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Abstract—Channel order estimation is a critical step in most
blind single-input multiple-output (SIMO) channel identifica-
tion/equalization algorithms. Several methods for estimating
either the true channel order or its most significant part (the
so-called effective channel order) have been recently proposed,
but a solution able to work in practical scenarios (low or moderate
signal-to-noise ratios (SNRs) and channels with small leading
and/or trailing coefficients) has not been found yet. In this paper,
a new criterion for effective channel order detection of SIMO
channels is presented. The method is based on the fact that the cost
function typically used in blind identification algorithms decreases
monotonically with the estimated channel order, whereas for blind
equalization algorithms, the cost function increases monotonically.
In this paper, it is shown that a straightforward combination of
both cost functions attains its minimum at the correct channel
order even for moderate SNRs. The proposed method is able to
work with small data sets, colored signals, and channels with
small head and tail taps, which is a common problem in commu-
nication applications. The improvement of the proposed criterion
over a number of existing algorithms is demonstrated through
simulations.

Index Terms—Blind identification/equalization, canonical corre-
lation analysis (CCA), effective channel order, single-input mul-
tiple-output (SIMO).

I. INTRODUCTION

FOLLOWING the well-known work of Tong et al. [1],
many methods have been proposed for blind single-input

multiple-output (SIMO) channel identification and equaliza-
tion. Among them, the deterministic approaches [2]–[5] (see
[6] for a complete review), which do not assume any specific
stochastic model for the input sequence and exploit only the
special structure of the multichannel matrix, are capable of
recovering colored source signals and have a faster convergence
than the stochastic techniques (e.g., subspace methods or linear
prediction algorithms). However, these methods, as well as
many other stochastic approaches, require a previous estimate
of the SIMO channel order. When the effective channel order
is either overestimated or underestimated, their performance
degrades drastically [7], [8].

Addressing this issue, several methods based on information
theoretic criteria, such as the minimum description length
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(MDL) or the Akaike information theoretic criterion (AIC),
have been applied to this problem. In [9] and [10], the authors
have found that information theoretic criteria, which assume
independent identically distributed (i.i.d.) Gaussian data vec-
tors, are not robust or accurate enough for realistic applications
due to the overestimation of the effective channel order for high
signal-to-noise ratios (SNRs) or for channels with small head
and tail taps. Although the method proposed in [9] outperforms
these criteria for high SNR, it suffers from poor performance at
low SNR. Furthermore, the criterion proposed in [9], as well as
other information theoretic criteria, is based on the stochastic
properties of the source signals; then they need a relative large
sample size for accurate channel order estimation. This is also
the main drawback of the linear prediction methods for blind
estimation and equalization [11]–[14] of SIMO channels.

In [15], the authors present a deterministic algorithm for joint
order detection and channel estimation, which provides perfect
channel order estimates in the absence of noise. However, the
algorithm requires three sequential singular value decomposi-
tions, which results in poor performance for low SNRs and for
channels with small impulse response terms.

In this paper, we propose a new technique for channel order
estimation which consists on minimizing a combination of a
blind identification cost function (which decreases with the es-
timated channel order) and a blind equalization cost function
(which increases with the estimated channel order). Specifically,
we use a least squares (LS) blind identification cost function
[2] combined with a LS blind equalization cost function [16].
Under mild assumptions and in the absence of noise, it is shown
in the paper that the identification term becomes zero when the
estimated channel order is greater than or equal to the true one,
whereas the equalization term is zero when the channel order is
either exact or underestimated. By exploiting this fact, we pro-
pose a straightforward combination of both terms which is zero
only for the true channel order. The proposed method is deter-
ministic and therefore is able to work with correlated sources.
Furthermore, the method provides not only an estimate of the
channel order but also an estimate of the channel impulse re-
sponse and, simultaneously, the best equalizers according to the
criterion used in the cost function. Finally, for each channel
order estimate, the evaluation of the new cost function requires
solving two generalized eigenvalue problems (GEVs); therefore
it is less sensitive to noise than the technique proposed in [15].

This paper is organized as follows. Sections II and III present,
respectively, the LS methods for blind identification and blind
equalization of SIMO channels. In Section IV, the influence of
the channel order estimate on the identification and equaliza-
tion terms of the cost function is analyzed. In Section V, the
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Fig. 1. Single-input multiple-output system.

Fig. 2. LS blind identification of a noiseless SIMO system.

algorithm for blind channel order estimation is described, and
in Section VI, its performance is compared through some sim-
ulation examples with information theoretic criteria as well as
with the techniques proposed in [9] and [15]. The main conclu-
sions are summarized in Section VI.

