
942

Adaptive Kernel Learning for43

Signal Processing44

45

46

Adaptive filtering is a central topic in signal processing. An adaptive filter is a filter structure47

provided with an adaptive algorithm that tunes the transfer function, typically driven by48

an error signal. Adaptive filters are widely applied in non-stationary environments because49

they can adapt their transfer function to match the changing parameters of the system that50

generates the incoming data (Hayes 1996; Widrow et al. 1975). They have become ubiquitous51

in current digital signal processing, mainly due to the increase in computational power and the52

need to process streamed data. Adaptive filters are now routinely used in all communication53

applications for channel equalization, array beamforming or echo cancellation, to cite some,54

and in other areas of signal processing as image processing or medical equipment.55

By applying linear adaptive filtering principles in the kernel feature space, powerful56

nonlinear adaptive filtering algorithms can be obtained. This chapter introduces the wide57

topic of adaptive signal processing, and it explores the emerging field of kernel adaptive58

filtering (KAF). Its orientation is different from the preceding ones, as adaptive processing59

can be used in a variety of scenarios. Attention is paid to kernel LMS/RLS algorithms, to60

previous taxonomies of adaptive kernel methods, and to emergent kernel methods.61

Matlab code snippets are included to illustrate the basic operations of the most common62

kernel adaptive filters. Tutorial examples are provided on applications including chaotic time-63

series prediction, respiratory motion prediction, and nonlinear system identification.64

9.1 Linear Adaptive Filtering65

Let us first define some basic concepts of linear adaptive filtering theory. The goal of adaptive66

filtering is to model an unknown, possibly time-varying system by observing the inputs and67

outputs of this system over time. We will denote the input to the system on time instant n as68

xn, and its output as dn, see Fig. 9.1. The input signal xn is assumed to be zero-mean. We69

represent it as a vector, and it will often represent a time-delay vector of L taps of a signal xn70

on time instant n as xn = [xn, xn−1, . . . , xn−L+1]>.71

A diagram for a linear adaptive filter is depicted in Fig. 9.2. The input to the adaptive filter
on time instant n is xn, and its response yn is obtained through the following linear operation:

yn = wH
n xn, (9.1)

Cite as: Steven Van Vaerenbergh, “Adaptive Kernel Learning for Signal Processing”. In J. L. Rojo-Álvarez, M. Martínez-Ramón,
J. Muñoz-Marí, G. Camps-Valls (Eds.), Digital Signal Processing with Kernel Methods, pp. 387–431,
Wiley-IEEE Press: Hoboken, NJ, USA, 2018.

4 Adaptive Kernel Learning for Signal Processing

xn Unknown system dn

Figure 9.1 An unknown system with input xn and output dn at time instant n.

where H is the hermitic operator.72

xn Unknown system

wn −
yn

+

dn

Adaptive algorithm
en

wn

Figure 9.2 A linear adaptive filter for system identification.

Linear adaptive filtering follows the online learning framework, which consists of two73

basic steps that are repeated at each time instant n. First, the online algorithm receives74

an observation xn for which it calculates the estimated image yn, based on its current75

estimate of wn. Next, the algorithm receives the desired output dn (also known as symbol in76

communications), which allows it to calculate the estimation error en = dn − yn and update77

its estimate for wn. In some situations dn is known a priori, i.e. the received signal xn78

is one of a set of training signals provided with known labels. The procedure is then called79

supervised. When dn belongs to a finite set of quantized labels, and it can be assumed that the80

error will be likely much smaller than the quantization step or minimum Euclidean distance81

between labels, the desired label is estimated by quantizing yn to the closest label. In these82

cases, the algorithm is called decision directed.83

9.1.1 LMS Algorithm84

The classical adaptive optimization techniques have their roots in the theoretical approach
called the steepest-descent algorithm. Assume that the expectation of the squared error signal,
Jn = E{‖en‖2} can be computed. Since this error is a function of the vectorwn, the idea of
the algorithm is to modify this vector towards the direction of the steepest descent of Jn. This
direction is just opposite to its gradient∇wJn. Indeed, assuming complex stationary signals,
the error expectation is

E
{
|en|2

}
= E

{
|dn −wH

n xn|2
}

= E
{
|dn|2 +wH

n xnx
H
n wn − 2wH

n xnd
∗
n

}
= σ2

d +wH
n Rxxwn − 2wH

n pxd,

(9.2)

where Rxx is the signal autocorrelation matrix, pxd is the cross-correlation vector between
the signal and the filter output, and σ2

d is the variance of the system output. Its gradient with

Adaptive Kernel Learning for Signal Processing 5

respect to vector wn is expressed as

∇wJn = 2Rxxwn − 2pxd. (9.3)

The adaptation rule based on steepest descent thus becomes

wn+1 = wn − η∇wJn, (9.4)

where η is the step size or learning rate of the algorithm.85

The Least Mean Squares (LMS) algorithm, introduced in 1960 by Widrow (Widrow et al.
1975), is a very simple and elegant method of training a linear adaptive system to minimize
the mean square error that approximates the gradient ∇wJn using an instantaneous estimate
of the gradient. From Eq. (9.3), an approximation can be written as

∇wJn ≈ 2xnx
H
n wn − 2xnd

∗
n (9.5)

Using this approximation in Eq. (9.4) leads to the well-known stochastic gradient descent
update rule which is the core of the LMS algorithm:

wn+1 = wn − ηxn

(
xH
n wn − d∗n

)
= wn + ηxne

∗
n.

(9.6)

This optimization procedure is also the basis for tuning nonlinear filter structures such as86

neural networks Haykin (2001) and some of the kernel-based adaptive filters discussed later87

in this chapter. A detailed analysis including that of convergence and misadjustment is given88

in (Haykin 2001). The Matlab code for the LMS training step on a new data pair (x, d) is89

displayed in Listing 9.1.90

y = x'*w; % evaluate filter output91

err = d - y; % instantaneous error92

93

w = w + mu*x*err'; % update filter coefficients94

Listing 9.1 Training step of the LMS algorithm on a new datum (x, d).

Under the stationarity assumption, the LMS algorithm converges to the Wiener solution95

in mean, but the weight vector wn shows a variance that converges to a value that is a96

function of η. Therefore, low variances are only achieved at low adaptation speed. A more97

sophisticated approach with faster convergence is found in the the Recursive Least-Squares98

(RLS) algorithm.99

9.1.2 RLS Algorithm100

The RLS algorithm was first introduced by Plackett in 1950 (Plackett 1950). In a stationary101

scenario, it converges to the Wiener solution in mean and variance, improving also the slow102

rate of adaptation of the LMS algorithm. Nevertheless, this gain in convergence speed comes103

at the price of a higher complexity, as we will see below.104

Recursive update105

The basis of the RLS algorithm consists of recursively updating the vector w that minimizes
a regularized version of the cost function Jn

Jn =

n∑
i=1

|di − xH
i w|2 + δwHw, (9.7)

6 Adaptive Kernel Learning for Signal Processing

where δ is a positive constant regularization factor. The regularization factor penalizes the
squared norm of the solution vector so that this solution does not apply to much weight to
any specific dimension1. The solution that minimizes the least-squares cost function (9.7) is
well known and given by

w = (Rxx + δI)−1pxd. (9.8)

The regularization δ guarantees that the inverse in Eq. (9.8) exists. In the absence of106

regularization, i.e. for δ = 0, the solution requires to invert the matrix Rxx, which may be107

rank-deficient.108

For a detailed derivation of the RLS algorithm we refer the reader to Haykin (2001);109

Sayed (2003). In the sequel, we will provide its update equations and a short discussion110

of its properties compared to LMS.111

We denote the autocorrelation matrix for the data x1 till xn as Rn,

Rn =

n∑
i=1

xH
i xi. (9.9)

RLS requires the introduction of an inverse autocorrelation matrix Pn, defined as

Pn = (Rn + δI)−1. (9.10)

At step n− 1 of the recursion, the algorithm has processed n− 1 data, and its estimate
wn−1 is the optimal solution for minimizing the squared cost function (9.7) at time step
n− 1. When a new datum xn is obtained, the inverse autocorrelation matrix is updated as

Pn = Pn−1 − gngH
n Pn−1, (9.11)

where gn is the gain vector of the RLS algorithm,

gn =
Pn−1

1 + xH
n Pn−1xn

. (9.12)

The update of the solution itself reads

wn = wn−1 + gnen, (9.13)

in which en represents the usual prediction error en = dn − xH
n wn−1. The RLS algorithm

starts by initializing its solution to
w0 = 0, (9.14)

and the estimate of the inverse autocorrelation matrix Pn to

P0 = δ−1I. (9.15)

Then, it recursively updates its solution by including one datum xi at a time and performing112

the calculations from Eqs. 9.11 to (9.13).113

Due to the matrix multiplications involved in the RLS updates, the computational114

complexity per time step for RLS is quadratic in terms of the data dimension, O(L2), while115

the LMS algorithm has only linear complexity, O(L).116

1A slightly more general formulation involves a regularization matrix which can penalize the individual elements
of the solution differently Sayed (2003).

Adaptive Kernel Learning for Signal Processing 7

Exponentially-weighted RLS117

The RLS algorithm takes into account all previous data when it updates its solution with118

a new datum. This kind of update yields a faster convergence than LMS, which guides its119

update based only on the performance on the newest datum. Nevertheless, by guaranteeing120

that its solution is valid for all previous data, the RLS algorithm is in essence looking for121

a stationary solution, and thus it cannot adapt to nonstationary scenarios, where a tracking122

algorithm is required. LMS, on the other hand, deals correctly with nonstationary scenarios,123

thanks to the instantaneous nature of its update which forgets older data and only adapts to124

the newest datum.125

A tracking version of RLS can be obtained by including a forgetting factor λ ∈ (0, 1] in its
cost function, as follows

Jn =

n∑
i=1

λn−i‖di − xH
i w‖2 + λnδwHw. (9.16)

The resulting algorithm is called exponentially-weighted RLS Haykin (2001); Sayed (2003).
The inclusion of the forgetting factor assigns lower weights to older data, which allows the
algorithm to adapt gradually to changes. The update for the inverse autocorrelation matrix
becomes

Pn = λ−1Pn−1 − λ−1gnx
H
n Pn−1, (9.17)

and the new gain vector becomes

gn =
λ−1Pn−1

1 + λ−1xH
n Pn−1xn

. (9.18)

The Matlab code for the training step of the exponentially-weighted RLS algorithm is126

displayed in Listing 9.2.127

y = x'*w; % evaluate filter output128

err = d - y; % instantaneous error129

130

g = P*x/(lambda+x'*P*x); % gain vector131

w = w + g*err; % update filter coefficients132

P = lambda\(P - g*x'*P); % update inverse autocorrelation matrix133

Listing 9.2 Training step of the exponentially-weighted RLS algorithm on a new datum (x, d).

Recursive estimation algorithms play a crucial role for many problems in adaptive control,134

adaptive signal processing, system identification, and general model building and monitoring135

problems Ljung (1999). In the signal processing literature, great attention has been paid to136

their efficient implementation. Linear autoregressive models require relatively few parameters137

and allow closed-form analysis, while ladder or lattice implementation of linear filters has138

long been studied in signal theory. However, when the system generating the data is driven139

by nonlinear dynamics, the model specification and parameter estimation problems increase140

their complexity, and hence nonlinear adaptive filtering becomes strictly necessary.141

Note that, in the field of control theory, a range of sequential algorithms for nonlinear142

filtering have been proposed since the sixties, notably the extended Kalman filter Lewis et al.143

(2007) and the unscented Kalman filter Julier and Uhlmann (1996), which are both nonlinear144

extensions of the celebrated Kalman filter Kalman (1960), and particle filters Del Moral145

(1996). These methods generally require knowledge of a state-space model, and while some146

of them are related to adaptive filtering, we will not deal with them explicitly in this chapter.147

8 Adaptive Kernel Learning for Signal Processing

9.2 Kernel Adaptive Filtering148

The nonlinear filtering problem and the online adaptation of model weights were first149

addressed by neural networks in the nineties Dorffner (1996); Narendra and Parthasarathy150

(1990). Throughout the last decade, a great interest has been devoted to developing nonlinear151

versions of linear adaptive filters by means of kernels (Liu et al. 2010). The goal is to develop152

machines that learn over time in changing environments, and at the same time adopt the nice153

characteristics of convexity, convergence and reasonable computational complexity, which154

was not successfully implemented in neural networks.155

xn Unknown system

αnX → H
κ(xn, ·)

−
yn

+

dn

Adaptive algorithm
en

αn

Figure 9.3 A kernel adaptive filter for nonlinear system identification.

