniformly distributed in the unit hypercube to normally dis-
tributed points. Then, the second mapping takes these nor-
mally distributed points and maps them to points uniformly
distributed in the unit ball, which is the subset of vectors
with modulus less than 1. Finally, the third mapping maps
these uniformly distributed points in the unit ball to points
uniformly distributed in the Grassmannian of lines. The nov-
elties presented in this paper are the following:

• We present an alternative way of constructing the output
vector in the second mapping, which transforms normally
distributed points to points uniformly distributed in the
unit ball, using a chi-squared random variable.

• We now derive the third mapping, which takes points
uniformly distributed in the unit ball and maps them to
points uniformly distributed in the Grassmannian of lines,
for any number of transmit antennas. This is a first step
to extend the Grass-Lattice mapping to the MIMO case,
which is not straightforward since the corresponding tar-
get space (the Grassmann manifold of higher-dimensional
subspaces) does not share the symmetry properties of
projective space.

• We provide a visualization of the inputs and outputs of
each mapping for the case T = 2.

• We include more comprehensive simulation results show-
ing the symbol and bit error rate (SER and BER) perfor-
mance as a function of the length of the lattice used in
the input space, α.

• We also propose a new way of computing the optimum
value of α based on the minimum chordal distance of the
constellation.

• We include as a baseline the performance of a coherent

pilot-based scheme in terms of SER, BER, and spectral
efficiency versus energy per bit to noise power spectral
density ratio (Eb/N0).

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III we
describe the proposed measure preserving mapping, named
Grass-Lattice, which maps points uniformly distributed in the
unit hypercube to the Grassmann manifold. We next present
the procedures for encoding and decoding using Grass-Lattice
mapping in Section IV. A comprehensive set of numerical
simulation results to assess the performance of the proposed
method in terms of symbol and bit error rates, as well as
power efficiency, is provided in Section V. Finally, Section
VI concludes the paper. In addition, the paper contains a set
of appendices that includes the proofs of the mathematical
results.

Notation: Matrices are denoted by bold-faced upper case
letters, column vectors are denoted by bold-faced lower case
letters, and scalars are denoted by light-faced lower case
letters. The Euclidean norm is denoted by ∥v∥, the operator
norm is denoted by ∥M∥op and j denotes the imaginary unit.
The superscripts (·)T and (·)H denote transpose and Hermitian
conjugate, respectively. We denote by In the identity matrix
of size n × n. A complex proper Gaussian distribution with
zero mean and unit variance is denoted as CN (0, 1) and
x ∼ CN (0,R) denotes a complex Gaussian vector in Cn

with zero mean and covariance matrix R. For real variables
we use x ∼ N (0,R). The complex Grassmann manifold
of M -dimensional subspaces of the T -dimensional complex
vector space CT is denoted as G(M,CT ). Particularly, the
Grassmannian of lines G

(
1,CT

)
, also called the complex

projective space, is the space of one-dimensional subspaces
in CT . Points in G(M,CT ) are denoted as [X] and points
in G

(
1,CT

)
are denoted as [x]. For required background

material on the Grassmann manifold we refer the reader to
[28, Chap. 9].

II. SYSTEM MODEL

A. System Model

We consider a noncoherent SIMO communication system
where a single-antenna transmitter sends information to a
receiver equipped with N antennas over a frequency-flat
block-fading channel with coherence time T symbol periods.
It is assumed that T ≥ 2. Hence, the channel vector h ∈ CN

stays constant during each coherence block of T symbols, and
changes in the next block to an independent realization. The
SIMO channel is assumed to be Rayleigh with no correlation
at the receiver, i.e., h ∼ CN (0, IN ), and unknown to both the
transmitter and the receiver.

Within a coherence block the transmitter sends a signal x ∈
CT (which is taken from a finite constellation C), normalized
as xHx = 1, that is a unitary basis for the one-dimensional
subspace [x] in G

(
1,CT

)
. The signal at the receiver Y ∈

CT×N is

Y = xhT +

√
1

Tρ
W, (1)
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where W ∈ CT×N represents the additive Gaussian noise,
with entries modeled as wij ∼ CN (0, 1), and ρ represents
the signal-to-noise-ratio (SNR).

In a noiseless situation, Grassmannian signaling guarantees
error-free detection without CSI because x and the noise-free
vector on a receive antenna y = xh represent the same point in
G(1,CT ). When the noise is present, the span of the received
signal at each receive antenna deviates from that of x since
the columns of W are almost surely not aligned with x. This
leads to a detection error if Y lies outside the decision region
of the transmitted symbol.

The constellation C should be designed to minimize the
probability of decoding error. This probability of error can
be bounded by the pairwise error probability (PEP) union
bound (UB). As it was shown in [6], the PEP decreases with
the chordal distance between constellation points. Therefore,
maximizing the pairwise chordal distance minimizes the union
bound. This leads to the commonly used constellation design
criteria of maximizing the minimum pairwise chordal distance.
This optimization problem can be solved numerically but the
resulting constellation is hard to exploit in practice due to its
lack of structure.