II. BLIND IDENTIFICATION OF SIMO CHANNELS

A. Problem Formulation

Suppose we have the SIMO system shown in Fig. 1, where
is a source signal that is sent through different finite

impulse response (FIR) channels of order . Let us define the
following data matrices:

...
. . .

...

where is the number of data samples (snapshots), is the
estimated channel order, and denotes the
output signal of the th channel. Denoting the impulse response
vectors as

it can be easily proved (see Fig. 2) that, in a noiseless situation,
and for

(1)

B. Least Squares Solution

When the channel noise is taken into account, an approx-
imate solution to (1) can be found using a least squares ap-
proach. Denoting the channel estimate of order as , the
well-known LS method proposed in [2] minimizes the following
cost function:

(2)

subject to some constraint to avoid the trivial solution. Typi-
cally, a unit-norm constraint on the channel coefficients is ap-
plied. With this restriction and if the channel order is known, the
channel estimate is collinear with the null space of a special data
matrix constructed from (2). The LS estimator is closely related
to other subspace-based techniques [18]. In fact, for ,
both methods are identical [19].

In this paper, we consider an alternative constraint on the en-
ergy of the output signals (see Fig. 2). In particular, we use

(3)

Expanding (2) and using the constraint in (3), it is easy to
show that the LS cost function can be rewritten as

(4)

where

(5)

and denotes the cross-correlation ma-
trices for each pair of channel outputs.

From (4) we can see that, under the proposed constraint (3),
minimizing the LS error between each pair of outputs (2) is
equivalent to maximizing their correlation (5). For the purpose
of this paper (i.e., channel order estimation), an advantage of
using (3) is that the resulting cost function is bounded between
zero and one: . As we will see later, the
equalization cost function is similar to (4) and is also bounded
between zero and one; therefore, both cost functions can be
combined without weighting parameters. In other words, with
the chosen constraint, the cost function is invariant with respect
to an arbitrary scaling in the signals, which is an unavoidable
ambiguity in any blind channel identification method. Another
advantage of replacing the unit norm constraint on the channels
coefficients by the restriction on the energy of the output sig-
nals is the increased robustness to colored sources or small data
blocks, avoiding noise enhancement problems.

By grouping now the subchannel estimates into the vector
, it is easy to show that the solu-

tion that minimizes (4) can be obtained as the eigenvector asso-
ciated to the largest eigenvalue of the following GEV:

(6)
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where

. . .
...

...
. . .

. . .

and is a block diagonal matrix given by

...
. . .

...

III. BLIND EQUALIZATION OF SIMO CHANNELS

A. Problem Formulation

Instead of identifying the channel and then inverting it to re-
cover the source signal , a more direct approach is to find a
set of equalizers along with the optimal coefficients to combine
their outputs. From this point of view, a number of deterministic
techniques have been proposed in recent years [3], [4]. In this
section, we present the problem formulation in which these de-
terministic techniques are based.

Let us start by defining the row vectors
, , and the

matrices shown in the equation at the bottom of the page and

...
. . .

...
. . .

. . .

. . .
...

. . .
. . .

...

where , is a parameter determining the
equalizer length, is a filtering
channel matrix, and is the number of data
samples.

In a noiseless case, the SIMO system output can be written as

Therefore, if is full row rank, there exists a matrix
such that

and, for , this matrix will satisfy

(7)

which can be used as an equalization criterion [3], [17]. Finally,
it can been proved [17] that in a general situation (see [21] and
[22] for further details), the conditions to obtain a full row rank
matrix are the following.

1) The SIMO channel satisfies the length-and-zero condition.
a) and , for some .
b) The channels are coprime, i.e., they do not share

any common zeros.
2) The equalizer length satisfies

B. Least Squares Solution

Similarly to the identification problem, when noise is present,
(7) cannot be exactly satisfied. Again, defining as the
estimate of , a simple alternative in this situation is to
minimize the following LS cost function [17]:

(8)
subject to some nontrivial constraint. In particular, if we enforce
the restriction

(9)

the cost function (8) can be rewritten as

(10)

...
. . .

...

...
. . .

...
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where

and denote the crosscorrelation ma-
trices between the outputs of the SIMO channel.