Kernel adaptive filtering aims to formulate the classic linear adaptive filters in rkHs, such156

that a series of convex least-squares problems is solved. Several basic kernel adaptive filters157

can be obtained by applying a linear adaptive filter directly on the transformed data, as158

illustrated in Fig. 9.3. This requires the reformulation of scalar-product based operations in159

terms of kernel evaluations. The resulting algorithms typically consist of algebraically simple160

expressions, though they feature powerful nonlinear filtering capabilities. Nevertheless, the161

design of these online kernel methods requires to deal with some of the challenges that162

typically arise when dealing with kernels, such as overfitting and computational complexity163

issues.164

In the sequel we will discuss two families of kernel adaptive filters in detail, namely kernel165

least mean squares and kernel recursive least-squares algorithms. Several related kernel166

adaptive filters will be reviewed briefly as well.167

9.3 Kernel Least Mean Squares168

The early approach to kernel adaptive filtering introduced a kernel version of the celebrated169

ADALINE in (Frieß and Harrison 1999), though this method was not online. Kivinen et al.170

proposed an algorithm to perform stochastic gradient descent in rkHs Kivinen et al. (2004):171

The so-called Naive Online regularized Risk Minimization Algorithm (NORMA) introduces172

a regularized risk that can be solved online and can be shown to be equivalent to a kernel173

version of leaky LMS, which itself is a regularized version of LMS.174

9.3.1 Derivation of KLMS175

As an illustrative guiding example of a kernel adaptive filter, we will take the kernelization
of the standard LMS algorithm, known as Kernel Least Mean Squares (KLMS) (Liu et al.

Adaptive Kernel Learning for Signal Processing 9

2008). The approach employs the traditional kernel trick. Essentially, a nonlinear function
φ(·) maps the data xn from the input space to φ(xn) in the feature space. Let wH be the
weight vector in this space such that the filter output is yn = w>H,nxn, where wH,n is the
estimate of wH at time instant n. Note that we will be taking scalar products of real-valued
vectors from now on. Given a desired response dn we wish to minimize squared loss, JwH,n

,
with respect towH. Similar to Eq. (9.6), the obtained stochastic gradient descent update rule
reads

wH,n = wH,n−1 + ηenφ(xn). (9.19)

By initializing the solution as wH,0 = 0 (and hence e0 = d0 = 0), the solution after n
iterations can be expressed in closed form as

wH,n = η

n∑
i=1

eiφ(xi). (9.20)

By exploiting the kernel trick, one obtains the prediction function

y∗ = η

n∑
i=1

eiφ(xi)φ(x∗) = η

n∑
i=1

eik(xi,x∗), (9.21)

where x∗ represents an arbitrary input datum and k(·, ·) is the kernel function, for instance176

the commonly used Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖2/2σk) with kernel width177

σk. Note that the weights wH,n of the nonlinear filter are not used explicitly in the KLMS178

algorithm. Also, since the present output is determined solely by previous inputs and all179

the previous errors, it can be readily computed in the input space. These error samples are180

similar to innovation terms in sequential state estimation (Haykin 2001), since they add new181

information to improve the output estimate. Each new input sample results in an output, and182

hence a corresponding error, which is never modified further and incorporated in the estimate183

of the next output. This recursive computation makes KLMS especially useful for online184

(adaptive) nonlinear signal processing.185

In Liu et al. (2008) it was shown that the KLMS algorithm is well-posed in rkHs186

without the need of an extra regularization term in the finite training data case, because187

the solution is always forced to lie in the subspace spanned by the input data. The lack188

of an explicit regularization term leads to two important advantages. First of all, it has a189

simpler implementation than NORMA, as the update equations are straightforward kernel190

versions of the original linear ones. Second, it can potentially provide better results because191

regularization biases the optimal solution. In particular, it was shown that a small enough192

step-size can provide a sufficient “self-regularization” mechanism. Moreover, since the space193

spanned by the mapped samples is possibly infinite-dimensional, the projection error of the194

desired signal dn could be very small, as is well known from Cover’s theorem Haykin (1999).195

On the downside, the speed of convergence and the misadjustment also depend upon the196

step-size. As a consequence, they conflict with the generalization ability.197

9.3.2 Implementation challenges and dual formulation198

Another important drawback of the KLMS algorithm becomes apparent when analyzing its
update Eq. (9.21). In order to make a prediction, the algorithm requires to store all previous
errors ei and all processed input data xi, for i = 1, 2, . . . , n. In online scenarios where data is
continuously being received, the size of the KLMS network will continuously grow, posing

10 Adaptive Kernel Learning for Signal Processing

implementation challenges. This becomes even more evident if we recast the weight update
from Eq. (9.19) into a more standard filtering formulation, by relying on the Representer
theorem Schölkopf et al. (2001). This theorem states that the solutionwH,n can be expressed
as a linear combination of the transformed input data,

wH,n =

n∑
i=1

αiφ(xi). (9.22)

This allows the prediction function to be written as the familiar kernel expansion

y∗ =

n∑
i=1

αik(xi,x∗). (9.23)

The expansion coefficients αi are called the dual variables and the reformulation of the
filtering problem in terms of αi is called the dual formulation. The update from Eq. (9.19)
now becomes

n∑
i=1

αiφ(xi) =

n−1∑
i=1

αiφ(xi) + ηenφ(xn), (9.24)

and after multiplying both sides with the new datum φ(xn) and adopting a vector notation,
we obtain

α>nkn = α>n−1kn−1 + ηenkn,n, (9.25)

where αn = [α1, α2, . . . , αn]>, the vector kn contains the kernels of the n data and the
newest point, kn = [k(x1,xn), k(x2,xn), . . . , k(xn,xn)], and kn,n = k(xn,xn). KLMS
resolves this relationship by updating αn as

αn =

[
αn−1

ηen

]
. (9.26)

The Matlab code for the complete KLMS training step on a new data pair (x, d) is displayed199

in Listing 9.3.200

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x201

y = k'*alpha; % evaluate function output202

err = d - y; % instantaneous error203

204

kaf.dict = [kaf.dict; x]; % add base to dictionary205

kaf.alpha = [kaf.alpha; kaf.eta*err]; % add new coefficient206

Listing 9.3 Training step of the KLMS algorithm on a new datum (x, d).

The update (9.26) emphasizes the growing nature of the KLMS network, which precludes207

its direct implementation in practice. In order to design a practical KLMS algorithm, the208

number of terms in the kernel expansion (9.23) should stop growing over time. This can be209

achieved by implementing an online sparsification technique, whose aim is to identify terms210

in the kernel expansion that can be omitted without degrading the solution. We will discuss211

several different sparsification approaches in Section 9.5.212

Finally, observe that the computational complexity and memory complexity of the KLMS213

algorithm are both linear in terms of the number of data it stores, O(n). Recall that the214

complexity of the LMS algorithm is also linear, though not in terms of the number of data but215

in terms of the data dimension.216

Adaptive Kernel Learning for Signal Processing 11

9.3.3 Example: Prediction of the Mackey-Glass time series217

We demonstrate the online learning capabilities of the KLMS kernel adaptive filter by
predicting the Mackey-Glass time series, which is a classic benchmark problem Liu
et al. (2010). The Mackey-Glass time series is well-known for its strong non-linearity.
It corresponds to a high-dimensional chaotic system, and its output is generated by the
following time-delay differential equation:

dxn
dn

= −bxn +
axn−∆

1 + x10
n−∆

. (9.27)

We focus on the sequence with parameters b = 0.1, a = 0.2 and time delay ∆ = 30, better218

known as the MG30 time series. The prediction problem consists in predicting the n-th219

sample, given all samples of the time series up till the n− 1-th sample.220

Time-series prediction with kernel adaptive filters is typically performed by considering221

a time-delay vector xn = [xn, xn−1, . . . , xn−L+1]> as the input and the next sample of the222

time series as the desired output, dn = xn+1. This approach casts the prediction problem223

into the well-know filtering framework2. Prediction of several steps ahead can be obtained224

by choosing a prediction horizon h > 1, and dn = xn+h. For time series generated by a225

deterministic process, a principled tool to find the optimal embedding is Takens’ theorem226

Takens (1981). In the case of the MG30 time series, Takens’ theorem indicates that the227

optimal embedding is around L = 7 Van Vaerenbergh et al. (2012a).228

0 200 400
−25

−20

−15

−10

−5

0

Training iteration

M
S

E
 (

d
b

)

LMS

KLMS

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

Test sample

Original

KLMS prediction

Figure 9.4 KLMS predictions on the Mackey-Glass time series. Left: Learning curve over 500
training iterations. Right: Test samples of the Mackey-Glass time-series and the predictions provided
by KLMS.

We consider 500 samples for online training of the KLMS algorithm and use the next229

100 data for testing. The step size of KLMS is fixed to 0.2, and we use the Gaussian kernel230

with σ = 1. Fig. 9.4 displays the prediction results after 500 training steps. The left plot231

shows the learning curve of the algorithm, obtained as the mean squared error (MSE) of the232

prediction on the test set, at each iteration of the online training process. As a reference,233

we include the learning curve of the linear LMS algorithm with a suitable step size. The234

right plot shows the 100 test samples of the original time series, as the full line, and KLMS’235

prediction on these test samples after 500 training steps. These predictions are calculated by236

evaluating the prediction equation (9.21) on the test samples. The code for this experiment237

and all subsequent ones is included in the accompanying material.238

2Note that, recently, some authors have proposed to model time-series through a different approach based on
explicit recursivity in the rKHs Li and Príncipe (2016); Tuia et al. (2014), as we will see later on in this chapter.

12 Adaptive Kernel Learning for Signal Processing

9.3.4 Practical KLMS algorithms239

In the described Mackey-Glass experiment, the KLMS algorithm requires to store 500240

coefficients αi and the 500 corresponding data xi. The stored data xi are referred to as its241

dictionary. If the online learning process were to continue indefinitely, the algorithm would242

require evergrowing memory and computation per time step. This issue has been identified243

as a major roadblock early on in the research on kernel adaptive filters, and it has led to the244

development of several procedures to slow down the dictionary growth by sparsifying the245

dictionary.246

A sparsification procedure based on Gaussian elimination steps on the gram matrix was247

proposed in (Pokharel et al. 2009). This method is successful in limiting the dictionary size248

in the n-th training step to some m < n, but in order to do so it requires O(m2) complexity,249

which defeats the purpose of using a KLMS algorithm.250

Kernel normalized least-mean squares and the coherence criterion251

Around the same time the KLMS algorithm was published, a kernelized version of the Affine
Projection (AP) algorithm was proposed Richard et al. (2009). AP algorithms hold the middle
ground between LMS and RLS algorithms by calculating an estimate of the correlation matrix
based on the p last data. For p = 1 the algorithm reduces to a kernel version of the normalized
LMS algorithm Haykin (2001), called Kernel Normalized Least-Mean Squares (KNLMS),
and its update reads

αn =

[
αn−1

0

]
+

η

ε+ ‖kn‖
enkn. (9.28)

Note that this algorithm updates all coefficients in each iteration, in contrast to KLMS which252

updates just one coefficient.253

The kernel affine projection (KAP) and KNLMS algorithms introduced in Richard et al.
(2009) also included an efficient dictionary sparsification procedure, called the coherence
criterion. Coherence is a measure to characterize a dictionary in sparse approximation
problems, defined in a kernel context as

µ = max
i 6=j
|k(xi,xj)|. (9.29)

The coherence of a dictionary will be large if it contains two bases xi and xj that are very
similar, in terms of the kernel function. Due to their similarity, such bases contribute almost
identical information to the algorithm, and one of them may be considered redundant. The
online dictionary sparsification procedure based on coherence operates by only including a
new datum xn into the current dictionaryDn−1 if it maintains the dictionary coherence below
a certain threshold,

max
j∈Dn−1

|k(xn,xj)| < µ0. (9.30)

If the new datum fulfills this criterion, it is included in the dictionary, and the KNLMS
coefficients are updated through Eq. (9.28). If the coherence criterion (9.30) is not fulfilled,
the new datum is not included in the dictionary, and a reduced update of the KNLMS
coefficients is performed,

αn = αn−1 +
η

ε+ ‖kn‖
enkn. (9.31)

This update does not increase the number of coefficients and therefore it maintains the254

algorithm’s computational complexity fixed during that iteration. The Matlab code for the255

complete KNLMS training step on a new data pair (x, d) is displayed in Listing 9.4.256

Adaptive Kernel Learning for Signal Processing 13

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x257

if (max(k) <= mu0), % coherence criterion258

dict = [dict; x]; % add base to dictionary259

alpha = [alpha; 0]; % reserve spot for new coefficient260

end261

262

k = kernel(dict,x,kerneltype,kernelpar); % kernels with new dictionary263

y = k'*alpha; % evaluate function output264

err = d - y; % instantaneous error265

266

alpha = alpha + eta/(eps + k'*k)*err*k; % update coefficients267

Listing 9.4 Training step of the KNLMS algorithm on a new datum (x, d).