For unstructured Grasmmannian constellations, the optimal
Maximum Likelihood (ML) detector that minimizes the prob-
ability of error is given by

x̃ = argmax
x∈C

∥YHx∥2, (2)

where C represents the set of K constellation points. Each
constellation point carries log2(K) bits of information.

The computational complexity of the ML detector increases
with the number of constellation points, K, since it is neces-
sary to project the observation matrix onto each and every
constellation point. This is one of the main drawbacks of
unstructured Grassmannian constellations especially when K
is high. Another drawback of unstructured codes is how to
solve the bit labeling problem, for which there are generally
only suboptimal or computationally intensive solutions. In the
following section we present a structured Grassmannian con-
stellation, called Grass-Lattice, which solves the two problems
of unstructured constellations while preserving good packing
properties: it can be decoded efficiently with a computational
cost that does not grow with K, and it allows for a Gray-like
bit-to-symbol mapping function.

III. GRASS-LATTICE CONSTELLATION

A. Overview

The Grass-Lattice constellation for SIMO channels is based
on a measure preserving mapping from the unit hypercube
(product of the interval (0, 1) with itself 2(T − 1) times) to
the Grassmann manifold G

(
1,CT

)
ϑ : I = (0, 1)× · · · × (0, 1)︸ ︷︷ ︸

2(T−1) times

→ G
(
1,CT

)
,

where recall that T−1 is the complex dimension of G
(
1,CT

)
.

Elements in I are denoted by

(a,b) = (a1, . . . , aT−1, b1, . . . , bT−1), ak, bk ∈ (0, 1).

The Grass-Lattice mapping ϑ : I → G
(
1,CT

)
has the

following properties:
1) The image of ϑ is all of G

(
1,CT

)
except for a zero–

measure subset of G
(
1,CT

)
,

2) ϑ is a diffeomorphism onto its image,
3) and the Jacobian of ϑ is constant.
Given the mapping ϑ, if we choose a set of input points

uniformly distributed in the unit hypercube, the outputs points
will be uniformly distributed in G

(
1,CT

)
. The goal is to

design structured constellations that can be efficiently encoded
(no need to store the constellation) and decoded (the real and
imaginary parts aj , bj can be decoded independently). To this
end, we quantize the (0,1) interval with 2B equispaced points,
where B ≥ 1 is the number of bits per real component, and
generate a Grass-Lattice constellation with |C| = 22(T−1)B

points. The rate of the code is R = 2(T−1)B
T b/s/Hz.

The Grass-Lattice mapping is composed of three consecu-
tive mappings ϑ = ϑ3 ◦ ϑ2 ◦ ϑ1, which are described in the
following subsections.

B. Mapping ϑ1

Mapping ϑ1 maps points uniformly distributed in the unit
hypercube I to points normally distributed in CT−1. The idea
is to apply component-wise the inverse transform sampling
method, which takes uniform samples on [0, 1] and returns
the inverse of the cumulative distribution function with the
desired distribution (this is similar to the function w in the
Cube-Split design, see Eq. (12) in [23]). More formally, we
have the following classic result:

Lemma 1 Let ak, bk be independent random variables uni-
formly distributed in [0, 1]: ak ∼ U [0, 1] and bk ∼ U [0, 1],
and let zk = F−1(ak) + jF−1(bk) where

F (t) =
1√
π

∫ t

−∞
e−s2 ds. (3)

Then, both ℜ(zk) = F−1(ak) and ℑ(zk) = F−1(bk) are in-
dependent Gaussian random variables that follow a N (0, 1/2)
distribution, and hence zk ∼ CN (0, 1).

Proof: For any integrable mapping g : R → R, the
expected value of g(x) is∫ 1

0

g(F−1(x)) dx =

∫ ∞

−∞
g(t)|F ′(t)| dt

=
1√
π

∫ ∞

−∞
g(t)e−t2 dt,

where we are using the change of variables theorem. The
lemma follows.

C. Mapping ϑ2

In Lemma 2 we describe the mapping ϑ2, which maps
normally distributed points in CT−1 to points uniformly dis-
tributed in the unit ball

BCT−1(0, 1) = {w ∈ CT−1, ∥w∥ < 1}.
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Lemma 2 Let z = (z1, . . . , zT−1)
T be a (T − 1)-dimensional

Gaussian vector with i.i.d. components zk ∼ CN (0, 1). More-
over, let

fT−1(t) =
1

t

(
γ(T − 1, t2)

(T − 2)!

)1/(2(T−1))

=
1

t

(
1− e−t2

T−2∑
k=0

t2k

k!

)1/(2(T−1))

. (4)

where γ(s, x) represents the (lower) incomplete gamma func-
tion.
Then, the random vector w = ϑ2(z) = zfT−1(∥z∥) is
uniformly distributed in the unit ball BCT−1(0, 1).

Proof: The proof is given in Appendix A.

Remark 1 Since z ∼ CN (0, IT−1), 2∥z∥2 ∼ χ2
2(T−1).