Like in the identification problem, (9) yields a cost func-
tion bounded between zero and one and provides better results
in presence of strongly colored sources or small data blocks
than any alternative restriction on the energies of the equal-
izers. Moreover, for blind SIMO equalization, it has been shown
that this constraint transforms the original LS problem into a
canonical correlation analysis (CCA) problem [16], [20]. CCA
is a well-known multivariate statistical analysis technique that
finds maximally correlated projections among several input data
sets. It was originally proposed by Hotelling for two data sets
[23] and later generalized by Kettenring to an arbitrary number
of data sets [24]. Recently, adaptive algorithms for CCA have
been described in [25] and [26] for the case of two data sets,
and in [20] for the case of several data sets. An adaptive ver-
sion of this CCA-based blind equalization algorithm has been
recently proposed in [16] and [20], showing improved perfor-
mance and faster convergence than the modified second-order
statistics based algorithm [17].

The solution that minimizes (10) is given again by the eigen-
vector associated to the maximum eigenvalue of the following
GEV problem:

(11)

where

...
. . .

...

and is defined as shown in the equation at the bottom of
the page.

Finally, the equalized signal is constructed as

(12)

where . Here, it is inter-
esting to point out that, according with the maximum variance
generalization of CCA [20], [24], the estimate can be in-
terpreted as the one-dimensional principal component analysis
(PCA) approximation of the best unit-norm projections of the
data sets . Consequently, this ensures that (12) is the best
linear combination of the equalizer outputs.

IV. INFLUENCE OF THE CHANNEL ORDER ON THE

IDENTIFICATION AND EQUALIZATION COST FUNCTIONS

The identification and equalization cost functions described
in Sections II and III, respectively, are the terms that compose
the overall cost function used for order estimation. In order to
understand the rationale for this new cost function, in this sec-
tion, we first study the influence of the estimated channel order

on the LS identification and equalization cost functions.

A. Influence of on the Identification Cost Function

Assuming that the exact channel order is known in advance,
it has been proved in [2] that the sufficient and necessary condi-
tions for blind multichannel identification can be stated as fol-
lows.

1) The SIMO channel satisfies the length-and-zero condition.
2) The linear complexity [2] of , defined as the maximum

order which provides a full column rank Hankel matrix

...
. . .

...

for some , satisfies

Based on these conditions, and assuming a noiseless system,
the effect of the channel order estimate can be easily analyzed.

1) : In this case, channel identification is not possible,
(1) cannot be satisfied and .

2) : This is the case analyzed in [2]. The identification
method perfectly recovers, up to a scale factor, the SIMO
channel, i.e., .

3) : In this case the length-and-zero condition is vio-
lated , which implies that the solutions of (1)
are any set of channels

. . .
...

...
. . .

. . .
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where is some nonzero
vector. In other words, when the channel order is overes-
timated, there is a linear space of possible, although unde-
sirable, solutions; for all of them: .

If we now consider the effect of the system noise, it can
be proved in a straightforward manner that, for ,

. Therefore the identification
cost function is a monotonically decreasing function with the
estimated channel order.

B. Influence of on the Equalization Cost Function

Let us introduce the following theorem.
Theorem 1: In the absence of noise, and if the linear com-

plexity satisfies

then (7) is only satisfied if and then

(13)

where is some constant and is a 1
1 matrix with ones along its th lower diagonal and zeros

elsewhere.
Proof: Defining as the combined

channel-equalizer response, (7) can be rewritten as

or, equivalently

Taking into account that , it follows that
the different columns in and are linearly
independent and then

where is a 1 1 shifting matrix with ones
along its first upper diagonal. Finally, it is straightforward to
show that is a Toeplitz matrix
whose first column is given by

and whose first row is , which implies (13).
Based on the above theorem, the effect of the channel order

estimate can be easily analyzed.
1) : Channel equalization is not possible, (7) cannot be

exactly satisfied, and .

2) : In this case the proposed equalization method
perfectly equalizes, up to a scale factor, the SIMO channel

, .
3) : There exists an infinite number of solutions to (7)

that do not satisfy the zero intersymbol interference (ISI)
equalization objective . The ISI cannot
be completely removed, and the estimated signal is

, where . .

V. A NEW CHANNEL ORDER ESTIMATION CRITERION

The proposed channel order estimation criterion is based on
the joint identification and equalization of the SIMO channel.
The selection of the restrictions (3) and (9) ensures that
and are bounded between zero and one, which allows us
to define the total combined cost function as

(14)

The proposed channel order estimation algorithm is based
on the combination of the identifiability and equalization
conditions.

1) A maximum possible channel order is previously
known or estimated from the SIMO channel properties.
This condition is not very restrictive in practice.

