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Abstract—In this paper, the problem of blind equalization of
constant modulus (CM) signals is formulated within the support
vector regression (SVR) framework. The quadratic inequalities
derived from the CM property are transformed into linear
ones, thus yielding a quadratic programming (QP) problem.
Then, an iterative reweighted procedure is proposed to blindly
restore the CM property. The technique is suitable for real and
complex modulations, and it can also be generalized to nonlinear
blind equalization using kernel functions. We present simulation
examples showing that linear and nonlinear blind SV equalizers
offer better performance than cumulant-based techniques, mainly
in applications when only a small number of data samples is
available, such as in packet-based transmission over fast fading
channels.

Index Terms—Blind equalization, nonlinear blind equalization,
support vector machines.

I. INTRODUCTION

I N many communication systems, digital signals are trans-
mitted through an unknown bandlimited channel with severe

intersymbol interference (ISI). When a training sequence is not
available, blind equalization techniques must be used to recover
the input signal. These techniques exploit the knowledge about
the statistical properties of the input signal or the structure of
the channel [1].

A number of blind algorithms are based on stochastic gra-
dient descent (SGD) minimization (online techniques) of a spe-
cially designed non-MSE cost function (to this class belongs
the widely used CMA [2]). Other algorithms collect a block of
data (batch techniques) and iteratively maximize a cost function
based on cumulants (for instance, the so-called “super-exponen-
tial” algorithm by Shalvi and Weinstein [3], [4]) or use cumulant
matching methods, as in the works presented by Tugnait [5] and
by Hatzinakos and Nikias [6].

In burst data transmission over fast fading channels, blind al-
gorithms must be able to remove a sufficient level of ISI by using
a short block of data. In this case, stochastic gradient descent al-
gorithms, which typically suffer from slow convergence, cannot
be employed. Similarly, batch cumulant-based algorithms also
offer poor performance in this situation.
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In this paper, we propose an alternative blind equalization
technique for CM signals, which is expected to require fewer
data samples than SGD and cumulant-based algorithms. Blind
equalization is formulated as a support vector regression (SVR)
problem [7], and an iterative procedure, which is denoted as iter-
ative reweighted quadratic programming (IRWQP), is proposed
to find the optimal regressor. Support vector machines (SVMs)
have been successfully applied to linear and nonlinear super-
vised equalization problems [8]–[11]. In these works, the equal-
ization problem is viewed as a supervised classification problem
(with a training sequence), and the corresponding SV classifier
is derived. In this paper, the problem is formulated as a non-
supervised regression problem: Only the knowledge about the
CM property of the input signal is exploited.

Recently, some techniques have been proposed to formulate
the blind equalization problem either as a quadratic problem
with binary constraints [12] or as a convex optimization method
subject to some linear and semidefiniteness constraints [13]. In
both cases, the problem is solved via semidefinite programming
(SDP) techniques. Similarly to these approaches, here, we for-
mulate a convex problem that has a global optimal solution, but,
in addition to this, the proposed solution has several attractive
features: It is derived from the powerful theory of SV machines;
efficient quadratic programming (QP) implementations can be
used [14]; and, finally, it can readily be extended to nonlinear
blind equalizers. Some simulation examples show the advan-
tages of this technique in comparison to cumulant-based algo-
rithms.

The rest of this paper is organized as follows: In Section II,
the problem of blind equalization is briefly reviewed. In Sec-
tion III, blind equalization of CM signals is formulated as an
SVR problem, and the QP problems for real and complex mod-
ulations are derived. The technique is also extended to nonlinear
blind equalizers. The iterative reweighted quadratic program-
ming (IRWQP) technique is presented in Section IV, whereas
Section V is devoted to discuss some implementation details as
well as to the selection of the SVR parameters. Some simula-
tion results are presented in Section VI, comparing the perfor-
mance of linear and nonlinear blind SVM equalizers against cu-
mulant-based techniques. Finally, Section VII presents the con-
clusions and points out some lines for further research.