The random vector w = ϑ2(z) = zfT−1(∥z∥) can be
alternatively constructed as follows. Begin with the unit-norm
vector z/∥z∥ that lies on S2(T−1)−1, where d = T − 1, and
scale it as

w =
z

∥z∥
(Fχ2

2(T−1)
(2∥z∥2))1/(2(T−1)),

where Fχ2
2(T−1)

(y) is the cdf of a chi-squared random variable
with 2(T − 1) degrees of freedom evaluated at y, which can
be computed in closed-form as

Fχ2
2(T−1)

(y) = 1− e−y/2

(T−1)−1∑
k=0

yk

2kk!
.

The distribution of the squared norm of w can be derived as
follows

∥w∥2 =
zHz

∥z∥2
(Fχ2

2(T−1)
(2∥z∥2))1/(T−1)

= (Fχ2
2(T−1)

(2∥z∥2))1/(T−1).

Since 2∥z∥2 ∼ χ2
2(T−1), Fχ2

2(T−1)
(2∥z∥2) is uniformly dis-

tributed in [0, 1]. It is a known property that if x ∼ U [0, 1]
then x1/r ∼ Beta(r, 1). All together, this shows that ∥w∥2 ∼
Beta(T − 1, 1). As a reminder, the pdf of a beta-distributed
random variable with shape parameters α, β > 0 is given
by f(x;α, β) = 1

B(α,β) xα−1(1 − x)β−1, where B(α, β) =
Γ(α)Γ(β)
Γ(α+β) and Γ(n) = (n− 1)! is the Gamma function.

D. Mapping ϑ3

In this section we present the mapping ϑ3, which maps
uniformly distributed points in the operator norm unit ball
BC(T−M)×M ,op(0, 1) = {W ∈ C(T−M)×M , ∥W∥op < 1}
to points uniformly distributed in G

(
M,CT

)
. We will first

derive the mapping ϑ3 for any value of M and then we will
particularize it for M = 1.

Lemma 3 Consider the mapping

Θ : C(T−M)×M → BC(T−M)×M ,op(0, 1)

A 7→ A(IM +AHA)−1/2,

whose inverse is

Θ−1 : BC(T−M)×M ,op(0, 1) → C(T−M)×M

W 7→ W(IM −WHW)−1/2.

Then, the Jacobian of Θ equals det(IM +WHW)−T .

Proof: The proof is given in Appendix B.
We are ready to prove the following result:

Proposition 1 For all integrable f : C(T−M)×M → C we
have∫

A∈C(T−M)×M

f(A)

det(IM +AHA)T
dA

=

∫
W∈C(T−M)×M

∥W∥op<1

f
(
W(IM −WHW)−1/2

)
dW, (5)

Proof: The proof follows from the change of variables
theorem and Lemma 3 above.
We immediately get:

Corollary 1 For all integrable f : G(M,CT ) → C we have∫
[X]∈G(M,CT )

f([X]) d[X]

=

∫
W∈C(T−M)×M

∥W∥op<1

f

([(
IM −WHW

)1/2
W

])
dW. (6)

In other words: in order to generate a uniform random element
[X] in G(M,CT ), one may generate a random uniform
element W in the operator norm unit ball of C(T−M)×M and
output [(

IM −WHW
)1/2

W

]
.

In Lemma 4 we particularize the mapping ϑ3 for M = 1,
which maps uniformly distributed points in the unit ball
BCT−1(0, 1) to points uniformly distributed in G

(
1,CT

)
. We

can notice that a mapping similar to ϑ3 for M = 1 has
been used for the Exp-Map constellation (see Eq. (8) in [22]),
despite being obtained with a completely different approach.

Lemma 4 The mapping

ϑ3 : w ∈ BCT−1(0, 1) → G
(
1,CT

)
w 7→

[√
1− ∥w∥2

w

]
is measure preserving. So in order to generate a uniform random
element [x] in G

(
1,CT

)
, one may generate a random uniform

element w in BCT−1(0, 1) and output
[√

1− ∥w∥2,wT
]T

.

E. Main result

The following theorem summarizes the measure preserving
Grass-Lattice mapping for SIMO channels.

Theorem 1 Let us consider a noncoherent SIMO communi-
cation system with coherence time T ≥ 2 and let (a,b) =
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(a1, . . . , aT−1, b1, . . . , bT−1) be any point in the unit hyper-
cube I. The mapping ϑ : I → G

(
1,CT

)
given by

ϑ(a,b) =

[√
1− ∥w∥2

w

]
,

where:
• w = zfT−1(∥z∥), where fT−1 is defined in (4).
• z = (z1, . . . , zT−1)

T with zk = F−1(ak) + jF−1(bk),
where F (x) is given in (3).

Then, ϑ has a constant Jacobian and thus it is measure preserv-
ing.

Proof: The proof is given in Appendix C.

IV. ENCODING AND DECODING

For M = 1, the Grassmann manifold G(M,CT ) has
complex dimension T −1 and real dimension 2(T −1). Since
the measure preserving map we define has domain (0, 1)2(T−1)

and (0, 1) is an open interval, whatever discretization we
choose in (0, 1) will necessarily have a lowest point α > 0
and a highest point 1 − β < 1. Due to the symmetry of the
mapping we find no reasons to choose β ̸= α and hence for a
given number B of bits per real component, we consider 2B

equispaced points on the interval [α, 1− α]:

x̂p = α+ p
1− 2α

2B − 1
, 0 ≤ p ≤ 2B − 1, (7)

where α is a parameter that can be optimized for performance
(see Sec. V). The discretization of the real and imaginary (I/Q)
components as in (7) allows us to use a simple bit-to-symbol
Gray-like mapper. Therefore, the uniformly distributed points
on the unit cube a1, b1, . . . , aT−1, bT−1 are chosen randomly
from the regular lattice defined by (7).