2) The SIMO channel satisfies the length-and-zero condition.
3) The equalizer length parameter satisfies

4) The linear complexity satisfies

Using the above conditions and considering the effect of the
channel order estimate over and , it can be de-
duced that, in a noiseless case

if
if .

Therefore, the proposed cost function attains its minimum
value at the true channel order. In order to find it, we evaluate
the cost function (14) for orders in the range .
For each estimated order, the evaluation of the cost function
requires one to solve the identification and equalization GEV
problems of dimensions and ,
respectively. Taking into account that the computational cost of
a GEV problem of size is , the complexity of one step
of the proposed method is , and
considering that , the total cost is

, which implies a higher computational
complexity than previously proposed methods [9], [15], [27].
However, unlike other order estimation methods, we also obtain
the channel estimate and a set of FIR equalizers to restore the
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source signal. The overall channel order estimation procedure
is summarized in Algorithm 1.

Algorithm 1: Proposed algorithm for blind SIMO channel
order estimation.

Select and .

for do

Obtain and by means of (6).

Obtain and by means of (11).

Obtain .

endfor

Obtain the final estimate which minimizes .

As we will see in the simulations section, the proposed
method is very robust in noisy situations. On the other hand, the
deterministic framework in which the method has been derived
provides accurate estimates for small data lengths and even
for colored signals. In the following section, the performance
of the proposed algorithm is compared with other blind channel
order estimation techniques.

A. Comparison With Other Techniques

1) Methods Based on Information Theoretic Criteria: Infor-
mation theoretic criteria such as the MDL and the AIC have
been widely applied to determine the dimension of a certain
signal subspace [27]. The main drawbacks of these techniques
are their strong assumptions. For instance, they assume that suc-
cessive data vectors are i.i.d. zero-mean Gaussian random vec-
tors, which is not true in blind channel identification problems
due to the shift property. Furthermore, both methods tend to
overestimate the channel order at high SNRs and, although the
MDL is asymptotically consistent [27], it is strongly affected
when the channel impulse response has small head and tail co-
efficients. A detailed analysis of the behavior of AIC and MDL
for blind channel order estimation can be found in [10]. In this
paper, it is shown that when the noise eigenvalues are not clus-
tered sufficiently close, both the AIC and the MDL methods tend
to overestimate the channel order.

2) Effective Channel Order Determination Algorithm: This
method has been proposed by Liavas et al. in [9] and is based
on the ratio of two consecutive eigenvalues of the autocorre-
lation matrix. Although this method solves the overestimation
problem of information theoretic criteria at high SNR as well as
for channels with small tails, it suffers from poor performance
at low SNRs. Furthermore, this algorithm is based on the as-
sumption of white source signals, which implies a performance
degradation for colored signals.

3) Joint Order Detection and Channel Estimation by Least
Squares Smoothing: The deterministic method for blind
channel order estimation proposed in [15] requires three se-
quential singular value decompositions. Without noise, this
method can recover exactly the SIMO channel; however, its
performance is rather poor in noisy scenarios or when the
channel impulse response has small head or tail taps.

TABLE I
IMPULSE RESPONSES OF THE ONE-INPUT THREE-OUTPUT SIMO CHANNEL

Fig. 3. Cost functions: J (L̂) (squares), J (L̂) (diamonds), and J(L̂) =
J (L̂) + J (L̂) (circles), for SNR = 30 dB (solid line) and SNR = 10 dB
(dashed line).

VI. SIMULATION RESULTS

In this section, the performance of the proposed algorithm
is evaluated using source signals of length and the
SIMO channel with the impulse response shown in Table I. We
compare the performance of the proposed method (referred to as

) with the AIC method, the MDL method, the effective
channel order determination technique proposed by Liavas et
al. in [9] (referred to as Liavas), and the least squares smoothing
method proposed by Tong and Zhao in [15] (LSS in the figures).
For the proposed method, the maximum possible order has been
selected as . All the examples are based on the aver-
aged results of 3000 independent realizations.

In the first example, an i.i.d. quadrature phase-shift keying
(QPSK) signal is distorted by the SIMO channel and corrupted
by zero-mean white Gaussian noise. Fig. 3 shows the averaged
cost functions for high and moderate SNRs. We can see that for
both SNRs, the minimum appears at the effective channel order
(we have assumed that, for this channel and SNRs, the exact
and effective channel orders coincide and are equal to ).
Fig. 4 shows the probability density functions of the channel
order estimates for SNR dB for the proposed
method and the rest of order estimation techniques used in the
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Fig. 4. Probability density functions (estimated using the Parzen method) of the
order estimate for the proposed method, the joint LSS [15], the method proposed
in [9], AIC, and MDL.