II. PROBLEM FORMULATION

We consider a baud-rate sampled baseband representation of
the digital communication system. A sequence of i.i.d. symbols
belonging to a CM alphabet is sent through a linear
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time-invariant channel with coefficients . The symbols and
the corresponding channel can be real (a BPSK modulation, for
instance) or complex (QPSK or M-PSK being the most widely
used modulation formats). The resulting channel output can be
expressed as

where is a complex or real zero-mean white Gaussian noise.
The objective of a blind linear equalizer is to remove the ISI

at its output without using any training sequence. Typically, the
equalizer is designed as an FIR filter with coefficients ;
then, its output is given by

(1)

The method proposed by Shalvi and Weinstein [3], which will
be used for comparison purposes, maximizes , subject to
the constraint , where is the kurtosis
of , which is defined as

III. SV REGRESSION FOR CM BLIND EQUALIZATION

A. Real Channel and Binary Input

In this section, the problem of blind equalization of a CM
signal is formulated within the SVR framework. To this end, we
first consider the case where the channel coefficients are real and
the input signal is binary . This case was discussed
by the authors in [15].

Suppose we are given a set of observations at the channel
output: , where .
Then, the goal of a linear blind equalizer is to restore at its
output the CM property of the digital communications signal,
i.e., , for .

According to the structural risk minimization (SRM) prin-
ciple [7], to estimate a linear equalizer with precision , one
minimizes

(2)

where is a penalty value, and

the so-called Vapnik’s -insensitive loss function.
This cost function establishes a tradeoff between the com-

plexity of the equalizer and a term that penalizes those outputs of
the equalizer with deviations over the ideal unit modulus output
larger than . By introducing a set of positive slack variables
and , the minimization of (2) can be rewritten as the following
constrained optimization problem: To minimize

subject to

(3)

(4)

for all .
In the conventional SVM approach for regression and

function approximation, the inequality constraints are linear
in the unknown , thus yielding a quadratic programming
(QP) problem that can be efficiently solved [14]. The proposed
constraints (3) and (4) for blind equalization of CM signals are,
however, quadratic with respect to the coefficients of the equal-
izer. For this reason, a direct introduction of the constraints into
the cost function, by means of Lagrange multipliers, does not
render a QP problem.

At this point, it is convenient to stress that in our formulation,
the linear regressor is in fact the equalizer’s output
(1). With the goal of transforming the quadratic inequalities into
linear ones, let us rewrite the squared modulus of the output of
the equalizer as

Now, considering fixed, the inequalities (3) and (4) become
linear in and can be rewritten as

where, in this way, the blind equalization problem can be for-
mulated within the conventional support vector framework. In
particular, the optimization problem reduces to the following:
Given and , to find a saddle point of the quadratic problem

minimum with respect to , and , and maximum with re-
spect to Lagrange multipliers , , , and

, for all .
The solution for the linear equalizer can be expanded in terms

of the outputs , the input patterns , and the Lagrange multi-
pliers and as

(5)

The Lagrange multipliers are obtained by maximizing the fol-
lowing quadratic form:

(6)
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subject to and where denotes the inner
product between the input patterns.

According to the Karush–Kuhn–Tucker (KKT) conditions,
the input patterns that appear in the expansion (5) are points
where exactly one of the Lagrange multipliers is greater than
zero: These input patterns are called support vectors.

The difference with the conventional SVR formulation is
that the linear kernel in the quadratic form (6) is now
weighted by the factor and that the solution is expanded in
terms of a set of weighted Lagrange multipliers

(7)

where we have defined the weighted Lagrange multipliers as

(8)

With this definition, the output of the equalizer can be written
as

(9)

Note that the optimal equalizer (7) depends on its output
through the weighted Lagrange multipliers (8); therefore,
the solution cannot be obtained in a single step. An iterative
procedure to solve this problem is described in Section IV.

Note also that in the conventional SVR framework, the linear
regressor includes a bias term . However, to
apply this technique to blind equalization of CM signals, it is
necessary to force ; otherwise, the QP problem will always
give the trivial solution and .

B. Complex Channel and QPSK Input

The extension of the above procedure to complex modula-
tions requires some further elaboration. In this case, taking into
account that all , , and are complex variables, we have

Re Im

which can be rewritten as

Re Re Im
Re
Im

Im Re Im
Im
Re

or, in a more compact formulation, as

(10)

where we have defined the following vectors:

Re
Im

and

Re
Re
Im

Im
Im
Re

Re
Im

(11)

where the superscript denotes complex conjugate. Let us
remark that and are 1 vectors with real components
( being the length of the equalizer).