A. Encoder

The procedure for computing the constellation point to be
transmitted x for an input a1, b1, . . . , aT−1, bT−1 is then:

1) Compute zk = F−1(ak)+ jF−1(bk), k = 1, . . . , T − 1,
where F (x) is the cdf of a N (0, 1/2). The point z is
isotropically distributed as z ∼ CN (0, IT−1).

2) Compute w = zfT−1(∥z∥), where fT−1(·) is given in
(4). The point w is uniformly distributed in BCT−1(0, 1).

3) Output

x =

[√
1− ∥w∥2

w

]
.

The result of this procedure is a point [x] with representative

x =
[√

1− ∥w∥2,wT
]T

which is uniformly distributed in
G
(
1,CT

)
. The cardinality of the structured Grassmannian

constellation is |C| = 22B(T−1), and the spectral efficiency
or rate is R = 2B(T−1)

T = 2B
(
1− 1

T

)
b/s/Hz.

The input and output of the mappings ϑ1, ϑ2 and ϑ3 that
form the Grass-Lattice mapping can be plotted for the case
T = 2. For this specific case, the input (a,b) has two real
components (a1, b1) and vectors z and w have one complex
component (z1 and w1 respectively). To represent the points

[x] with representative x = [x1, x2]
T
=
[√

1− |w1|2, w1

]T
,

we use the Hopf map [29]:

p : {(x1, x2) ∈ R× C : → S2
|x1|2 + |x2|2 = 1}

(x1, x2) 7→
(
2x1x

∗
2, |x2|2 − |x1|2

)
.

(8)

This Hopf map is a well-known map in topology that provides
an explicit smooth one-to-one representation of the projective
space G(1,C2) into S2, and more generally maps higher-
dimensional spheres into lower-dimensional spheres. Fig. 1
shows the generation of the whole Grass-Lattice constellation
for T = 2, B = 4 and α = 0.05.

B. Decoder

In this section we propose a greedy decoder in order to
avoid the high-complexity ML decoder presented in (2). Let
us first consider the case where the number of receive antennas
is N = 1, so the received T × 1 signal is y = xh + n. Let
y = (v0,v), then the decoder performs the following sequence
of steps:

1) Compute w = v|v0|/(v0∥y∥) (the chordal distance from[√
1− ∥w∥2,wT

]T
to y in G(1,CT ) is minimal for this

choice of w).
2) Solve the equation sfT−1(s) = ∥w∥ by the inverse of a

chi-square CDF (see Remark 1) and let z = sw/∥w∥.
Denote by z1, . . . , zT−1 its complex components.

3) Compute âk = F (ℜ(zk)), b̂k = F (ℑ(zk)), where F (x)
is the cdf of a N (0, 1/2).

4) Finally, ak = ⌊âk⌉ and bk = ⌊b̂k⌉ where ⌊x⌉ denotes
the nearest point to x in the lattice (7).

Multi-antenna receiver: For N > 1, we just perform a
denoising step at the decoder before doing steps 1-4 above,
which is also used in the systematic decoder of the Cube-Split
constellation [23]. To do so, we use the fact that the signal of
interest xhT in (1) is a rank-1 component of Y. The Eckart-
Young theorem [30] states that the least squares approximation
in s dimensions of an m × n matrix X with singular value
decomposition UΣVH is obtained by replacing the smallest
n − s singular values of Σ with zeroes and remultiplying
UΣVH . Thus, the best rank-1 approximation in the Frobenius
norm of Y is given by λ1rg

H, where λ1 is the largest singular
value of Y, and r and g are the corresponding left and right
singular vectors. We then take r = (v0,v) as a denoised T ×1
vector of observations and compute the sequence of steps 1-4
above. Interestingly, r is the solution of

arg max
r∈CT : ∥r∥2=1

∥YHr∥2,

so it can be viewed as a relaxed version of the ML decoder
presented in (2) where the discrete nature of the constellation
has been relaxed. Therefore, r is a rough estimate of the
transmitted symbol x on the unit sphere.

The encoding and decoding for the Grass-Lattice constel-
lation can be performed on the fly, without the need to store
the entire constellation. The complexity of the Grass-Lattice
encoding is linear with T because of the size of the vectors
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Fig. 1: Grass-Lattice mapping for T = 2, B = 4 and α = 0.05. (a) Lattice I. (b) Normally distributed points in C. (c)
Uniformly distributed points in BC(0, 1). (d) Uniformly distributed points in G(1,C2).

involved (since step 2 can be implemented as explained in
Remark 1) and the complexity of the decoder is dominated
by the SVD computation of the denoising step, which yields
a leading complexity order of O(T 2N). After performing
steps 1-4 above, the complexity is that of a symbol-by-symbol
detector per real component, similar to the decoding of a QAM
constellation.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of the proposed
Grass-Lattice constellation, and compare it to other structured
and unstructured Grassmannian constellations used for non-
coherent communications. Since we compare constellations
with different spectral efficiencies, we will show figures of
SER or BER versus Eb/N0 (SNR normalized by the spectral
efficiency).