The coherence criterion is computationally efficient in that it has a complexity that does268

not exceed that of the kernel adaptive filter itself, and it has demonstrated to be successful in269

practical situations Van Vaerenbergh and Santamaría (2013).270

Quantized kernel least-mean squares271

Recently, a kernel LMS algorithm was proposed that combines elements from the original
KLMS algorithm and the coherence criterion, called Quantized Kernel Least Mean Squares
(QKLMS) Chen et al. (2012). In particular, when the sparsification criterion decides to
include a datum into the dictionary, the algorithm updates its coefficients as follows:

αn =

[
αn−1

ηen

]
. (9.32)

When the datum does not fulfil the coherence criterion, it is not included in the dictionary.
Instead, the closest dictionary element is retrieved, and the corresponding coefficient is
updated as follows

αn,j = αn−1,j + ηen, (9.33)

where j is the dictionary index of the element that is closest. Though conceptually very272

simple, this algorithm obtains state-of-the-art results in several applications when only a low273

computational budget is available. The Matlab code for the complete QKLMS training step274

on a new data pair (x, d) is displayed in Listing 9.5.275

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x276

y = k'*alpha; % evaluate function output277

err = d - y; % instantaneous error278

279

[d2,j] = min(sum((dict - repmat(x,m,1)).^2,2)); % distance to dictionary280

if d2 <= epsu^2,281

alpha(j) = alpha(j) + eta*err; % reduced coefficient update282

else283

dict = [dict; x]; % add base to dictionary284

alpha = [alpha; eta*err]; % add new coefficient285

end286

Listing 9.5 Training step of the QKLMS algorithm on a new datum (x, d).

9.4 Kernel recursive least squares287

In linear adaptive filtering, the RLS algorithm represents an alternative to LMS, with faster288

convergence and typically lower bias, at the expense of a higher computational complexity.289

14 Adaptive Kernel Learning for Signal Processing

RLS is obtained by designing a recursive solution to the least-squares problem. Analogously,290

a recursive solution can be designed for the kernel ridge regression problem, yielding kernel291

recursive least-squares (KRLS) algorithms.292

9.4.1 Kernel ridge regression293

In order to obtain the kernel-based version of the regularized least-squares cost function (9.7),
we first transform the data into the kernel feature space,

Jn =

n∑
i=1

|di − φ(xi)
>wH|2 + δw>HwH

= ‖d−Kα‖2 + δα>Kα,

(9.34)

where we have applied the kernel trick to obtain the second equality. Here, vector d contains
the n desired values, d = [d1, d2, . . . , dn]>, and K is the kernel matrix with elements
Kij = k(xi,xj). Eq. (9.34) represents the kernel ridge regression problem Saunders et al.
(1998), and its solution is given by

α = (K + δI)−1d. (9.35)

The prediction for a new datum x∗ is obtained as

y∗ = k>∗ α = k>∗ (K + δI)−1d. (9.36)

9.4.2 Derivation of KRLS294

The KRLS algorithm Engel et al. (2004) formulates a recursive procedure to obtain the
solution of the regression problem (9.34) in the absence of regularization, δ = 0. Without
regularization, the solution (9.35) reads

α = K−1d. (9.37)

KRLS guarantees the invertibility of the kernel matrix K by excluding those data xi from295

from the dictionary that are linearly dependent on the already included data, in the feature296

space. As we will see, this is achieved by applying a specific online sparsification procedure,297

which guarantees both that K is invertible and that the algorithm’s dictionary stays compact.298

Assume the solution after processing n− 1 data is available, given by

αn−1 = K−1
n−1dn−1, (9.38)

In the next iteration, n, a new data pair (xn, dn) is received and we wish to obtain the new
solution αn by applying a low-complexity update on the previous solution (9.38). We first
calculate the predicted output

yn = k>nαn−1, (9.39)

and we obtain the a-priori error for this datum, en = dn − yn. The updated kernel matrix can
be written as

Kn =

[
Kn−1 kn
k>n knn

]
. (9.40)

Adaptive Kernel Learning for Signal Processing 15

By introducing the variables
an = K−1

n−1kn, (9.41)

and
γn = knn − k>n an, (9.42)

the update for the inverse kernel matrix can be written as

K−1
n =

1

γn

[
γnK−1

n−1 + ana>n −an

−an 1

]
. (9.43)

Eq. (9.43) is obtained by applying the Sherman-Morrison-Woodbury formula for matrix
inversion, see for instance Golub and Van Loan (2012). Finally, the updated solution αn

is obtained as

αn =

[
αn−1

0

]
− en/γn

[
an

−1

]
. (9.44)

Equations (9.43) and (9.44) are efficient updates that allow to obtain the new solution in299

O(n2) time and memory, based on the previous solution. Directly applying Eq. (9.37)300

at iteration n would require O(n3) cost, so the recursive procedure is preferred in301

online scenarios. A detailed derivation of this result can be found in Engel et al. (2004);302

Van Vaerenbergh et al. (2012b).303

Online sparsification by approximate linear dependency304

The KRLS algorithm from Engel et al. (2004) follows the described recursive solution. In305

order to slow down the dictionary growth, shown in Eqs. (9.43) and (9.44), it introduces a306

sparsification criterion based on approximate linear dependency (ALD). According to this307

criterion, a new datum xn should only be included in the dictionary if φ(xn) cannot be308

approximated sufficiently well in feature space by a linear combination of the already present309

data.310

Given a dictionary D of data xj and a new training point xn, we need to find a set of
coefficients a = [a1, a2, . . . , am]> that satisfy the approximate linear dependency condition

min
a

∥∥∥∥∥∥
m∑
j=1

ajφ(xj)− φ(xn)

∥∥∥∥∥∥
2

≤ ν (9.45)

where m is the cardinality of the dictionary. Interestingly, it can be shown that these
coefficients are already calculated by the KRLS update itself, and they are available at each
iteration n as an = K−1

n−1kn, see Eq. (9.41). The ALD condition can therefore be verified by
simply comparing γn to the ALD threshold,

γn = knn − k>n an ≤ ν. (9.46)

If γn > ν, then we must add the newest datum xn to the dictionary, Dn = Dn−1 ∪ {xn},311

before updating the solution through Eq.(9.44). If γn ≤ ν then the datum xn is already312

represented sufficiently well by the dictionary. In this case the dictionary is not expanded,313

Dn = Dn−1, and a reduced update of the solution is performed, see Engel et al. (2004) for314

details. The Matlab code for the complete KRLS training step on a new data pair (x, d) is315

displayed in Listing 9.6.316

16 Adaptive Kernel Learning for Signal Processing

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x317

kxx = kernel(x,x,kaf.kerneltype,kaf.kernelpar); % kernel on x318

319

a = Kinv*k; % coefficients of closest linear combination in feature space320

gamma = kxx - k'*a; % residual of linear approximation in feature space321

322

y = k'*alpha; % evaluate function output323

err = d - y; % instantaneous error324

325

if gamma>nu % new datum is not approximately linear dependent326

dict = [dict; x]; % add base to dictionary327

Kinv = 1/gamma*[gamma*Kinv+a*a',-a;-a',1]; % update inv. kernel matrix328

Z = zeros(size(P,1),1);329

P = [P Z; Z' 1]; % add linear combination coeff. to projection matrix330

ode = 1/gamma*err;331

alpha = [alpha - a*ode; ode]; % full update of coefficients332

else % perform reduced update of alpha333

q = P*a/(1+a'*P*a);334

P = P - q*(a'*P); % update projection matrix335

alpha = alpha + Kinv*q*err; % reduced update of coefficients336

end337

Listing 9.6 Training step of the KRLS algorithm on a new datum (x, d).

9.4.3 Prediction of the Mackey-Glass time series with KRLS338

The update equations for KRLS require substantially more computation than KLMS. In339

particular, KRLS has quadratic complexity, O(m2), in terms of its dictionary size, and340

KLMS has linear complexity, O(m). On the other hand, KRLS has faster convergence and341

lower bias. We illustrate these properties by applying KRLS on the Mackey-Glass prediction342

experiment from Section 9.3.3.343

0 200 400
−50

−40

−30

−20

−10

0

Training iteration

M
S

E
 (

d
b

)

KLMS

KRLS

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

Test sample

Original

KRLS prediction

Figure 9.5 KRLS predictions on the Mackey-Glass time series. Left: Learning curve over 500 training
iterations, including comparison to KLMS. Right: test samples and KRLS predictions.

Fig. 9.5 shows the results of training the KRLS algorithm on the Mackey-Glass time series.344

KRLS is applied with a Gaussian kernel with σk = 1, and its precision parameter was fixed345

to ν = 10−4. The left plot compares the learning curves of KLMS and KRLS, demonstrating346

a slightly faster initial convergence rate for KRLS, after which the algorithm converges to a347

much lower MSE than KLMS. The low bias is also visible in the right plot, which shows the348

prediction results on the test data.349

Adaptive Kernel Learning for Signal Processing 17

9.4.4 Beyond the stationary model350

One important limitation of the KRLS algorithm is that it always assumes a stationary model,351

and therefore it cannot track changes in the true underlying data model. This is a somewhat352

odd property for an adaptive filter, though note that this is also the case for the original RLS353

algorithm, see Section 9.1.2.354

In order to enable tracking and make a truly adaptive KRLS algorithm, several355

modifications have been presented in the literature. An exponentially-weighted KRLS356

algorithm was proposed by including a forgetting factor, and an extended KRLS algorithm357

was designed by assuming a simple state-space model, though both algorithms show358

numerical instabilities in practice Liu et al. (2010). In the sequel we briefly discuss two359

different approaches that successfully allow KRLS to adapt to changing environments.360

Sliding-Window KRLS361

The KRLS algorithm summarizes past information into a compact formulation that does362

not allow easy manipulation. For instance, there does not exist a straightforward manner363

to include a forgetting factor to exclude the influence of older data.364

In Van Vaerenbergh et al. (2006), a sliding-window based version of KRLS was proposed,365

called Sliding-Window Kernel Recursive Least-Squares (SW-KRLS). This algorithm stores366

a window of the last m data as its dictionary, and once a datum is older than m time367

steps it is simply discarded. In each step the algorithm adds the new datum and discards368

the oldest datum, leading to a sliding-window approach. The algorithm stores the inverse369

regularized kernel matrix, (Kn + δI)−1, calculated on its current dictionary, and a vector of370

the corresponding desired outputs, dn. By storing these variables it can calculate the solution371

vector by simply evaluating αn = (Kn + δI)−1dn, see Eqs. (9.35) and (9.36).372

The inverse kernel matrix is updated in two steps: First, the new datum is added, which
requires expanding the matrix with one row and one column. This is carried out by performing
the operation from Eq. (9.43), similar as in the KRLS algorithm. Second, the oldest datum is
discarded, which requires removing one row and column from the inverse kernel matrix. This
can be achieved by writing the kernel matrix and its inverse as follows,

Kn−1 =

[
a bT

b D

]
, K−1

n−1 =

[
e fT

f G

]
, (9.47)

after which the inverse (regularized) kernel matrix is found as

D−1 = G− ffT /e. (9.48)

Details can be found in Van Vaerenbergh et al. (2006). Figure 9.6 illustrates the kernel matrix373

updates when using a sliding window, compared to the classical growing-window approach of374

KRLS. The Matlab code for the SW-KRLS training step on a new data pair (x, d) is displayed375

in Listing 9.7.376

dict = [dict; x]; % add base to dictionary377

dict_d = [dict_d; d]; % add d to output dictionary378

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x379

Kinv = grow_kernel_matrix(Kinv,k,c); % calculate new inverse kernel matrix380

381

if (size(dict,1) > M) % prune382

dict(1,:) = []; % remove oldest base from dictionary383

dict_d(1) = []; % remove oldest d from output dictionary384

18 Adaptive Kernel Learning for Signal Processing

K1

K2

K3

K4

K5

K6

. . .

x1

x2

x3

x4

x5

x6

...

x1 x2 x3 x4 x5 x6 . . .
. . .

Kn−1

Kn

Kn+1

. . .

...
xn−1

xn

xn+1

...

. . .

x
n
−
1

x
n

x
n
+
1

. . .

Figure 9.6 Different forms of updating the kernel matrix during online learning. In KRLS-type
algorithms the update involves calculating the inverse of each kernel matrix, given the inverse of
the previous matrix. Left: Growing kernel matrix, as constructed in KRLS (omitting sparsification for
simplicity). Right: Sliding-window kernel matrix of a fixed size, as constructed in SW-KRLS.