Fig. 5. Probability of correct channel order detection for ID + EQ, LSS, Li-
avas, AIC, and MDL.

comparison. Although obviously the probability density func-
tion (pdf) for the estimated order is discrete, for representa-
tion purposes we have estimated it using the Parzen windowing
method [28]; therefore a continuous pdf results. We can see that
for a moderate SNR, the proposed method obtains the best re-
sults (the correct channel order is detected in all the examples),
whereas the LSS and AIC methods tend to overestimate the true
channel order and the method by Liavas and the MDL tend to
underestimate it. Note that, as we have pointed out before, for
higher SNRs the information-theoretic criteria-based methods
will tend to overestimate the channel order.

On the other hand, the probability of correct channel order
detection as a function of the SNR is shown in Fig. 5: here we

Fig. 6. Final MSE after equalization for ID + EQ, LSS, Liavas, AIC, and
MDL.

can see that the method clearly outperforms the other
blind channel order determination algorithms for a wide range
of SNRs. Furthermore, although the method is not ro-
bust against high noise levels (SNR dB , in this situation the
existing estimation/equalization algorithms fail regardless of the
estimated channel order. In other words, the robustness problem
of the proposed algorithm could be addressed by replacing the
proposed LS methods by some robust channel estimation/equal-
ization techniques.

Channel order estimation is the first step in any blind iden-
tification/equalization technique, where the final goal is to re-
store the original source signal. As a by-product, the
method also provides a set of FIR equalizers that can be readily
used to restore the source signal through (12). For the rest of the
methods, we have used the channel order estimate to derive a set
of equalizers using the algorithm described in [16] (which min-
imizes the equalization cost function described in this paper).
The final mean squared error (MSE) after equalization is shown
in Fig. 6, where we can see that the proposed method outper-
forms the rest of order estimation techniques. Note also that,
for SNR dB, the best results are obtained with the pro-
posed method , which validates our previous assump-
tion about the effective channel order.

In the second example, the source signal has been colored
by an FIR filter with impulse response . The final
MSE after channel order detection and equalization for all the
methods is shown in Fig. 7: we can see that the improvement of
the method over the other techniques is even larger for
colored signals.

In the third example, a white QPSK signal is sent through
the SIMO channel of Table I, which has now been padded to
include small ending coefficients, as can be observed in Fig. 8,
that represents the absolute value of the coefficients. The results
for the final MSE after equalization are shown in Fig. 9, which
shows that also for this type of channel, the method
outperforms the rest of techniques.
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Fig. 7. Final MSE after equalization with colored inputs for ID + EQ, LSS,
Liavas, AIC, and MDL.

Fig. 8. Extended channel impulse responses including small ending coeffi-
cients.

In the final example, a white QPSK signal is transmitted using
a square root raised cosine filter with rolloff factor .
It is distorted by a channel with impulse response

, where de-
notes the symbol period. The sampling period at the receiver is

2, obtaining an equivalent 1 2 SIMO system. The results
for the final MSE after channel order estimation and equaliza-
tion are shown in Fig. 10, where we can see the good perfor-
mance of the proposed method in the SNR range between 15
and 25 dB, as well as its robustness for high SNRs.

VII. CONCLUSION

In this paper, we have presented a new cost function for blind
order determination of SIMO channels that combines an identi-

Fig. 9. Final MSE after equalization for a channel with small trailing terms.

Fig. 10. Final MSE after equalization of a fractionally sampled channel.

fication term with an equalization term. Specifically, the identi-
fication and equalization terms are least squares cost functions
subject to a particular constraint on the energy of the output sig-
nals that yields bounded terms, thus simplifying the combina-
tion of both cost functions. The basic idea behind the method
is that the LS identification term decreases with the estimated
channel order, whereas the LS equalization term increases. In
this way, without noise it has been proved that the combined
cost function attains its minimum at the true channel order.

The method is formulated within a deterministic framework,
which means that it is capable of estimating the true channel
order within a finite number of samples in the absence of noise.
Due to the particular form of the cost function, the method also
provides an estimate of the channel impulse response as well
as the equalizers. The performance of the proposed method
has been compared with other channel order determination
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techniques through simulations, showing a better performance,
mainly for colored source signals and for channels with small
leading and/or ending coefficients. Further lines include the
theoretical analysis of the method in the presence of noise, the
improvement of the algorithm by exploiting the relationship
between the estimated channels and equalizers, and, the exten-
sion of this idea to multiple-input multiple-output channels.
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