A. SER/BER vs. α

Let us first evaluate the influence of α, which determines
the length of the lattice used for each real component in (7),
on the SER and the BER. Figs. 2a, 2b, 3a and 3b show the

SER/BER (with the greedy decoder) vs. α curves for SNR
∈ {10, 20} dB, T ∈ {4, 6}, B ∈ {1, 2} and N = 2. Remember
that the spectral efficiency of the Grass-Lattice constellation
is R = 2(T−1)B

T b/s/Hz. As we can see, α may have a
significant impact on the SER and BER performance of the
Grass-Lattice constellation. Further, the SER and BER vary
significantly with the number of bits, B, used to encode each
real component. It is also worth noticing that the SER/BER
vs. α curves are smooth functions with a unique minimum so
the optimal value α∗ can be easily determined by searching
over a predetermined grid. Clearly, the number of bits B
influences the optimal α∗ more than the coherence time T .
Another aspect that we observe is that the BER and SER
vary similarly with α, and hence the optimal value α∗ can
be obtained from either the SER or BER curve. We can also
see that the optimal value α∗ does not change significantly
with the SNR. Therefore, for the rest of experiments in this
section, we will choose the value of α that provides the lowest
SER at SNR = 20 dB. This value is easily precomputed offline
and then used throughout the entire simulation. The optimal
values of α for several values of T and B have been collected
in Table I.



CUEVAS et al: CONSTELLATIONS ON THE SPHERE WITH EFFICIENT ENCODING-DECODING FOR NONCOHERENT COMMUNICATIONS 7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−1

100

α

SE
R

T = 4, B = 1
T = 6, B = 1
T = 4, B = 2
T = 6, B = 2

(a) SNR = 10 dB

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−3

10−2

10−1

100

α

SE
R

T = 4, B = 1
T = 6, B = 1
T = 4, B = 2
T = 6, B = 2

(b) SNR = 20 dB

Fig. 2: SER as a function of α of the Grass-Lattice constella-
tion for T ∈ {4, 6}, N = 2, B ∈ {1, 2} and SNR ∈ {10, 20}
dB.

B = 1 B = 2 B = 3 B = 4 B = 5

T = 2 0.20 0.14 0.10 0.06 0.02
T = 3 0.20 0.14 0.10 0.05 0.03
T = 4 0.21 0.14 0.11 0.06 0.03
T = 6 0.21 0.15 0.10 0.06 0.02
T = 8 0.21 0.14 0.10 0.07 0.03
T = 14 0.22 0.14 0.11 0.07 0.03

TABLE I: Optimal values of α for different pairs (T,B).

B. Minimum chordal distance vs. α

For constellations of relatively small cardinality (up to
1024 constellation points), instead of resorting to a SER/BER
simulation to calculate the optimum value of parameter α, we
can generate the whole Grass-Lattice constellation and use the
minimum chordal distance between points as the criterion to
optimize α. In this way, α∗ can be computed much faster
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E
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T = 4, B = 1
T = 6, B = 1
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(a) SNR = 10 dB
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T = 6, B = 1
T = 4, B = 2
T = 6, B = 2

(b) SNR = 20 dB

Fig. 3: BER as a function of α of the Grass-Lattice constella-
tion for T ∈ {4, 6}, N = 2, B ∈ {1, 2} and SNR ∈ {10, 20}
dB.

than with the SER/BER simulation proposed in the previous
section.

Fig. 4 shows the minimum chordal distance between con-
stellation points for different values of α ranging from 0.02
to 0.4, T = 2 and B ∈ {2, 3, 4, 5}. We can observe that the
functions are smooth and have a clear maximum, which gives
the value of α∗. We can also see that, in this case, the optimum
value of α with respect to the minimum chordal distance does
not change significantly when we increase the number of bits
B used to encode each real component. As the SER simulation
for a fixed SNR gives a better approximation of which is the
optimum value of α in practice, for the rest of experiments in
this section we will choose the value of α that provides the
lowest SER at SNR = 20 dB, as it was stated before.
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Fig. 4: Minimum chordal distance as a function of α of the
Grass-Lattice constellation for T = 2 and B ∈ {2, 3, 4, 5}.

2 4 6 8 10 12 14 16 18
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

log2 |C|

M
in

.c
ho

rd
al

di
st

an
ce

Grass-Lattice
Cube-Split
Upper Bound
Lower Bound

Fig. 5: Minimum chordal distance of the Grass-Lattice con-
stellation in comparison with Cube-Split and the fundamental
limits given in [23, Lem. 1] for B = 1.