Kinv = prune_kernel_matrix(Kinv); % prune inverse kernel matrix385

end386

387

alpha = Kinv*dict_d; % obtain new filter coefficients388

Listing 9.7 Training step of the SW-KRLS algorithm on a new datum (x, d). The functions389

“grow_kernel_matrix” and “prune_kernel_matrix” implement the operations (9.43) and (9.48).390

SW-KRLS is a conceptually very simple algorithm that obtains reasonable performance391

in a wide range of scenarios, most notably in non-stationary environments. Nevertheless, its392

performance is limited by the quality of the bases in its dictionary, over which it has little393

control. In particular, it has no means to avoid redundancy in its dictionary or to maintain394

older bases that are relevant to its kernel expansion. In order to improve this performance, a395

Fixed-Budget KRLS (FB-KRLS) algorithm was proposed in Van Vaerenbergh et al. (2010).396

Instead of discarding the oldest data point in each iteration, FB-KRLS discards the data397

point that causes the least error upon being discarded, using a least a-posteriori error based398

pruning criterion we will discuss in Section 9.5. In stationary scenarios, FB-KRLS obtains399

significantly better results.400

KRLS Tracker401

The tracking limitations of previous KRLS algorithms were overcome by development of402

the Kernel Recursive Least-Squares Tracker (KRLS-T) algorithm Van Vaerenbergh et al.403

(2012b), which has its roots in the probabilistic theory of Gaussian Process (GP) regression.404

Similar to the FB-KRLS algorithm, this algorithm uses a fixed memory size and has a405

criterion to discard which data to discard in each iteration. But unlike FB-KRLS, the KRLS-T406

algorithm incoporates a forgetting mechanism to gradually downweigh older data.407

We will provide more details on this algorithm in the discussion on probabilistic kernel408

adaptive filtering of Section 9.6. As a reference, we list the Matlab code for the KRLS-409

T training step on a new data pair (x, d) in Listing 9.8. While this algorithm has similar410

complexity as other KRLS-type algorithms, its implementation is more complex due its411

fully probabilistic treatment of the regression problem. Note that some additional checks to412

Adaptive Kernel Learning for Signal Processing 19

avoid numerical problems have been left out; The complete code can be found in the Kernel413

Adaptive Filtering toolbox, discussed in Section 9.8.414

% perform one forgetting step415

Sigma = lambda*Sigma + (1-lambda)*K; % forgetting on covariance matrix416

mu = sqrt(lambda)*mu; % forgetting on mean vector417

418

k = kernel(dict,x,kerneltype,kernelpar); % kernels between dictionary and x419

kxx = kernel(x,x,kaf.kerneltype,kaf.kernelpar); % kernel on x420

421

q = Q*k;422

y_mean = q'*mu; % predictive mean of new datum423

gamma2 = kxx - k'*q; % projection uncertainty424

h = Sigma*q;425

sf2 = gamma2 + q'*h; % noiseless prediction variance426

sy2 = sn2 + sf2; % unscaled predictive variance of new datum427

y_var = s02*sy2; % predictive variance of new datum428

429

% include new sample and add a basis430

Qold = Q; % old inverse kernel matrix431

p = [q; -1];432

Q = [Q zeros(m,1);zeros(1,m) 0] + 1/gamma2*(p*p'); % updated inverse matrix433

434

err = d - y_mean; % instantaneous error435

p = [h; sf2];436

mu = [mu; y_mean] + err/sy2*p; % posterior mean437

Sigma = [Sigma h; h' sf2] - 1/sy2*(p*p'); % posterior covariance438

dict = [dict; x]; % add base to dictionary439

440

% estimate scaling power s02 via ML441

nums02ML = nums02ML + lambda*(y - y_mean)^2/sy2;442

dens02ML = dens02ML + lambda;443

s02 = nums02ML/dens02ML;444

445

% delete a basis if necessary446

m = size(dict,1);447

if m>M448

% MSE pruning criterion449

errors = (Q*mu)./diag(Q);450

criterion = abs(errors);451

452

[~, r] = min(criterion); % remove element which incurs in the min. err.453

smaller = 1:m; smaller(r) = [];454

455

if r == m, % remove the element we just added (perform reduced update)456

Q = Qold;457

else458

Qs = Q(smaller, r);459

qs = Q(r,r); Q = Q(smaller, smaller);460

Q = Q - (Qs*Qs')/qs; % prune inverse kernel matrix461

end462

mu = mu(smaller); % prune posterior mean463

Sigma = Sigma(smaller, smaller); % prune posterior covariance464

dict = dict(smaller,:); % prune dictionary465

end466

Listing 9.8 Training step of the KRLS-T algorithm on a new datum (x, d).

20 Adaptive Kernel Learning for Signal Processing

9.4.5 Example: Nonlinear channel identification and reconvergence467

In order to demonstrate the tracking capabilities of some of the reviewed kernel adaptive468

filters we perform an experiment similar to the setup descriped in Lázaro-Gredilla et al.469

(2011); Van Vaerenbergh et al. (2006). Specifically, we consider the problem of online470

identification of a communication channel in which an abrupt change (switch) is triggered471

at some point.472

A signal xn ∈ N (0, 1) is fed into a nonlinear channel that consists of a linear finite impulse473

response (FIR) channel followed by the nonlinearity y = tanh(z), where z is the output of474

the linear channel. During the first 500 iterations the impulse response of the linear channel475

is chosen as H1 = [1,−0.3817,−0.1411, 0.5789, 0.191], and at iteration 501 it is switched476

to H2 = [1,−0.0870, 0.9852,−0.2826,−0.1711]. Finally, 20dB of Gaussian white noise is477

added to the channel output.478

We perform an online identification experiment with the algorithms LMS, QKLMS, SW-479

KRLS, and KRLS-T. Each algorithm performs online learning of the nonlinear channel,480

processing one input datum (with a time-embedding of 5 taps) and one output sample per481

iteration. At each step, the MSE performance is measured on a set of 100 data points that are482

generated with the current channel model. The results are averaged out over 10 simulations.483

The kernel adaptive filters use a Gaussian kernel with σk = 1. LMS and QKLMS use484

a learning rate η = 0.5. The sparsification threshold of QKLMS is set to εU = 0.3, which485

leads to a final dictionary of size around m = 300 at the end of the experiment. The486

regularization of SW-KRLS and KRLS-T is set to match the true value of the noise-to-signal487

ratio, 0.01. Regarding memory, SW-KRLS and KRLS-T are given a maximum dictionary488

size of m = 50. Finally, KRLS-T uses a forgetting factor of λ = 0.998.489

0 500 1000 1500
−30

−25

−20

−15

−10

Iteration

M
S

E
 (

d
B

)

LMS

QKLMS

SW−KRLS

KRLS−T

Figure 9.7 MSE learning curves of different kernel adaptive filters on a communications channel that
shows an abrupt change at iteration 500.

The results are shown in Fig. 9.7. LMS performs worst, as it is not capable of modeling490

the nonlinearities in the system. QKLMS shows good results, given its low complexity, but a491

slow convergence. SW-KRLS and KRLS-T converge to a value which is mostly limited by its492

dictionary size, m = 50, and both show fast convergence rates. All algorithms are capable of493

reconverging after the switch, though their convergence rate is typically slower at that point.494

Adaptive Kernel Learning for Signal Processing 21

9.5 Online Sparsification with Kernels495

The idea behind sparsification methods is to construct a sparse dictionary of bases that496

represent the remaining data sufficiently well. As a general rule in learning theory, it is497

desirable to design a network with as few processing elements as possible. Sparsity reduces498

the complexity in terms of computation and memory, and it usually gives better generalization499

ability to unseen data Platt (1991); Vapnik (1995). In the context of kernel methods,500

sparsification aims to identify the bases in the kernel expansion y∗ =
∑n

i=1 αik(xi,x∗), see501

Eq (9.23), that can be discarded without incurring a significant performance loss.502

Online sparsification is typically performed by starting with an empty dictionary, D0 = ∅,503

and, in each iteration, adding the input datum xi if it fulfills a chosen sparsification criterion.504

We denote the dictionary at time instant n− 1 as Dn−1 = {ci}mn−1

i=1 , where ci is the i-th505

stored center, taken from the input data x received up till this instant, and mn−1 is the506

dictionary cardinality at this instant. When a new input-output pair (xn, dn) is received, a507

decision is made whether or not xn should be added to the dictionary as a center. If the508

sparsification criterion is fulfilled, xn is added to the dictionary, Dn = Dn−1 ∪ {xn}. If the509

criterion is not fulfilled, the dictionary is maintained, Dn = Dn−1, to preserve its sparsity.510

iteration
0 10 20 30 40 50

d
ic

ti
o
n
a
ry

 e
le

m
e
n
t

0

10

20

30

40

50

Evergrowing

iteration
0 10 20 30 40 50

d
ic

ti
o
n
a
ry

 e
le

m
e
n
t

0

10

20

30

40

50

Limited growth

iteration
0 10 20 30 40 50

d
ic

ti
o
n
a
ry

 e
le

m
e
n
t

0

10

20

30

40

50

Sliding window

iteration
0 10 20 30 40 50

d
ic

ti
o
n
a
ry

 e
le

m
e
n
t

0

10

20

30

40

50

Fixed budget

Figure 9.8 Dictionary construction processes for different sparsification approaches. Each horizontal
line marks the presence of a center in the dictionary. Top left: The evergrowing dictionary construction,
in which the dictionary contains n elements in iteration n; Top right: Online sparsification by slowing
down the dictionary growth, as obtained by the coherence and ALD criteria; Bottom left: Sliding-
window approach, displayed with 10 elements in the dictionary; Bottom right: Fixed-budget approach,
in which the pruning criterion discards one element per iteration, displayed with dictionary size 10.

Fig. 9.8 illustrates the dictionary construction process for different sparsification511

approaches. Each horizontal line represents the presence of a center in the dictionary. At512

any given iteration, the elements in the dictionary are indicated by the horizontal lines that513

are present at that iteration. Below we discuss each approach in detail.514

22 Adaptive Kernel Learning for Signal Processing

9.5.1 Sparsity by construction515

We will first give an general overview of the different online sparsification methods in the516

literature, some of which we have already introduced in the context of the algorithms for517

which they were proposed. We distinguish three criteria that achieve sparsity by construction:518

novelty criterion, approximate linear dependency criterion, and coherence criterion. If the519

dictionary is not allowed to grow beyond a specified maximum size, it may be necessary to520

discard bases at some point. This process is referred to as pruning, and we will review the521

most important pruning criteria later.522

Novelty Criterion. The novelty criterion is a data selection method introduced by Platt523

Platt (1991). It was used to construct resource allocating networks (RAN), which524

are essentially growing radial basis function networks. When a new data point xn is525

obtained by the network, the novelty criterion calculates the distance of this point to the526

current dictionary, minj∈Dn−1
‖xn − cj‖. If this distance is smaller than some preset527

threshold, xn is added to the dictionary. Otherwise, it computes the prediction error,528

and only if this error en is larger than another preset threshold, the datum xn will be529

accepted as a new center.530

Approximate Linear Dependency Criterion. A more sophisticated dictionary growth
criterion was introduced for the KRLS algorithm in Engel et al. (2004): Each time
a new datum xn is observed, the approximate linear dependency (ALD) criterion
measures how well the datum can be approximated in the feature space as a linear
combination of the dictionary bases in that space. It does so by checking if the ALD
condition holds, see Eq. (9.45),

min
a

∥∥∥∥∥∥
m∑
j=1

ajφ(cj)− φ(xn)

∥∥∥∥∥∥
2

≤ ν.

Evaluating the ALD criterion requires quadratic complexity, O(m2) and therefore it is531

not suitable for algorithms with linear complexity such as KLMS.532

Coherence Criterion. The coherence criterion is a straightforward criterion to check whether
the newly arriving datum is sufficiently informative. It was introduced in the context
of the KNLMS algorithm Richard et al. (2009). Given the dictionary Dn−1 at iteration
n− 1 and the newly arriving datum xn, the coherence criterion to include the datum
reads

max
j∈Dn−1

|k(xn, cj)| < µ0. (9.49)

In essence, the coherence criterion checks the similarity, as measured by the kernel533

function, between the new datum and the most similar dictionary center. Only if this534

similarity is below a certain threshold µ0, the datum is inserted into the dictionary. The535

higher the threshold µ0 is chosen, the more data will be accepted in the dictionary. It is536

an effective criterion that has linear computational complexity in each iteration: it only537

requires to calculatem kernel functions, making it suitable for KLMS-type algorithms.538

In Chen et al. (2012) a similar criterion was introduced, minj∈Dn−1
‖xn − cj‖ > εu,539

which is essentially equivalent to the coherence criterion with a Euclidean distance540

based kernel.541

Adaptive Kernel Learning for Signal Processing 23

9.5.2 Sparsity by pruning542

In practice, it is often necessary to specify a maximum dictionary size m, or budget, that may543

not be exceeded, for instance due to limitations on hardware or execution time. In order to544

avoid exceeding this budget, one could simply stop including any data in the dictionary once545

the budget is reached, hence locking the dictionary. Nevertheless, it is very probable that at546

some point after locking the dictionary a new datum is received that is very informative. In547

this case, the quality of the algorithm’s solution may improve by pruning the least relevant548

center of the dictionary and replacing it with the new, more informative datum.549

The goal of a pruning criterion is to select a datum out of a given set, such that the550

algorithm’s performance is least affected. This makes pruning criteria conceptually different551

from the previously discussed online sparsification criteria, whose goal is to decide whether552

or not to include a datum. Pruning techniques have been studied in the context of neural553

network design Hassibi et al. (1993); LeCun et al. (1989) and kernel methods De Kruif and554

De Vries (2003); Hoegaerts et al. (2004). We briefly discuss the two most important pruning555

criteria that appear in kernel adaptive filtering: sliding-window criterion and error criterion.556