By using (10), the following quadratic inequalities involving
complex variables, which impose the CM property

can be rewritten as the following linear inequalities with real
variables:

(12)

(13)

Therefore, to blindly restore the CM property for complex
modulations, we minimize

subject to (12) and (13) for all . This problem is
equivalent to maximizing the following quadratic form:

(14)

subject to , and where the input patterns are
now given by (11). In this way, we arrive again at a conventional
QP problem with real variables, whose solution is given by

Re
Im

Similarly to the real channel case, if we define the weighted
Lagrange multipliers as (note that now
these multipliers are complex), the complex equalizer can be
expressed as

(15)

and the output of the equalizer is finally given by

(16)

Therefore, complex and real modulations admit a common
SVR formulation: Compare (7) and (9) for the linear case to
(15) and (16) for the complex case, respectively.

C. Nonlinear Equalization

In this section, we consider the extension of the above proce-
dure to nonlinear equalization. In particular and due to the lack
of space, in this paper, we focus only on the case of real mod-
ulations since the nonlinear complex case requires further elab-
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oration. To obtain a nonlinear equalizer, the linear regression is
performed in another feature space

where is a nonlinear mapping that transforms the input
vector into a higher dimension vector (probably infinity). The
problem now reads as follows: To minimize

subject to

for all . Similarly to the linear case, we now get
the following QP problem:

subject to .
Fortunately, the transformation itself does not need to be

known to solve the QP problem since only the inner product be-
tween transformed input vectors, which is given by a nonlinear
kernel satisfying the Mercer condition [7], must be evaluated:

. Typical examples are the radial
basis function kernel

(17)

or the polynomial kernel

(18)

where is the polynomial order, and is a positive real constant
that plays a similar role as for the RBF kernel [16]. To sum-
marize, and from a practical point of view, the extension of our
procedure to nonlinear blind equalization reduces to replacing,
in (6), the linear dot product by a nonlinear kernel.

The solution for the optimal lineal regressor in the feature
space is expanded again in terms of the weighted Lagrange mul-
tipliers and the transformed input vectors

(19)

whereas the output of the equalizer is given by

(20)

Traditionally, the problem of blind nonlinear equalization has
been tackled by considering nonlinear structures such as multi-

layer perceptrons [17], recurrent neural networks [18], or piece-
wise linear networks [19] among others, trained to minimize
some cost function (Godard cost functions, kurtosis, minimum
entropy, etc.). In all these approaches, the structure and com-
plexity of the nonlinear equalizer must be specified in advance.
The proposed nonlinear blind SVM, however, obtains simulta-
neously the topology of the nonlinear equalizer, as well as its pa-
rameters: We feel that this is one of the main advantages of the
proposed procedure. In addition, another important feature of
the proposed blind SVM approach is that it establishes a general
framework that is suitable for both linear and nonlinear blind
equalizers.

IV. ITERATIVE REWEIGHTED QP

The optimal blind regressor cannot be found in a single step
because the weighted Lagrange multipliers depend on the solu-
tion i.e., [see (8)]. Therefore, we need to apply an
iterative procedure, which, due to its similarity with the itera-
tive reweighted least squares (IRWLS) technique used in some
approximation and regression problems [20], is called iterative
reweighted quadratic programming (IRWQP). The procedure,
which is particularized here for real modulations, is as follows.

1) Solve the QP problem (6) considering
fixed.
2) Obtain the new equalizer as (7), and
compute the corresponding new output .
3) Repeat until convergence.

In order to complete the algorithm, it is necessary to smooth
the equalizer coefficients from iteration to iteration. The reason
for this smoothing is the following: Suppose that the initial
output of the equalizer is . Then, in the first step, we perform
a linear (or nonlinear) regression, trying to fit as desired
output, forcing, in this way, a constant modulus signal. If
we apply a new iteration of the IRWQP procedure, the new
weights applied to the Lagrange multipliers will be close to

, whereas the new desired output will again be close to
. Then, to avoid a limit cycle oscillation between these two

outputs, some type of smoothing must be introduced.
Specifically, we choose to smooth the coefficients of the

linear regressor, which is obtained in the input space for a
linear equalizer or in the feature space if a nonlinear equalizer
is sought, i.e.,

(21)

where is a constant parameter close to one, and is the
linear regressor, which is given either by (7) or (15) for a linear
equalizer (for real or complex modulations, respectively), or by
(19) for a nonlinear equalizer. Taking into account that the input
patterns do not change from iteration to iteration of the IRWQP
procedure, it is easy to realize that the same result can be ob-
tained by smoothing the weighted Lagrange multipliers instead
of the regressor, that is

(22)
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where is a column vector containing the weighted La-
grange multipliers obtained by solving the QP problem at the

th iteration, and is a column vector containing the smoothed
Lagrange multipliers. The only difference between (21) and (22)
is that the former procedure cannot be directly applied for a
nonlinear equalizer because in this case, the unknown nonlinear
mapping appears in the expansion of the optimal regressor. For
this reason and in order to get a common algorithm for linear
and nonlinear equalization, we decided to use (22).