C. Packing efficiency

Fig. 5 shows the minimum chordal distance (packing effi-
ciency) obtained for Grass-Lattice with different constellation
sizes |C| when B = 1 in comparison with Cube-Split [23]. We
should recall here that for B = 1 the size of the Grass-Lattice
constellation is given by |C| = 22(T−1) and the size of Cube-
Split constellation is |C| = T ·22(T−1). The packing efficiency
of the proposed constellation is also benchmarked against
the fundamental limits given in [23, Lem. 1]. This lemma
states that the minimum distance δ of an optimal constellation
of cardinality |C| on the complex Grassmannian of lines is
bounded by

min{1, 2|C|−
1

2(T−1) } ≥ δ ≥ |C|−
1

2(T−1) (9)

We observe that Grass-Lattice has a greater minimum

10 12 14 16 18 20 22 24

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

SE
R

Greedy decoder
ML decoder

T = 2, N = 1, B = 2

T = 2, N = 1, B = 3

T = 4, N = 2, B = 1

T = 4, N = 2, B = 2

Fig. 6: SER performance of the Grass-Lattice with low-
complexity greedy detector in comparison with Maximum
Likelihood detector for T ∈ {2, 4}, N = T/2 and different
number of bits per real component B.

chordal distance than Cube-Split, especially for small con-
stellation sizes, and the packing efficiency remains between
the fundamental limits for constellations with less than 1024
points.

D. Greedy vs. ML detector

In this section, we evaluate the SER performance of the
Grass-Lattice when using two different detectors: the greedy
detector proposed in Section IV-B and the optimal ML detector
presented in (2). Fig. 6 shows this comparison for different
scenarios with T ∈ {2, 4}, N = T/2 and different number of
bits per real component B.

As we can see, in all cases the low-complexity greedy
detector achieves near-ML performance, especially for those
scenarios with lower coherence time T . Therefore, in the
following sections we will only show the performance of the
greedy detector for the Grass-Lattice constellations.

E. SER/BER vs. Eb/N0

Fig. 7 shows the SER as a function of Eb/N0 for the
proposed Grass-Lattice constellation (with greedy decoder) for
T = 2 symbol periods and N = 1 antenna. For comparison
we include in the plot the structured Cube-Split [23] (with
greedy decoder), Exp-Map [22] (with greedy decoder) and
unitary uniquely factorable constellations (UUFC) [18] (with
ML decoder), as well as the unstructured Grassmannian con-
stellations proposed in [16] (with ML decoder) that minimize
the asymptotic PEP union bound (and hence labeled as UB-
Opt).

In addition, we include as a baseline the performance of
a coherent pilot-based scheme. The transmitted signal for the
pilot-based scheme is xcoh = [1, xd]

T /
√
2, where the first

symbol is the constant pilot, which is known at the receiver,
and the second symbol xd is taken from a QAM constellation
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Fig. 7: Grass-Lattice SER curves in comparison with Cube-
Split, Exp-Map, UUFC and UB-Opt constellations and a pilot-
based scheme for T = 2, N = 1 and B ∈ {2, 3}.

with cardinality 22(T−1)B , so that the coherent scheme has the
same spectral efficiency as Grass-Lattice. That is, when B = 2
we use a 16-QAM constellation, and when B = 3 we use a 64-
QAM constellation. The QAM constellations are normalized
such that E[|xd|2] = 1. Therefore, E[xH

cohxcoh] = 1 and hence
the average transmit power of the pilot-based scheme is the
same as that of the noncoherent schemes. Notice also that
the power devoted to the data transmission is the same as the
power devoted to training. This is the optimal power allocation
for T = 2 and M = 1 as shown in [31]1.

For Grass-Lattice and Cube-Split we use B ∈ {2, 3} bits per
real component, while for UB-Opt, Exp-Map and UUFC we
choose constellations with the same spectral efficiency as the
ones provided by Grass-Lattice. In Fig. 7 we can observe that
Grass-Lattice outperforms the other structured constellations
and, as it was expected, it performs slightly worse than the
unstructured UB-Opt constellation in terms of SER. Notice
that UB-Opt uses the optimal ML detector in (2), whereas
Grass-Lattice uses a suboptimal detector with much lower
complexity.

Figs. 8a and 8b show the BER versus Eb/N0 performance
of Grass-Lattice constellations compared to Cube-Split, Exp-
Map, weighed UB-Opt (joint constellation and bit-to-symbol
mapping design) and a pilot-based scheme for T = 2, N = 1
and B ∈ {2, 3}. For Grass-Lattice, we use a Gray-like encod-
ing scheme that maps groups of B bits to I/Q symbols defined
in (7). A Gray-like encoder is also used for Cube-Split, Exp-
Map and the pilot-based scheme. As we can see, Grass-Lattice
constellations offer a superior performance in terms of BER
than the other structured designs and the pilot-based scheme,

1In fact, it is shown in [31] that from an information-theoretic point of view
using a number of pilots equal to the number of transmit antennas M is always
optimal, provided that we optimize the power allocation between pilots and
data. Equal power allocation is optimal for T = 2 and M = 1. Nevertheless,
we should bear in mind that these results are obtained by maximizing a lower
bound on the capacity. Conclusions might be different if we optimize instead
the SER or BER performance.
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Fig. 8: Grass-Lattice BER curves in comparison with Cube-
Split, Exp-Map and UB-Opt constellations and a pilot-based
scheme for T = 2, N = 1 and B ∈ {2, 3}.

which becomes more evident when the coherence time T
is smaller. The joint design of the unstructured constellation
using the UB criterion and the bit labeling scheme provides
for these examples the best performance.