Sliding Window. In time-varying environments, it may be useful to discard the oldest bases,557

as these were observed when the underlying model was most different from the current558

model. This strategy is at the core of sliding-window algorithms such as NORMA559

Kivinen et al. (2004) and SW-KRLS Van Vaerenbergh et al. (2006). In every iteration,560

these algorithms include the new datum in the dictionary and discard the oldest datum,561

thereby maintaining a dictionary of fixed size.562

Error Criterion. Instead of simply discarding the oldest datum, the error based criterion
determines the datum that will cause the least increase of the squared-error
performance after it is pruned. This is a more sophisticated pruning strategy that was
introduced in Csató and Opper (2002); De Kruif and De Vries (2003) and requires
quadratic complexity to evaluate, O(m2). Interestingly, if the inverse kernel matrix is
available, it is straightforward to evaluate this criterion. Given the i-th element on the
diagonal of the inverse kernel matrix, [K−1]ii, and the i-th expansion coefficient αi, the
squared error after pruning the i-th center from a dictionary is αi/[K

−1]ii. The error
based pruning criterion therefore selects the index for which this quantity is minimized,

arg min
i

αi

[K−1]ii
. (9.50)

This criterion is used in the fixed-budget algorithms FB-KRLS Van Vaerenbergh et al.563

(2010) and KRLS-T Van Vaerenbergh et al. (2012b). An analysis performed in Lázaro-564

Gredilla et al. (2011) shows that the results obtained by this criterion are very close565

to the optimal approach, which is based on minimization of the Kullback–Leibler566

divergence between the original and the approximate posterior distributions.567

Currently, the most successful pruning criteria used in the kernel adaptive filtering literature
have quadratic complexity, O(m2) and therefore they can only be used in KRLS-type
algorithms. Optimal pruning in KLMS is a particularly challenging problem, as it is hard
to define a pruning criterion that can be evaluated with linear computational complexity. A
simple criterion is found in Rzepka (2012), where the center with the least weight is pruned,
and weight is determined by the associated expansion coefficient,

arg min
i
|αi|. (9.51)

24 Adaptive Kernel Learning for Signal Processing

The design of more sophisticated pruning strategies is currently an open topic in KLMS568

literature. Some recently proposed criteria can be found in Zhao et al. (2013, 2016).569

9.6 Probabilistic Approaches to Kernel Adaptive Filtering570

In many signal processing applications, the problem of signal estimation is addressed.571

Probabilistic models have proven to be very useful in this context Arulampalam et al. (2002);572

Rabiner (1989). One of the advantages of probabilistic approaches is that they force the573

designer to specify all the prior assumptions of the model, and that they make a clear574

separation between the model and the applied algorithm. Another benefit is that they typically575

provide a measure of uncertainty about the estimation. Such an uncertainty estimate is not576

provided by classical kernel adaptive filtering algorithms, which produce a point estimate577

without any further guarantees.578

In this section, we will review how the probabilistic framework of Gaussian Processes579

(GP) allows to extend kernel adaptive filters to probabilistic methods. The resulting GP-based580

algorithms not only produce an estimate of an unknown function, but an entire probability581

distribution over functions, see Fig. 9.9.582

input, x
-5 0 5

o
u
tp

u
t,
 f
(x

)

-3

-2

-1

0

1

2

3

input, x
-5 0 5

o
u
tp

u
t,
 f
(x

)

-3

-2

-1

0

1

2

3

Figure 9.9 Functions drawn from a Gaussian process with a squared exponential covariance
k(x,x′) = exp(−‖x− x′‖2/2σ2

k). The 95% confidence interval is plotted as the shaded area. Left:
Draws from the prior function distribution. Right: Draws from the posterior function distribution, which
is obtained after 5 data points (blue crosses) are observed. The predictive mean is displayed in black.

Before we describe any probabilistic kernel adaptive filtering algorithms, it is instructive to583

take a step back to the non-adaptive setting, and consider the kernel ridge regression problem584

(9.34). We will adopt the GP framework to analyze this problem from a probabilistic point of585

view.586

9.6.1 Gaussian Processes and Kernel Ridge Regression587

Let us assume that the observed data in a regression problem can be described by the
following model,

dn = f(xn) + εn, (9.52)

in which f represents an unobservable latent function and εn ∼ N (0, σ2) is zero-mean
Gaussian noise. We will furthermore assume a zero-mean GP prior on f(x)

f(x) ∼ GP(m(x), k(x,x′)), (9.53)

Adaptive Kernel Learning for Signal Processing 25

and a Gaussian prior on the noise ε,

ε ∼ N (0, σ2). (9.54)

In the GP literature, the kernel function k(x,x′) is referred to as the covariance, since it588

specifies the a-priori relationship between values f(x) and f(x′) in terms of their respective589

locations, and its parameters are called hyperparameters.590

By definition, the marginal distribution of a GP at a finite set of points is a joint
Gaussian distribution, with its mean and covariance being specified by the functions
m(x) and k(x,x′) evaluated at those points Rasmussen and Williams (2006). Thus, the
joint distribution of outputs d = [d1, . . . , dn]> and the corresponding latent vector f =
[f(x1), f(x2), . . . , f(xn)]> is[

d
f

]
∼ N

(
0,

[
K + σ2I K

K K

])
. (9.55)

By conditioning on the observed outputs y, the posterior distribution over the latent vector
can be inferred

p(f |d) = N (f |K(K + σ2I)−1d,K−K(K + σ2I)−1K)

= N (f |µ,Σ). (9.56)

Assuming this posterior is obtained for the data up till time instant n− 1, the predictive
distribution of a new output dn at location xn is computed as

p(dn|xn,dn−1) = N (dn|µGP,n, σ
2
GP,n) (9.57a)

µGP,n = k>n (Kn−1 + σ2I)−1dn−1 (9.57b)

σ2
GP,n = σ2 + knn − k>n (Kn−1 + σ2I)−1kn. (9.57c)

591

The mode of the predictive distribution, given by µGP,n in Eq. (9.57b), coincides with the592

prediction of kernel ridge regression, given by Eq. (9.36), showing that the regularization in593

KRR can be interpreted as a noise power σ2. Furthermore, the variance of the predictive594

distribution, given by σ2
GP,n in Eq. (9.57c), coincides with Eq. (9.42), which is used by the595

ALD dictionary criterion for KRLS.596

9.6.2 Online recursive solution for Gaussian process regression597

A recursive update of the complete GP (9.57) was proposed in Csató and Opper (2002),
as the Sparse Online Gaussian Process (SOGP) algorithm. We will follow the notation of
Van Vaerenbergh et al. (2012b), whose solution is equivalent to SOGP but whose choice of
variables allows for an easier interpretation. Specifically, the predictive mean and covariance
of the GP solution (9.57) can be updated as

p(fn|Xn,dn) = N (fn|µn,Σn) (9.58a)

µn =

[
µn−1

d̂n

]
+

en
σ̂2
dn

[
hn

σ̂2
fn

]
(9.58b)

Σn =

[
Σn−1 hn

h>n σ̂2
fn

]
− 1

σ̂2
dn

[
hn

σ̂2
fn

] [
hn

σ̂2
fn

]>
, (9.58c)

26 Adaptive Kernel Learning for Signal Processing

where Xn contains the n input data, hn = Σn−1K
−1
n−1kn, and σ̂2

fn and σ̂2
dn are the predictive598

variances of the latent function and the new output, respectively, calculated at the new input.599

Details can be found in Lázaro-Gredilla et al. (2011); Van Vaerenbergh et al. (2012b). In600

particular, the update of the predictive mean can be shown to be equivalent to the KRLS601

update. The advantage of using a full GP model is that not only does it allow to update the602

predictive mean, as does KRLS, but it keeps track of the entire predictive distribution of603

the solution. This allows, for instance, to establish confidence intervals when predicting new604

outputs.605

Similar to KRLS, this online GP update assumes a stationary model. Interestingly however,606

the Bayesian approach (and in particular its handling of the uncertainty) does allow for a607

principled extension that performs tracking, as we briefly discuss in the sequel.608

9.6.3 Kernel Recursive Least Squares Tracker609

In Van Vaerenbergh et al. (2012b), a KRLS Tracker (KRLS-T) algorithm was presented that610

explicitly handles uncertainty about the data, based on the probabilistic GP framework. In611

stationary environments it operates identically to the earlier proposed Sparse Online GP612

algorithm (SOGP) from Csató and Opper (2002), though it includes a forgetting mechanism613

that enables it to handle non-stationary scenarios as well.614

During each iteration, KRLS-T performs a forgetting operation in which the mean and
covariance are replaced through

µ←
√
λµ (9.59a)

Σ← λΣ + (1− λ)K. (9.59b)

The effect of this operation on the predictive distribution is shown in Fig. 9.10. For illustration615

purposes, the forgetting factor is chosen unusually low, λ = 0.9.616

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

input, x

o
u
tp

u
t,
 f
(x

)

mean after forgetting

95% confidence after forgetting

Figure 9.10 Forgetting operation of KRLS-T. The original predictive mean and variance are indicated
as the black line and shaded grey area, as in Fig. 9.9. After one forgetting step, the mean becomes the
dashed red curve, and the new 95% confidence interval is indicated in blue.

This particular form of forgetting corresponds to blending the informative posterior with617

a “noise” distribution that uses the same color as the prior. In other words, forgetting occurs618

by taking a step back towards the prior knowledge. Since the prior has zero mean, the619

Adaptive Kernel Learning for Signal Processing 27

mean is simply scaled by the square root of the forgetting factor λ. The covariance, which620

represents the posterior uncertainty on the data, is pulled towards the covariance of the prior.621

Interestingly, a regularized version of RLS (known as extended RLS) can be obtained by using622

a linear kernel with the B2P forgetting procedure. Standard RLS can be obtained by using a623

different forgetting rule, see Van Vaerenbergh et al. (2012b).624

The KRLS-T algorithm can be seen as a probabilistic extension of KRLS that obtains625

confidence intervals and is capable of adapting to time-varying environments. It obtains state-626

of-the-art performance in several nonlinear adaptive filtering problems, see Van Vaerenbergh627

and Santamaría (2013) and the results of Fig. 9.7, though it has a more complex formulation628

than most other kernel adaptive filters and it requires a higher computational complexity. We629

will explore these aspects through additional examples in Section 9.8.630

9.6.4 Probabilistic KLMS631

The success of the probabilistic approach for KRLS-like algorithms has lead several632

researchers to investigate the design of probabilistic KLMS algorithms. The low complexity633

of KLMS-type algorithms makes them very popular in practical solutions. Nevertheless, this634

low computational complexity is also a limitation that makes the design of a probabilistic635

KLMS algorithm a particularly hard research problem.636

Some advances have already been made in this direction. Specifically, in Park et al. (2014)637

a probabilistic KLMS algorithm was proposed, though it only considered the maximum-638

a-posteriori (MAP) estimate. In Van Vaerenbergh et al. (2016a), it was shown that several639

KLMS algorithms can be obtained by imposing a simplifying restriction on the full SOGP640

model, thereby linking KLMS algorithms and online GP approaches directly.641

9.7 Further Reading642

A myriad of different kernel adaptive filtering algorithms have appeared in the literature.643

We described the most prominent algorithms, which represent the state of the art. While we644

only focused on their online learning operation, several other aspects are worth studying. In645

this section, we briefly introduce the most interesting topics that are the subject of current646

research.647

9.7.1 Selection of Kernel Parameters648

A typical problem in kernel methods in general and kernel adaptive filtering in particular649

is the determination of the optimal kernel and other parameters, such as regularization,650

forgetting factor, embedding size, etc. These parameters are often are referred to as651

hyperparameters in order to distinguish them from the kernel expansion coefficients αi. A652

standard approach to determine the optimal hyperparameters is to perform a grid search with653

cross-validation. Nevertheless, this approach quickly becomes infeasible when more than654

a few hyperparameters or parameter values are to be considered, due to the combinatorial655

explosion of possible grid points to evaluate.656

A more efficient and principled method is offered by the Gaussian process framework.
Specifically, the optimal hyperparameters of GP regression can be found by maximizing the
log marginal likelihood, which has an analytic expression given by

log p(d|X) = −1

2
d>
(
K + σ2I

)−1
d− 1

2
log ‖K‖ − n

2
log 2π. (9.60)

28 Adaptive Kernel Learning for Signal Processing

It is straightforward to compute this log marginal likelihood and its gradients, and one can657

choose any of the existing nonlinear optimization methods to perform the maximization. This658

procedure is commonly referred to as type-II maximum likelihood (ML). Details can be found659

in Rasmussen and Williams (2006).660

The optimal hyperparameters obtained by type-II ML correspond to the optimal choices661

for kernel ridge regression, due to the correspondence between GP regression and KRR, and662

for several kernel adaptive filters. A case study for KRLS and KRLS-T can be found in663