The initial can be obtained by solving the following linear
problem:

(23)

where is an kernel matrix with elements given either
by or for linear equalizers, or
by for nonlinear equalizers; in addition,

. In this way, the initial equalizer delays the
input samples. This delay is typically chosen at the center of
the equalizer coefficient vector.

To check the convergence of the iterative algorithm, we com-
pute the average modulus error (AME), which is defined as the
mean deviation of the squared modulus over the desired CM
signal, i.e.,

AME (24)

where denotes the output of the equalizer for the th input
pattern at the th iteration. The difference between the AME
after two consecutive iterations of the IRWQP algorithm was
used to stop the algorithm, in particular, the convergence crite-
rion is

AME AME (25)

Although we have not yet been able to theoretically prove
the convergence and stability of the proposed procedure, in all
the examples, the algorithm always converged to a solution for
which the AME was a minimum (assuming a smoothing param-
eter close to one). Nevertheless, a minimum of the AME does
not necessarily mean a minimum of the ISI: This point will be
clarified in the simulations section.

Finally, the proposed can be summarized as follows.

Algorithm 1: Summary of the SVM-based
blind equalization algorithm
Initialize , , , , and .
while Convergence criterion not true do
Obtain the output of the equalizer, ,
using .
Solve QP problem (6), and obtain .

.
Calculate new value for the AME, and
check convergence.
end while

V. SELECTION OF SVR PARAMETERS

The SVR parameters (for the Vapnik’s loss function) and
(regularization parameter), in addition to the smoothing pa-

rameter , must be selected by the user. The latter can be fixed
in advance to a constant value close to unity ( has been
used in all the examples described in the paper), whereas the
selection of and requires more understanding of the SVR
technique.

Parameter determines the width of the -insensitive zone,
thus controlling the value of the number of SVs and, conse-
quently, the generalization performance of the SVR [7]: A large
value of yields a SVR with few SVs. Most of the techniques
proposed to estimate this parameter suggest that should be se-
lected proportionally to the noise variance [21], [22], which is
assumed to be estimated from data. From a different point of
view, Schölkopf et al. [23] proposed to fix the percentage of
points outside the -tube instead of estimating . Here, we use
the technique proposed by Cherkassky in [21] that estimates
as

where is the noise variance, is the number of samples in
the input data, and is an empirically selected constant that we
have chosen as .

On the other hand, the regularization parameter determines
a tradeoff between model complexity (minimizing ) and
the penalty given to deviations larger than . This value is some-
times chosen as the range of the training output values [24].
Here, we use a modification of this idea that has been shown
to be more robust to outliers [21]. Specifically, we use

where , is the channel output, and denotes
mean value.

If a nonlinear equalizer is sought, in addition to and , its
is necessary to select the kernel and the parameters defining the
kernel ( for an RBF kernel or for a polynomial kernel). The
general question of how to select the ideal kernel for a given task
is still an open problem. Without any a priori knowledge of the
type of nonlinearity that distorts the CM input signal, there is no
reason to choose a particular kernel. Once the kernel has been
chosen, its parameter must be tuned to the particular data set
under consideration: This can be done using a validation set.

VI. SIMULATION RESULTS

In this section, we compare the performance of the proposed
blind (linear or nonlinear) SVM and the batch super-expo-
nential algorithm proposed by Shalvi and Weinstein (denoted
as the SW algorithm) [3], [4], which is based on fourth-order
cumulants. The QP problem at each step of the IRWQP
procedure has been solved using the Matlab SVM toolbox
available in [14]. The Matlab programs that implement the
SVM-based blind equalization algorithms can be obtained at
http://gtas.dicom.unican.es/comp/nacho.html.
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Fig. 1. Average modulus error (AME) versus the number of iterations using a
data block size of N = 100 and an SNR = 30 dB. Real channel H (z) and
binary input.