In Figs. 9a and 9b we consider two different scenarios with
T = 4, N = 2 and B ∈ {1, 2, 3} and T = 8, N = 2
and B ∈ {1, 2} respectively. We restrict the comparison for
these scenarios to the Grass-Lattice, Cube-Split, and Exp-Map.
Although Grass-Lattice is still the best performing method, the
differences with Cube-Split are reduced, especially for a small
number of bits.

F. Spectral efficiency vs. Eb/N0

Finally, Fig. 10 shows the spectral efficiency or rate in
b/s/Hz against Eb/N0 at BER=10−4 for different values of T
and N = 2 for the Grass-Lattice and Cube-Split constellations.

For given values of T and B, the spectral efficiency
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Fig. 9: Grass-Lattice BER curves in comparison with Cube-
Split and Exp-Map constellations for T ∈ {4, 8}, N = 2 and
different number of bits per real component B.

of the Grass-Lattice code is η = (2B (T − 1)) / T and
the spectral efficiency of Cube-split is given by η =
(log2 T + 2B (T − 1)) / T . We notice from these two ex-
pressions that Cube-Split does not allow for a bit-to-symbol
mapping when T is not a power of 2, so Grass-Lattice achieves
a wider range of spectral efficiencies. For example, we can
see in this figure that Grass-Lattice allows you to design
constellations for T ∈ {3, 6, 14}. For values of T ∈ {2, 4, 8},
for which Grass-Lattice and Cube-Split constellations can
be both designed, we see that Grass-Lattice is more power
efficient than Cube-Split when T or B grows. This could be
at least partially explained by the fact that Cube-Split ignores
the statistical dependencies between the different components
of the constellation point x for T > 2.

Fig. 11 shows a comparison between Grass-Lattice and a
coherent pilot-based scheme. For the coherent scheme for each
value of T we get three points that correspond to transmissions
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Fig. 10: Spectral efficiency of Grass-Lattice and Cube-Split as
a function of Eb/N0 at 10−4 BER for T ∈ {2, 3, 4, 6, 8, 14}
and N = 2.

15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

Eb/N0 (dB)

η
(b

/s
/H

z)

Grass-Lattice
Pilot-based scheme

B

T = 2

T = 4

T = 8

Fig. 11: Spectral efficiency of Grass-Lattice and a pilot-based
scheme as a function of Eb/N0 at 10−4 BER for T ∈ {2, 4, 8}
and N = 2.

with 16-QAM, 32-QAM and 64-QAM signals. In all cases,
the optimal number of pilots to send is 1, and the power
allocation between the pilot and the data has been optimized
according to [31]. We have used the MMSE channel estimator
and the MMSE decoder. The figure clearly shows the spectral
efficiency improvement of Grass-Lattice over the pilot-based
scheme.

VI. CONCLUSION

We have proposed a new Grassmannian constellation
for noncoherent communications in SIMO channels, named
Grass-Lattice, based on a measure preserving mapping from
the unit hypercube to the Grassmannian of lines. Thanks to its
structure, the encoding and decoding steps can be performed
on the fly with no need to store the whole constellation.
Further, it allows for low-complexity and efficient decoding
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as well as for a simple Gray-like bit labeling. Simulation
results show that Grass-Lattice has symbol and bit error
rate performance close to that of a numerically optimized
unstructured constellation. Besides, the designed constellations
outperform other structured constellations in the literature and
a coherent pilot-based scheme in terms of SER and BER under
Rayleigh block fading channels, in addition to being more
power efficient. As mappings ϑ1 and ϑ3 have already been
derived in this paper for any number of transmit antennas,
further research will be done to study the extension of mapping
ϑ2 and, consequently, the whole Grass-Lattice mapping, to the
MIMO case.

APPENDIX

A. Proof of Lemma 2

Let us define d = T − 1. The function fd is the unique
solution of

f(t)2d−1(f(t) + tf ′(t)) =
e−t2

Γ(d+ 1)
, lim

t→∞
tf(t) = 1,

which satisfies tf(t) ∈ [0, 1) and can be written in terms of an
incomplete Gamma function. It is easy to see that ϑ2 : Cd →
BCd(0, 1) is a diffeomorphism. Let us compute the Jacobian
of ϑ2: if ż is (real) orthogonal to z then

Dϑ2(z)ż = żfd(∥z∥),

while for ż = z/∥z∥ we have

Dϑ2(z)
z

∥z∥
=

z

∥z∥
fd(∥z∥) + zf ′

d(∥z∥)

= z

(
fd(∥z∥)
∥z∥

+ f ′
d(∥z∥)

)
.

Choosing any orthonormal basis of Cd ≡ R2d whose last
vector is z/∥z∥ we thus have that the orthogonality of this
basis is preserved by Dϑ2. The Jacobian of ϑ2 at z is then
just the product of the lengths of the resulting vectors:

Jac ϑ2(z) = fd(∥z∥)2d−1(f(∥z∥)+∥z∥f ′(∥z∥)) = e−∥z∥2

Γ(d+ 1)
.