Van Vaerenbergh et al. (2012a).664

Finally, in online scenarios it would be interesting to perform an online estimation of the665

optimal hyperparameters. This, however, is a difficult open research problem for which only a666

handful of methods have been proposed, see for instance Soh and Demiris (2015). In practice667

it is still more appropriate to perform type-II ML offline on a batch of training data, before668

running the online learning procedure using the found hyperparameters.669

9.7.2 Multi-Kernel Adaptive Filtering670

In the last decade, several methods have been proposed to consider multiple kernels instead671

of a single one Bach et al. (2004); Sonnenburg et al. (2006). The different kernels may672

correspond to different notions of similarity, or they may address information coming from673

multiple, heterogeneous data sources.674

On the other hand, in the field of linear adaptive filtering, it was recently shown that675

a convex combination of adaptive filters can improve the convergence rate and tracking676

performance Arenas-García et al. (2006) compared to running a single adaptive filter.677

Multi-kernel adaptive filtering combines ideas from the above two approaches Yukawa678

(2012). Its learning procedure activates those kernels whose hyperparameters correspond679

best to the currently observed data, which could be interpreted as a form of hyperparameter680

learning. Furthermore, the adaptive nature of these algorithms allow them to track the681

importance of each kernel in time-varying scenarios, possibly giving them an advantage over682

single-kernel adaptive filtering.683

Several multi-kernel adaptive filtering algorithms have been proposed in the recent684

literature, for instance Gao et al. (2014); Ishida and Tanaka (2013); Pokharel et al. (2013);685

Yukawa (2012). While they show promising performance gains over single-kernel adaptive686

filtering algorithms, their computational complexity is much higher. This is an important687

aspect inherent to the combination of multiple kernel methods, and it is a topic of current688

research.689

9.7.3 Recursive Filtering in Kernel Hilbert Spaces690

The modeling and prediction of time series with kernel adaptive filters is usually addressed691

by time-embedding the data, thus considering each time lag as a different input dimension.692

This approach presents some drawbacks: First, the optimal filter order may change over time,693

which would require an additional tracking mechanism; Second, if the optimal filter order694

is high, as for instance in audio applications Van Vaerenbergh et al. (2016b), the method be695

affected by the curse of dimensionality. For some problems, the concept of an optimal filter696

order may not even make sense.697

An alternative approach to modeling and predicting time series is to construct recursive698

kernel machines, which implement recursive models explicitly in the rkHs. A preliminary699

work in this direction considered the design of a recursive kernel in the context of infinite700

recurrent neural networks Hermans and Schrauwen (2012). More recently, recursive versions701

Adaptive Kernel Learning for Signal Processing 29

of the autoregressive, moving-average and gamma filters in rkHs were proposed Tuia702

et al. (2014). By exploiting properties of functional analysis and recursive computation,703

this approach avoids the reduced-rank approximations that are required in standard kernel704

adaptive filters. Finally, a kernel version of the autoregressive-moving-average filter was705

presented in Li and Príncipe (2016).706

9.8 Tutorial Examples707

This section presents experiments in which kernel adaptive filters are applied to time series708

prediction and nonlinear system identification. These experiments are implemented using709

code based on the Kernel Adaptive Filtering Toolbox Van Vaerenbergh and Santamaría710

(2013), which is available at https://github.com/steven2358/kafbox/.711

9.8.1 Kernel Adaptive Filtering Toolbox712

The Kernel Adaptive Filtering Toolbox (KAFBOX) is a Matlab benchmarking toolbox to713

evaluate and compare kernel adaptive filtering algorithms. It includes a large list of algorithms714

that have appeared in the literature, and additional tools for hyperparameter estimation and715

algorithm profiling, among others.716

The kernel adaptive filtering algorithms in KAFBOX are implemented as objects using the717

classdef syntax. Since all KAF algorithms are online methods, each of them includes two718

basic operations: 1) Obtaining the filter output, given a new input x∗; and 2) Training on a719

new data pair (xn, dn). These operations are implemented as the methods evaluate and720

train, respectively.721

As an example, we list the code for the KLMS algorithm in Listing 9.9. The object722

definition contains two sets of properties, one for the hyperparameters and one for the723

variables it will learn. The first method is the object’s constructor method, which copies724

the specified hyperparameter settings. The second method is the evaluate function,725

which performs the operation y∗ =
∑n

i=1 αik(xi,x∗). It includes an if clause to check726

if the algorithm has at least performed one training step yet. If not, zeroes are returned727

as predictions. Finally, the train method implements a single training step of the online728

learning algorithm. This method typically handles algorithm initialization as well, such that729

functions that operate on a KAF object do not have to worry about initializing. The training730

step itself is summarized in very few lines of Matlab code, for many algorithms.731

% Kernel Least-Mean-Square algorithm732

%733

% W. Liu, P.P. Pokharel, and J.C. Principe, "The Kernel Least-Mean-Square734

% Algorithm," IEEE Transactions on Signal Processing, vol. 56, no. 2, pp.735

% 543-554, Feb. 2008, http://dx.doi.org/10.1109/TSP.2007.907881736

%737

% Remark: implementation includes a maximum dictionary size M738

%739

% This file is part of the Kernel Adaptive Filtering Toolbox for Matlab.740

% https://github.com/steven2358/kafbox/741

742

classdef klms < handle743

744

properties (GetAccess = 'public', SetAccess = 'private')745

eta = .5; % learning rate746

M = 10000; % maximum dictionary size747

kerneltype = 'gauss'; % kernel type748

https://github.com/steven2358/kafbox/

30 Adaptive Kernel Learning for Signal Processing

kernelpar = 1; % kernel parameter749

end750

751

properties (GetAccess = 'public', SetAccess = 'private')752

dict = []; % dictionary753

alpha = []; % expansion coefficients754

end755

756

methods757

758

function kaf = klms(parameters) % constructor759

if (nargin > 0) % copy valid parameters760

for fn = fieldnames(parameters)',761

if ismember(fn,fieldnames(kaf)),762

kaf.(fn{1}) = parameters.(fn{1});763

end764

end765

end766

end767

768

function y_est = evaluate(kaf,x) % evaluate the algorithm769

if size(kaf.dict,1)>0770

k = kernel(kaf.dict,x,kaf.kerneltype,kaf.kernelpar);771

y_est = k'*kaf.alpha;772

else773

y_est = zeros(size(x,1),1);774

end775

end776

777

function train(kaf,x,y) % train the algorithm778

if (size(kaf.dict,1)<kaf.M), % avoid infinite growth779

y_est = kaf.evaluate(x);780

err = y - y_est;781

kaf.alpha = [kaf.alpha; kaf.eta*err]; % grow782

kaf.dict = [kaf.dict; x]; % grow783

end784

end785

786

end787

end788

Listing 9.9 Matlab code for the KLMS algorithm object class, from KAFBOX.

For the experiments below, we will use v2.0 of KAFBOX, which can be downloaded from789

the “releases” page https://github.com/steven2358/kafbox/releases/.790

9.8.2 Prediction of a Respiratory Motion Time Series791

In the first experiment we apply KAF algorithms to predict a bio-medical time series, more792

specifically a respiratory motion trace. These data come from robotic radiosurgery, in which793

a photon beam source is used to ablate tumors. The beam is operated by a robot arm that aims794

to move the beam source to compensate for the motion of internal organs. Traditionally,795

this is achieved by recording the motion of markers applied to the body surface and by796

using this motion to draw conclusions about the tumor position. Although this method797

significantly increases the targeting accuracy, the system delay arising from data processing798

and positioning of the beam results in a systematic error. This error can be decreased by799

predicting the motion of the body surface Ernst (2012).800

https://github.com/steven2358/kafbox/releases/

Adaptive Kernel Learning for Signal Processing 31

455 460 465 470 475 480 485 490 495

−4

−2

0

2

4

6

8

time (s)

Figure 9.11 A snapshot of the respiratory motion trace.

The data was recorded at Georgetown University Hospital using CyberKnife® equipment,801

and it represents the recorded position of one of the markers attached to the body surface3. A802

snapshot of this motion trace is shown in Fig. 9.11. The delay to compensate totals 115 ms,803

which, at a sampling frequency of 26 Hz, corresponds to 3 samples. The task thus consists804

in three-step ahead prediction. We use a time-embedding of 8 samples. Since the breathing805

pattern may change over time, we employed only tracking algorithms. Their parameters are806

listed in Table 9.1. The MSE results of the four algorithms are displayed in the last column807

of this table. A comparison of the original series and the predictions of one of the algorithms808

is shown in Fig. 9.12. The code to reproduce these results can be found in Listing 9.10.809

0 5 10 15 20 25 30 35

−2

0

2

4

6

8

10

time(s)

original

SWKRLS prediction

Figure 9.12 The respiratory motion trace and the 3-step ahead prediction of a KAF algorithm.

Table 9.1 Parameters used for predicting the respiratory motion trace, MSE result for 3-step
ahead prediction, and measured training time.

Algorithm Parameters MSE performance Training time

NORMA λ = 10−4, τ = 30 −5.78 dB 0.16 s
QKLMS η = 0.99, εU = 1 −8.14 dB 0.18 s

SWKRLS c = 10−4, m = 50 −13.35 dB 0.29 s
KRLS-T σ2

n = 10−4, m = 50, λ = 0.999 −18.16 dB 0.54 s

3Data available at http://signals.rob.uni-luebeck.de/

http://signals.rob.uni-luebeck.de/

32 Adaptive Kernel Learning for Signal Processing

% 3-step ahead prediction on the respiratory motion time series.810

% Requires KAFBOX toolbox.811

close all; clear812

813

%% PARAMETERS814

h = 3; % prediction horizon815

L = 8; % embedding816

n = 1000; % number of data817

818

sigma = 7; % kernel parameter819

820

% Uncomment one of the following algorithms. All use a Gaussian kernel.821

% kaf = norma(struct('lambda',1E-4,'tau',30,'kernelpar',sigma,'eta',0.99));822

% kaf = qklms(struct('epsu',1,'kernelpar',sigma,'eta',0.99));823

kaf = swkrls(struct('M',50,'kernelpar',sigma,'c',1E-4));824

% kaf = krlst(struct('M',50,'lambda',0.999,'sn2',1E-4,'kernelpar',sigma));825

826

%% PREPARE DATA827

data = load('respiratorymotion3.dat');828

X = zeros(n,L);829

for i = 1:L,830

X(i:n,i) = data(1:n-i+1,1); % time embedding831

end832

y = data((1:n)+h);833

834

%% RUN ALGORITHM835

MSE = zeros(n,1);836

y_est_all = zeros(n,1);837

838

title_ = upper(class(kaf)); % store algorithm name839

fprintf('Training %s',title_)840

for i=1:n,841

if ~mod(i,floor(n/10)), fprintf('.'); end % progress indicator842

843

xi = X(i,:);844

yi = y(i);845

846

y_est = kaf.evaluate(xi); % evaluate on test data847

MSE(i) = (yi-y_est)^2; % test error848

y_est_all(i) = y_est;849

850

kaf.train(xi,yi); % train with one input-output pair851

end852

fprintf('\n');853

854

%% OUTPUT855

fprintf('Mean MSE: %.2fdB\n\n',10*log10(mean(MSE)));856

857

figure; hold all;858

t = (1:n)/26; % sample rate is 26 Hz859

plot(t,y)860

plot(t,y_est_all,'r')861

legend({'original',sprintf('%s prediction',title_)},'Location','SE');862

Listing 9.10 Matlab code for running KAF algorithms on the respiratory motion prediction problem.

Adaptive Kernel Learning for Signal Processing 33

9.8.3 Online Regression on the KIN40K Data Set863

In the second experiment we train the online algorithms to perform regression of the KIN40K864

data set Ghahramani (1996)4, which is a standard regression problem in the machine learning865

literature. The KIN-40K data set is obtained from the forward kinematics of an 8-link all-866

revolute robot arm, similar to the one depicted in Fig. 9.13. It contains 40000 examples, each867

consisting of an 8-dimensional input vector and a scalar output. KIN40K was generated with868

maximum nonlinearity and little noise, representing a very difficult regression test.869

Figure 9.13 Sketch of a 5-link all-revolute robot arm. The data used in the KIN40K experiment were
generated by simulating an 8-link extension of this arm.

In this experiment, we first determine the optimal hyperparameters for the kernel adaptive870

filters by running the tool kafbox_parameter_estimation, which is based on the871

GPML toolbox from Rasmussen and Williams (2006). We use 1000 randomly selected data872

points for the hyperparameter optimization. In the literature, an anisotropic kernel function,873

which has a different kernel width per dimension, is commonly used on these data. For874

simplicity, though, we employ an isotropic Gaussian kernel. The hyperparameters found875

by the optimization procedure are listed in Table 9.2. The forgetting factor is only used by876

KRLS-T, though its optimal value is determined to be 1, which indicates that no forgetting877

takes place in practice.878

Table 9.2 Optimal hyperparameters
found for the KIN40K regression problem.