A. Linear Equalization

In the first example, we consider a linear blind SVM and a real
channel. A binary signal is sent through the channel

(used in [3]), and at the channel output, white Gaussian noise
is added. We have used an equalizer of length , which
was initialized as . As a measure of equalization
performance, we use the ISI defined as

ISI

where is the combined channel-equalizer impulse
response, which is a delta function for a zero-forcing equalizer.
The initial ISI for the selected channel and for an equalizer ini-
tialized with a centered spike is of 1.03 dB.

Similarly to other cumulant-based algorithms, the SW algo-
rithm provides poor results with very short blocks of data [3].
This could happen, for instance, in burst time division multiple
access (TDMA) transmissions (without any training sequence)
over fast fading channels. It is in this situation when the pro-
posed blind SVM technique is expected to offer some advan-
tages. To corroborate this point, we have tested the SW and
blind SVM algorithms using blocks of input data ranging from

to 500 samples in a low noise situation SNR dB
and in a high noise situation SNR dB. For the blind SVM,
we used Vapnik’s -insensitive loss function (the results were
similar for the quadratic loss function) with , , and param-
eters selected as described in Section V.

First, to illustrate the convergence of the algorithm, Fig. 1
shows the evolution of the average modulus error (AME) for an
example that uses an input block size of samples in a
low noise situation: SNR dB. The results of 50 indepen-
dent simulations are depicted in Fig. 1: The algorithm always
converges in the direction of the decreasing AME until a min-
imum is found. Most of the trials converge to a final AME lower
than 0.2; however, we can see that two of them yield a final AME

Fig. 2. ISI versus the number of iterations using a data block size ofN = 100
and a SNR = 30 dB. Real channel H (z) and binary input.

Fig. 3. Percentage of convergence (final ISI below �5 dB) versus data block
size for the proposed blind-SVM and the Shalvi–Weinstein algorithm. Real
channel H (z) and binary input.

around 0.5. Fig. 2 shows the evolution of the ISI for the same
scenario: The two trials that gave a final AME around 0.5 cor-
respond now to the curves that fail to decrease the ISI. As we
already pointed out, a decrease of the AME does not necessarily
imply a decrease of the ISI. Moreover, this result suggests the
possibility of using the AME not only for testing the conver-
gence of the algorithm but also for knowing in advance if the
channel has been successfully equalized.

Second, we have compared the performance of our SVM-
based blind equalizer and the SW algorithm. For both methods,
if the final ISI after a trial was below dB, we considered that
the channel was successfully equalized, since with this level of
ISI, it is already possible to switch to a decision-directed mode.
For each data block size and noise level, both algorithms were
tested in 200 Monte Carlo trials. The results are depicted in
Fig. 3, which shows the percentage of trials in which each al-
gorithm successfully converged, and in Fig. 4, which shows the
mean ISI level after convergence for the successful trials.
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Fig. 4. Mean ISI level after convergence for the successful trials versus data
block size for the proposed blind-SVM and the Shalvi–Weinstein algorithm.
Real channel H (z) and binary input.

The blind SVM obtains better results than the SW method for
both the percentage of convergence and the final level of ISI.
The improvement is more important when the input data block
size is very short (less than 150 samples). The price to be paid
is obviously an increase in the required computational burden,
in comparison with the SW algorithm.

In the second example, we test the proposed algorithm with
a QPSK input signal and the following
allpass channel with phase error:

We used again an equalizer of length initialized
with a centered spike so that the initial value of the ISI is of
0.174 dB for this example. The probability of convergence and
final ISI results for different data block sizes and noise levels
are shown in Figs. 5 and 6, respectively. Again, the blind SVM
provides better results than the SW algorithm mainly for short
data registers, but for this example, the improvement in the final
level of ISI over the SW algorithm is more remarkable than in
the real channel case.

In the third example, we consider the real channel
that has been taken from [25]

and a binary input signal. We used an input data block size of
samples and an equalizer of length . After

convergence, the bit error rate (BER) was evaluated for both
the blind SVM and the SW algorithm by counting errors after
transmitting or symbols, depending on the SNR. We
run 50 independent simulations. Fig. 7 shows the BER curves
for this example.

B. Nonlinear Equalization

In our last example, we test the nonlinear blind SVM. We
consider a nonlinear channel composed of a linear channel fol-
lowed by a memoryless nonlinearity. Such a nonlinear channel
can be encountered in digital satellite communications [18] and
in digital magnetic recording [26]. The linear channel consid-
ered is , and the nonlinear function applied

Fig. 5. Percentage of convergence (final ISI below �5 dB) versus data block
size for the proposed blind-SVM and the Shalvi–Weinstein algorithm. Complex
channel H (z) and QPSK input.