Given any integrable mapping g : BCd(0, 1) → R, the expected
value of g(w) when w follows the distribution of the lemma
is:

I =
1

πd

∫
z∈Cd

g(ϑ2(z))e
−∥z∥2

dz

=
Γ(d+ 1)

πd

∫
z∈Cd

g(ϑ2(z))Jac ϑ2(z) dz,

which by the Change of Variables Theorem equals

Γ(d+ 1)

πd

∫
w∈BCd (0,1)

g(w) dw.

This is the expected value of g in BCd(0, 1), since the volume
of BCd(0, 1) is precisely πd/Γ(d+ 1).

B. Proof of Lemma 3
That the formula for Θ−1 is the claimed one is easy to

see: just write down the singular value decomposition of
W = U

(
D
0

)
VH and compose the two functions in any order

to see that you get the identity map in each space. Now let us
compute the Jacobian. First, note that for any given unitary
T × T matrix U the isometry A → UA in the domain
commutes with the isometry B → UB in the range, and the
same happens with the isometry A → AV if V is unitary
of size M . It suffices to prove our result in the case that
A =

(
D
0

)
with D = diag(σ1, . . . , σM ). Let us compute the

corresponding directional derivatives:
• For Ȧ =

(
0
Ċ

)
we have

DΘ(A)(Ȧ) =
d

dt
|t=0

((
D

tĊ

)(
IM +

(
D tĊH

)
·
(
D

tĊ

))−1/2
)

=

(
0

Ċ

)
(IM +D2)−1/2.

The natural basis for Ċ then preserves orthogonality and
this yields a factor for the Jacobian of Θ of:

M∏
m=1

1

(1 + σ2
m)T−2M

= det(IM +AHA)−T+2M .

• If Ȧ =
(
δkk

0

)
, where δkk denotes an M × M matrix

whose only nonzero term δkk is located at row k and
column k, then a direct computation shows that

DΘ(A)(Ȧ) =
1

(1 + σ2
k)

3/2
,

and similarly if Ȧ =
(
jδkk

0

)
then

DΘ(A)(Ȧ) = j
1

(1 + σ2
k)

1/2
,

which again preserves orthogonality and adds the follow-
ing factor to the Jacobian of Θ

M∏
m=1

1

(1 + σ2
m)2

= det(IM +AHA)−2

• If Ȧ =
(
δ12

0

)
, denoting R =

√
(1 + σ2

1)(1 + σ2
2) then we

have

DΘ(A)(Ȧ) =
d

dt
|t=0

((
D+ tδ12

0

)(
IM + (D+ tδ21)

· (D+ tδ12)
)−1/2

)
=

1

R
√

2 + σ2
1 + σ2

2 + 2R

·


0 1 +R

−σ1 σ2 0
0

. . .
0

 ,
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while if Ȧ =
(
δ21

0

)
then we have

DΘ(A)(Ȧ) =
d

dt
|t=0

((
D+ tδ21

0

)(
IM + (D+ tδ12)

· (D+ tδ21)
)−1/2

)
=

1

R
√
2 + σ2

1 + σ2
2 + 2R

·


0 −σ1 σ2

1 +R 0
0

. . .
0

 ,

Hence, the volume of the parallelepiped spanned by these
two vectors is

(1 +R)2 − σ2
1σ

2
2

R2(2 + σ2
1 + σ2

2 + 2R
=

1

R2
.

This yields a factor 1
(1+σ2

1)(1+σ2
2)

for the Jacobian. The
same computation for δij gives all together:

M∏
m=1

1

(1 + σ2
m)M−1

= det(IM +AHA)−(M−1)

• If Ȧ =
(
jδ12

0

)
and later Ȧ =

(
jδ21

0

)
we get the same

computation, which yields another factor of
M∏

m=1

1

(1 + σ2
m)M−1

= det(IM +AHA)−(M−1).

Multiplying all the factors, we have that the Jacobian of Θ is
det(IM +AHA)−T . This finishes the proof.

C. Proof of Theorem 1
Let G : G

(
1,CT

)
→ C be integrable. From Lemma 1,

1

V ol(G (1,CT ))

∫
[x]∈G(1,CT )

G([x]) d[x]

=
1

V ol(BCT−1(0, 1))

∫
w∈CT−1

∥w∥<1

G

([√
1− ∥w∥2

w

])
dw,

where V ol(S) denotes the volume of the set S. From Lemma
2, this equals

1

πT−1

∫
z∈CT−1

G

([√
1− ∥zfT−1(∥z∥)∥2

zfT−1(∥z∥)

])
e−∥z∥2

dz,

which in turn from Lemma 1 equals∫
(a,b)∈I

G

([√
1− ∥zfT−1(∥z∥)∥2

zfT−1(∥z∥)

])
d(a,b),

where

z = (z1, . . . , zT−1)
T, zk = F−1(ak) + jF−1(bk).

All in one, we have proved that the point[√
1− ∥w∥2

w

]
with w = zfT−1(∥z∥), is uniformly distributed in G

(
1,CT

)
.
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