Parameter Optimal value

kernel width σ 1.66
regularization 2.47 · 10−6

forgetting factor λ 1

From the remaining data we randomly select 5000 data points for training and 5000 data for879

testing the regression. Apart from the hyperparameters that are determined automatically in880

this experiment, the kernel adaptive filters have some parameters relating to memory size and881

learning rate. The values chosen for these parameters are listed in Table 9.3. The values for882

4Data available at http://www.cs.toronto.edu/~delve/data/datasets.html

http://www.cs.toronto.edu/~delve/data/datasets.html

34 Adaptive Kernel Learning for Signal Processing

QKLMS are chosen such that it obtains optimal performance after training with a dictionary883

size that is one order of magnitude larger than that of the KRLS algorithms. The precision884

parameter ν of KRLS is tuned to yield a dictionary size of around m = 500 at the end of the885

experiment, which is the budget of SWKRLS and KRLS-T.886

The learning curves for this experiment are shown in Fig. 9.14. The code for reproducing887

this experiment is displayed in Listing 9.11.888

Table 9.3 Additional parameters used in the KIN40K regression experiment, final
dictionary size, and measured training time.

Algorithm Parameters Final dictionary size Training time

QKLMS η = 0.99, εU = 1.2 2750 18.51 s
KRLS ν = 0.32 510 12.09 s

FBKRLS m = 500 500 33.49 s
KRLS-T m = 500 500 86.41 s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

−8

−6

−4

−2

0

QKLMS

KRLS

FBKRLS

KRLST

Figure 9.14 Learning curves of different algorithms on the KIN40K data.

% This demo estimates the optimal hyperparameters on the KIN40K data and889

% performs online regression learning. The estimated parameters are:890

% forgetting factor lambda, regularization c and Gaussian kernel width.891

892

close all; clear893

rng(1); % fix random seed, for reproducibility894

895

%% PARAMETERS896

897

n_hyper = 1000; % number of data to use for hyperparameter estimation898

n_train = 5000; % number of data for online training899

n_test = 5000; % number of data for testing900

test_every = 50; % run test every time this number of iterations passes901

902

% selected algorithms are defined below903

904

%% PROGRAM905

tic906

907

Adaptive Kernel Learning for Signal Processing 35

fprintf('Loading KIN40K data...\n')908

load('kin40k'); % data and hyperparameters909

910

%% PREPARE DATA911

indp = randperm(length(y)); % random permudation912

ind_hyper = indp(1:n_hyper);913

ind_train = indp(n_hyper+1:n_hyper+n_train);914

ind_test = indp(n_hyper+n_train+1:n_hyper+n_train+n_test);915

X_hyper = X(ind_hyper,:); % data for hyperparameter estimation916

y_hyper = y(ind_hyper);917

X_train = X(ind_train,:); % training data918

y_train = y(ind_train);919

X_test = X(ind_test,:); % test data920

y_test = y(ind_test);921

922

fprintf('Estimating KRLS-T parameters...\n\n')923

[sigma,reg,ff] = kafbox_parameter_estimation(X_hyper,y_hyper);924

925

% select algorithms926

i=1;927

algos{i} = qklms(struct('eta',0.5,'epsu',1.2,'kernelpar',sigma)); i=i+1;928

algos{i} = krls(struct('nu',.32,'kernelpar',sigma)); i=i+1;929

algos{i} = fbkrls(struct('M',500,'lambda',reg,'kernelpar',sigma)); i=i+1;930

algos{i} = ...931

krlst(struct('lambda',ff,'M',500,'sn2',reg,'kernelpar',sigma)); i=i+1;932

933

n_algos = length(algos);934

MSE = nan*zeros(n_train,1);935

titles = cell(n_algos,1);936

final_dict_size = zeros(n_algos,1);937

938

for j=1:n_algos939

kaf = algos{j};940

941

titles{j} = upper(class(kaf));942

fprintf(sprintf('Running %s with estimated parameters...\n',titles{j}))943

944

for i=1:n_train,945

if ~mod(i,floor(n_train/10)), fprintf('.'); end % progress ...946

indicator, 10 dots947

948

kaf.train(X_train(i,:),y_train(i)); % train with one input-output ...949

pair950

951

if mod(i,test_every) == 0 % run test only every952

y_est = kaf.evaluate(X_test); % predict on test set953

MSE(i,j) = mean((y_test-y_est).^2);954

end955

end956

final_dict_size(j) = size(kaf.dict,1);957

fprintf('\n');958

end959

960

toc961

%% OUTPUT962

963

figure;964

xs=find(~isnan(MSE(:,1)));965

plot(xs,10*log10(MSE(xs,:)))966

legend(titles)967

968

fprintf('\n');969

36 Adaptive Kernel Learning for Signal Processing

fprintf(' Estimated\n');970

fprintf('sigma: %.4f\n',sigma)971

fprintf('c: %e\n',reg)972

fprintf('lambda: %.4f\n\n',ff)973

974

final_dict_size975

Listing 9.11 Matlab code for determining the optimal hyperparameters and running online regression976

on the KIN40K data.977

9.8.4 The Mackey-Glass Time Series978

The Mackey-Glass time-series prediction is a benchmarking problem in nonlinear time-series979

modelling. We discussed this time series and the prediction results for KLMS and KRLS in980

Sections 9.3.3 and 9.4.3, respectively.981

The learning curves, shown in Fig. 9.5, indicate that KLMS converges very slowly, and that982

KRLS can obtain a much lower MSE in less iterations. On the other hand, KRLS requires983

an order of magnitude more computation and memory. These results are in line with the984

intuitions from linear adaptive filtering, in which LMS and RLS represent two different985

choices in the compromise between complexity and convergence rate.986

Nevertheless, there is a fundamental difference between the complexity analyses of linear987

and kernel adaptive filtering algorithms. While in linear adaptive filters the complexity988

depends on the data dimension, in KAF algorithms it depends on the dictionary size. And,989

importantly, the latter is a parameter that can be controlled.990

A KRLS-type algorithm with a large dictionary can converge faster than a KLMS-991

type algorithm with a similarly sized dictionary, at the expense of a higher computational992

complexity. But it would be instructive to ask how a KRLS-type algorithm with a small993

dictionary compares to a KLMS-type algorithm with a large dictionary. Can the KRLS994

algorithm obtain similar complexity as KLMS, while maintaining its better convergence995

rate? This question is answered in the diagrams of Fig. 9.15. We have included two KAf996

algorithms, QKLMS and KRLS-T, that allow easy control over their dictionary size.997

Table 9.4 Parameters used in the Mackey-Glass time series prediction. A Gaussian kernel with
σk = 1 was used.

Algorithm Fixed parameters Varying parameter

QKLMS η = 0.5 εU ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.5, 0.7, 1}
KRLS-T λ = 1, σ2

n = 10−6 m ∈ {3, 5, 7, 10, 20, 30, 50, 150}

Fig. 9.15 represents the results obtained by the KAF profiler tool included in KAFBOX.998

The Matlab code to reproduce this figure is displayed in Listing 9.12. The profiler tool runs999

each algorithm several times with different configurations, whose parameters are shown in1000

Table 9.4, producing one point in the plot per algorithm configuration. It calculates several1001

variables, such as the number of floating point operations (FLOPS), the used memory (in1002

bytes), and execution time.1003

By plotting the MSE vs. the FLOPS or memory, we get an idea of the resources required to1004

obtain a desired MSE result. If, for instance, we are working in a scenario with a restriction1005

on computational complexity, we should select the algorithm that performs best under this1006

restriction by determining which performance curve is most to the left for the amount of1007

Adaptive Kernel Learning for Signal Processing 37

steady-state MSE
-28 -26 -24 -22 -20 -18 -16 -14

m
a
x
 f
lo

p
s

1E2

1E3

1E4

1E5

1E6

1E7

Q-KLMS
KRLS-T

steady-state MSE
-28 -26 -24 -22 -20 -18 -16 -14

m
a
x
 b

y
te

s

1E2.5

1E3

1E3.5

1E4

1E4.5

1E5

1E5.5

1E6

Q-KLMS
KRLS-T

Figure 9.15 MSE vs. complexity trade-off comparisons for prediction of the Mackey-Glass time-
series. Left: Maximum number of FLOPS per iteration as a function of the steady-state MSE. Right:
Maximum number of bytes per iteration as a function of the steady-state MSE. Each marker represents
a single run of one of the algorithms with a single set of parameters. The start of each parameter sweep
is indicated by a black dot.

FLOPS available. In the same manner, by fixing a maximum on MSE we obtain the FLOPS1008

and memory required by each algorithm. In the left plot of Fig. 9.15 we observe that if1009

the available computational complexity is very limited, it may be more interesting to use1010

QKLMS. In other cases, KRLS-T is preferred as it obtains better MSE for the same amount1011

of FLOPS. In terms of memory used, it appears that it is always advantageous to use KRLS-T,1012

as can be seen in the right plot.1013

% Experiment: kernel adaptive filter algorithm profiler.1014

% Compares the cost vs prediction error tradeoffs and convergence speeds1015

% for several algorithms on the MG30 data set.1016

% Requires KAFBOX toolbox.1017

1018

clear1019

close all1020

1021

%% PARAMETERS1022

1023

% data and algorithm setup1024

data.name = 'mg30';1025

data.n_train = 500; % number of data points1026

data.n_test = 100; % number of data points1027

data.embedding = 7; % time embedding1028

data.offset = 50; % apply offset per simulation1029

1030

sim_opts.numsim = 5; % 10 seconds per simulation on a 2016 PC1031

sim_opts.error_measure = 'MSE';1032

1033

i=0; % initialize setups1034

1035

%% QKLMS1036

i=i+1;1037

algorithms{i}.name = 'QKLMS';1038

algorithms{i}.class = 'qklms';1039

algorithms{i}.figstyle = struct('color',[1 0 0],'marker','o');1040

38 Adaptive Kernel Learning for Signal Processing

algorithms{i}.options = ...1041

struct('eta',0.5,'sweep_par','epsu','sweep_val',[1E-4 1E-3 1E-2 .1 ...1042

.2 .3 .5 .7 1],...1043

'kerneltype','gauss','kernelpar',1);1044

1045

%% KRLS-T1046

i=i+1;1047

algorithms{i}.name = 'KRLS-T';1048

algorithms{i}.class = 'krlst';1049

algorithms{i}.figstyle = struct('color',[0 0 1],'marker','+');1050

algorithms{i}.options = struct('sn2',1E-6,'lambda',1,'sweep_par','M',...1051

'sweep_val',[3 5 7 10 20 30 50 150],...1052

'kerneltype','gauss','kernelpar',1);1053

1054

%% PROGRAM1055

1056

fprintf('Running profiler for %d algorithms on %s data.\n',i,data.name);1057

output_dir = fullfile(mfilename('fullpath'),'..','results');1058

1059

t1 = tic;1060

[data,algorithms,results] = ...1061

kafbox_profiler(data,sim_opts,algorithms,output_dir);1062

t2 = toc(t1);1063

1064

fprintf('Elapsed time: %d seconds\n',ceil(t2));1065

1066

%% OUTPUT1067

1068

mse_curves = kafbox_profiler_msecurves(results);1069

1070

kafbox_profiler_plotresults(algorithms,mse_curves,results,{'ssmse','flops'});1071

1072

kafbox_profiler_plotresults(algorithms,mse_curves,results,{'ssmse','bytes'});1073

1074

resinds = [1,2;2,8]; % result indices1075

kafbox_profiler_plotconvergence(algorithms,mse_curves,resinds);1076

Listing 9.12 Matlab code for profiling QKLMS and KRLS-T on the Mackey-Glass time series.