Fig. 6. Mean ISI level after convergence for the successful trials versus data
block size for the proposed blind-SVM and the Shalvi–Weinstein algorithm.
Complex channel H (z) and QPSK input. (a) SNR = 30 dB. (b) SNR =
10 dB.
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Fig. 7. BER comparison for the blind SVM (solid) and the SW algorithm
(dashed) using a data block size of N = 150. Real channel H (z) and binary
input.

Fig. 8. BER for polynomial and RBF kernels.

is , where is the linear channel output.
Finally, white Gaussian noise was added.

We have compared the performance of the proposed procedure
for polynomial and RBF kernels. For the polynomial kernel [see
(18)],wechooseafixeddegree ,andthen,westudytheinflu-
ence of the constant term , whereas for the RBF, the kernel vari-
ance was changed.Wehave used inputdata blocksof and

samples. Fig. 8 shows the BER (estimated using a dif-
ferent validation set) for both kernels as a function of and . The
curves show the averaged results of 25 independent simulations.
For , the results are very similar for both kernels; how-
ever, for , thepolynomialkernelperformsslightlybetter
than the RBF kernel. We attribute this improvement to the fact
that the linear channel output is distorted, for this particular ex-
ample, through a memoryless polynomial nonlinearity. It seems
that a polynomial nonlinear distortion can be compensated more
effectively by a polynomial kernel. This result, however, cannot
be considered conclusive: The selection of the proper kernel is a
topic that deserves further study.

Fig. 9. BER comparison for the blind nonlinear SVM, the optimum nonblind
Bayesian equalizer, and a linear equalizer trained with the SW algorithm. The
data block size is N = 100 samples. Real channel H (z) followed by a
memoryless nonlinearity and binary input.

Fig. 10. Output of a nonlinear blind SVM equalizer (solid line), a linear
equalizer trained with the SW algorithm (dotted line), and the true bits (’*’).
The data block size is N = 100 samples, and the SNR is 10 dB.

According to these results, from now on, we use a polynomial
kernel with and . The rest of the SVR parameters
are selected again according to the procedure described in Sec-
tion V. The data block size is now . Fig. 9 shows the
BER for the proposed nonlinear blind SVM equalizer, a linear
equalizer trained with the SW algorithm, and the optimum non-
linear Bayesian equalizer [27]. The Bayesian equalizer assumes
that the channel is known and is the minimum BER solution in
a nonblind situation. On the other hand, as expected, the linear
equalizer is not able to remove the nonlinear ISI introduced by
the memoryless nonlinearity. Finally, the blind nonlinear SVM
is able to restore the binary signal. The final number of sup-
port vectors for the nonlinear blind SVM ranges between 70
and 90, depending on the SNR. This is an important point since
the computational cost depends directly on the number of SVs
(note that this is not the case for a linear blind SVM). Finally,
Fig. 10 shows an example of the solution obtained by the non-
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linear SVM (in this example, the SNR was 10 dB, and 89 pat-
terns became SVs) depicted by a solid line and the true bits de-
picted with asterisks. We have also included for comparison the
solution provided by the SW algorithm by a dotted line. We can
see that the blind SVM is able to restore the CM property of the
input signal.

VII. CONCLUSIONS

In this paper, blind equalization of CM signals has been
formulated as a regression problem, and the powerful SVM
technique has been applied to solve it. An iterative reweighted
quadratic programming (IRWQP) procedure has been proposed
to find the optimal regressor. It is shown in the paper that blind
SVM equalization has several attractive features: The quadratic
programming problem solved at each iteration is convex and
has a globally optimal solution; it simultaneously exploits all
the information in the given block of data, thus requiring fewer
data samples than other standard blind algorithms; finally,
linear and nonlinear equalizers can be treated in a unified
manner and within a powerful machine-learning framework.

It has been shown that the proposed technique offers better
performance than cumulant-based methods, mainly for very
short data registers. Its main drawback is the high compu-
tational cost of the IRWQP technique; nevertheless, some
techniques to reduce the computational burden of QP problems
that have recently appeared [28], [29] could be used to alleviate
this problem and are currently under study. Another further line
of research is the generalization of the proposed procedure to
multilevel modulations.
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