9.9 Questions and Problems1077

Exercise 9.9.1 When is it be more useful to employ a KLMS-like algorithm and when a1078

KRLS-like algorithm?1079

Exercise 9.9.2 Demonstrate that the computational complexity of KLMS is O(m), where m1080

is the number of data in its dictionary.1081

Exercise 9.9.3 Demonstrate that the computational complexity of KRLS is O(m2), where m1082

is the number of data in its dictionary.1083

Exercise 9.9.4 List the advantages and disadvantages of using a sliding-window approach1084

for determining a filter’s dictionary, as used for instance by SW-KRLS and NORMA.1085

Exercise 9.9.5 In the tracking experiment of Section 9.4.5, the slope of the learning curve1086

for some algorithms is less steep just after the switch than in the beginning of the experiment.1087

Identify for which algorithms this happens, in Fig. 9.7, and explain for each of these1088

algorithms why this is the case.1089

Adaptive Kernel Learning for Signal Processing 39

References1090

Arenas-García, J., Figueiras-Vidal, A. R., and Sayed, A. H. (2006). Mean-square performance of a convex1091

combination of two adaptive filters. IEEE transactions on signal processing, 54(3), 1078–1090.1092

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online1093

nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50(2), 174–188.1094

Bach, F. R., Lanckriet, G. R., and Jordan, M. I. (2004). Multiple kernel learning, conic duality, and the SMO1095

algorithm. In Proceedings of the twenty-first international conference on Machine learning, page 6. ACM.1096

Chen, B., Zhao, S., Zhu, P., and Príncipe, J. C. (2012). Quantized kernel least mean square algorithm. IEEE1097

Transactions on Neural Networks and Learning Systems, 23(1), 22–32.1098

Csató, L. and Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14(3), 641–668.1099

De Kruif, B. J. and De Vries, T. J. A. (2003). Pruning error minimization in least squares support vector machines.1100

IEEE Transactions on Neural Networks, 14(3), 696–702.1101

Del Moral, P. (1996). Non-linear filtering: interacting particle resolution. Markov processes and related fields, 2(4),1102

555–581.1103

Dorffner, G. (1996). Neural networks for time series processing. Neural Network World, 6, 447–468.1104

Engel, Y., Mannor, S., and Meir, R. (2004). The kernel recursive least squares algorithm. IEEE Transactions on1105

Signal Processing, 52(8), 2275–2285.1106

Ernst, F. (2012). Compensating for quasi-periodic motion in robotic radiosurgery. Springer.1107

Frieß, T.-T. and Harrison, R. F. (1999). A kernel-based adaline. In Proceedings of the 7th European Symposium on1108

Artificial Neural Networks (ESANN 1999), pages 245–250, Bruges, Belgium.1109

Gao, W., Richard, C., Bermudez, J.-C. M., and Huang, J. (2014). Convex combinations of kernel adaptive filters. In1110

2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–5. IEEE.1111

Ghahramani, Z. (1996). The kin datasets. URL: http://www.cs.utoronto.ca/~delve/data/kin/1112

kin.ps.gz.1113

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU Press.1114

Hassibi, B., Stork, D. G., and Wolff, G. J. (1993). Optimal brain surgeon and general network pruning. In Neural1115

Networks, 1993., IEEE International Conference on, pages 293–299. IEEE.1116

Hayes, M. H. M. H. (1996). Statistical digital signal processing and modeling / Monson H. Hayes. New York : John1117

Wiley & Sons.1118

Haykin, S. (1999). Neural Networks – A Comprehensive Foundation. Prentice Hall, 2nd edition.1119

Haykin, S. (2001). Adaptive Filter Theory (4th Edition). Prentice Hall.1120

Hermans, M. and Schrauwen, B. (2012). Recurrent kernel machines: Computing with infinite echo state networks.1121

Neural Computation, 24(1), 104–133.1122

Hoegaerts, L., Suykens, J., Vandewalle, J., and De Moor, B. (2004). A comparison of pruning algorithms for sparse1123

least squares support vector machines. Lecture Notes in Computer Science, pages 1247–1253.1124

Ishida, T. and Tanaka, T. (2013). Multikernel adaptive filters with multiple dictionaries and regularization. In Signal1125

and Information Processing Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific, pages1126

1–6. IEEE.1127

Julier, S. J. and Uhlmann, J. K. (1996). A general method for approximating nonlinear transformations of probability1128

distributions. Technical report, Technical report, Robotics Research Group, Department of Engineering Science,1129

University of Oxford.1130

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering,1131

82(1), 35–45.1132

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004). Online learning with kernels. IEEE Transactions on Signal1133

Processing, 52(8), 2165–2176.1134

Lázaro-Gredilla, M., Van Vaerenbergh, S., and Santamaría, I. (2011). A Bayesian approach to tracking with kernel1135

recursive least-squares. In 2011 IEEE International Workshop on Machine Learning for Signal Processing1136

(MLSP), pages 1–6.1137

LeCun, Y., Denker, J. S., Solla, S. A., Howard, R. E., and Jackel, L. D. (1989). Optimal brain damage. In NIPs,1138

volume 2, pages 598–605.1139

Lewis, F. L., Xie, L., and Popa, D. (2007). Optimal and robust estimation: with an introduction to stochastic control1140

theory, volume 29. CRC press.1141

Li, K. and Príncipe, J. C. (2016). The kernel adaptive autoregressive-moving-average algorithm. IEEE Transactions1142

on Neural Networks and Learning Systems, 27(2), 334–346.1143

Liu, W., Pokharel, P. P., and Príncipe, J. C. (2008). The kernel least-mean-square algorithm. IEEE Transactions on1144

Signal Processing, 56(2), 543–554.1145

Liu, W., Príncipe, J. C., and Haykin, S. (2010). Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley.1146

Ljung, L. (1999). System identification: theory for the user. Prentice-Hall, Upper Saddle River, NJ, USA.1147

Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks.1148

IEEE Trans. Neur. Net., 1(1), 4–27.1149

Park, I. M., Seth, S., and Van Vaerenbergh, S. (2014). Probabilistic kernel least mean squares algorithms. In 20141150

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8272–8276. IEEE.1151

Plackett, R. L. (1950). Some theorems in least squares. Biometrika, 37, 149–157.1152

Platt, J. (1991). A resource-allocating network for function interpolation. Neural computation, 3(2), 213–225.1153

http://www.cs.utoronto.ca/~delve/data/kin/kin.ps.gz
http://www.cs.utoronto.ca/~delve/data/kin/kin.ps.gz
http://www.cs.utoronto.ca/~delve/data/kin/kin.ps.gz

40 Adaptive Kernel Learning for Signal Processing

Pokharel, P. P., Liu, W., and Príncipe, J. C. (2009). Kernel least mean square algorithm with constrained growth.1154

Signal Processing, 89(3), 257–265.1155

Pokharel, R., Seth, S., and Principe, J. C. (2013). Mixture kernel least mean square. In The 2013 International Joint1156

Conference on Neural Networks (IJCNN), pages 1–7. IEEE.1157

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc.1158

IEEE, 77(2), 257–286.1159

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.1160

Richard, C., Bermudez, J. C. M., and Honeine, P. (2009). Online prediction of time series data with kernels. IEEE1161

Transactions on Signal Processing, 57(3), 1058–1067.1162

Rzepka, D. (2012). Fixed-budget kernel least mean squares. In Proceedings of 2012 IEEE 17th International1163

Conference on Emerging Technologies & Factory Automation (ETFA 2012), pages 1–4. IEEE.1164

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression learning algorithm in dual variables. In1165

Proceedings of the 15th International Conference on Machine Learning (ICML), pages 515–521, Madison, WI,1166

USA.1167

Sayed, A. H. (2003). Fundamentals of Adaptive Filtering. Wiley-IEEE Press.1168

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In Computational learning1169

theory, pages 416–426. Springer.1170

Soh, H. and Demiris, Y. (2015). Spatio-temporal learning with the online finite and infinite echo-state gaussian1171

processes. IEEE transactions on neural networks and learning systems, 26(3), 522–536.1172

Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. (2006). Large scale multiple kernel learning. Journal of1173

Machine Learning Research, 7(Jul), 1531–1565.1174

Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, 898, 366–381.1175

Tuia, D., Muñoz-Marí, J., Rojo-Álvarez, J. L., Martínez-Ramón, M., and Camps-Valls, G. (2014). Explicit recursive1176

and adaptive filtering in reproducing kernel hilbert spaces. IEEE Transactions on Neural Networks and Learning1177

Systems, 25(7), 1413–1419.1178

Van Vaerenbergh, S. and Santamaría, I. (2013). A comparative study of kernel adaptive filtering algorithms. In 20131179

IEEE Digital Signal Processing (DSP) Workshop and IEEE Signal Processing Education (SPE), Napa, CA, USA.1180

Van Vaerenbergh, S., Vía, J., and Santamaría, I. (2006). A sliding-window kernel RLS algorithm and its application1181

to nonlinear channel identification. In 2006 IEEE International Conference on Acoustics, Speech, and Signal1182

Processing (ICASSP), volume 5, pages 789–792, Toulouse, France.1183

Van Vaerenbergh, S., Santamaría, I., Liu, W., and Príncipe, J. C. (2010). Fixed-budget kernel recursive least-squares.1184

In 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, TX, USA.1185

Van Vaerenbergh, S., Santamaría, I., and Lázaro-Gredilla, M. (2012a). Estimation of the forgetting factor in kernel1186

recursive least squares. In 2012 IEEE International Workshop on Machine Learning for Signal Processing1187

(MLSP).1188

Van Vaerenbergh, S., Lázaro-Gredilla, M., and Santamaría, I. (2012b). Kernel recursive least-squares tracker for1189

time-varying regression. IEEE Transactions on Neural Networks and Learning Systems, 23(8), 1313–1326.1190

Van Vaerenbergh, S., Fernandez-Bes, J., and Elvira, V. (2016a). On the relationship between online Gaussian process1191

regression and kernel least mean squares algorithms. In 2016 IEEE International Workshop on Machine Learning1192

for Signal Processing (MLSP), Salerno, Italy. IEEE.1193

Van Vaerenbergh, S., Comminiello, D., and Azpicueta-Ruiz, L. A. (2016b). A split kernel adaptive filtering1194

architecture for nonlinear acoustic echo cancellation. In 24th European Signal Processing Conference (EUSIPCO1195

2016), Budapest, Hungary.1196

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York, NY,1197

USA.1198

Widrow, B., McCool, J., and Ball, M. (1975). The complex LMS algorithm. Proceedings of the IEEE, 63(4), 719–720.1199

Yukawa, M. (2012). Multikernel adaptive filtering. IEEE Transactions on Signal Processing, 60(9), 4672–4682.1200

Zhao, S., Chen, B., Zhu, P., and Príncipe, J. C. (2013). Fixed budget quantized kernel least-mean-square algorithm.1201

Signal Processing, 93(9), 2759–2770.1202

Zhao, S., Chen, B., Cao, Z., Zhu, P., and Principe, J. C. (2016). Self-organizing kernel adaptive filtering. EURASIP1203

Journal on Advances in Signal Processing, 2016(1), 106.1204

INDEX

A-posteriori error based pruning1205

criterion, 231206

Adaptive filtering, 3, 41207

Approximate Linear Dependency1208

criterion, 15, 221209

Bayesian recursive update, 251210

Budget, 181211

Bytes, 361212

Coherence criterion, 12, 221213

Dictionary growing, 211214

Dictionary pruning, 221215

FB-KRLS algorithm, 181216

Fixed-budget online learning, 181217

FLOPS, 361218

Forgetting, 261219

forgetting, 261220

Gaussian process regression, 241221

hyperparameter optimization, 271222

Hyperparameters, 241223

Kernel Adaptive Filtering toolbox, 291224

Kernel ridge regression, 141225

KIN40K data set, 321226

KLMS algorithm, 81227

KNLMS algorithm, 121228

KRLS algorithm, 141229

KRLS-T algorithm, 18, 261230

Linear adaptive filtering, 31231

Linear complexity, 161232

LMS algorithm, 51233

Mackey-Glass time series, 11, 16, 361234

Cite as: Steven Van Vaerenbergh, “Adaptive Kernel Learning for Signal Processing”. In J. L. Rojo-Álvarez, M. Martínez-Ramón,
J. Muñoz-Marí, G. Camps-Valls (Eds.), Digital Signal Processing with Kernel Methods, pp. 387–431,
Wiley-IEEE Press: Hoboken, NJ, USA, 2018.

Naive Online regularized Risk1235

Minimization Algorithm, 81236

Nonlinear system identification, 81237

Novelty criterion, 211238

Online dictionary pruning, 221239

Online Gaussian processes, 251240

Online learning, 41241

Online sparsification, 15, 201242

Online system identification, 81243

Pruning, 221244

QKLMS algorithm, 131245

Quadratic complexity, 221246

Respiratory motion traces dataset, 301247

RLS algorithm, 51248

Sliding-window online learning, 231249

Sparse online Gaussian process1250

algorithm, 251251

Stochastic gradient descent, 51252

SW-KRLS algorithm, 171253

system identification, 31254

Time-series prediction, 111255

Tracking, 7, 161256

Type-II ML, 271257

	Part One Kernel-based Estimation for Signal Processing
	Adaptive Kernel Learning for Signal Processing
	Linear Adaptive Filtering
	LMS Algorithm
	RLS Algorithm

	Kernel Adaptive Filtering
	Kernel Least Mean Squares
	Derivation of KLMS
	Implementation challenges and dual formulation
	Example: Prediction of the Mackey-Glass time series
	Practical KLMS algorithms

	Kernel recursive least squares
	Kernel ridge regression
	Derivation of KRLS
	Prediction of the Mackey-Glass time series with KRLS
	Beyond the stationary model
	Example: Nonlinear channel identification and reconvergence

	Online Sparsification with Kernels
	Sparsity by construction
	Sparsity by pruning

	Probabilistic Approaches to Kernel Adaptive Filtering
	Gaussian Processes and Kernel Ridge Regression
	Online recursive solution for Gaussian process regression
	Kernel Recursive Least Squares Tracker
	Probabilistic KLMS

	Further Reading
	Selection of Kernel Parameters
	Multi-Kernel Adaptive Filtering
	Recursive Filtering in Kernel Hilbert Spaces

	Tutorial Examples
	Kernel Adaptive Filtering Toolbox
	Prediction of a Respiratory Motion Time Series
	Online Regression on the KIN40K Data Set
	The Mackey-Glass Time Series

	Questions and Problems
	References

