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Abstract—In this paper, we propose two procedures for accu- the amplitudes and phases are estimated directly from the
rate amplitude and phase estimation of multifrequency signals spectral lines.
in rotating machinery. The first method reduces the amplitude However, since the FFT is evaluated in a grid of discrete

attenuation and phase shift caused by the “nonflat” top of the . L - . -
main lobe of the window. The second procedure is able to frequencies, it introduces a bias in the frequency estimate

reduce not only the leakage effects due to windowing but also When the sampling period is not an integer multiple of the
the distortion that appears when the rotation frequency changes fundamental period of the input signal. This poses a practical

slowly. This second method uses an additional sensor, giving oneproblem since even small errors in the frequency estimates can

pulse per revolution, to transform the input (asynchronous) signal 5, \s6 |arge errors in both amplitude and phase estimates [2].
into a synchronous signal having a fixed number of samples per

revolution. The performance and effectiveness of both procedures MOT€OVer, in rotating machines, fluctuations of the running
are illustrated by means of simulation examples. speed cause a broadening of the spectral lines, in addition to

. N . . the leakage caused by windowing, which introduces an even
Index Terms—Amplitude estimation, discrete Fourier trans- .
forms, frequency estimation, phase estimation, rotating machine larger degradation.
measurements, spectral analysis. Most of the techniques proposed in the literature to reduce
the errors caused by leakage are based on interpolating the
FFT samples surrounding the true frequency [3]-[6]. On the
other hand, in [7] this kind of distortion is eliminated by
ANY large, slow-speed, rotating machines are mongynchronizing the sampling rate to the signal fundamental
tored by vibration analysis. A typical problem in thesérequency. Finally, in [8] a flat-top window is proposed.
systems is the estimation of the frequencies and amplitudes ofn this paper, we propose two procedures for obtaining accu-
harmonics at the running speed. Usually, a change in the rogite estimates of the amplitudes and phases. The first approach
mean-square (rms) value of the vibration at an integer multigle based on the simple idea that selecting a shorter window,
of the running speed can indicate the development of a faulhus broadening its main lobe, can improve the amplitude and
In some monitoring systems it is necessary to estimgi@ase estimates. A procedure for obtaining an estimate of the
not only the frequencies and amplitudes, but also the phasgadow length that leads to a given error is presented.
of each harmonic component. This happens, for instance, inThe second technique can be applied when there are fluc-
systems using a couple of orthogonally mounted transduceiiations of the running speed; in this case only the method
located in a bearing of the shaft. The objective of these systegiisscribed in [7] provides reasonable estimates. The alternative
is to obtain orbits describing the displacement of the shajtoposed in the paper uses a tachometer which gives one pulse
centerline. per revolution. This signal is used to transform the input signal
A typical approach to solve the whole problem (frequencyaken at equispaced time intervals into a signal sampled at eq-
amplitude and phase estimation) consists of two steps. Fiisispaced angular intervals. This means that in each revolution
the frequencies are obtained by applying a Fourier-basg@ vibration (or displacement) is measured at the same phys-
method, or a high-resolution method if the harmonics cannighl positions of the shatft, i.e., in each revolution we obtain
be resolved by Fourier techniques. Second, the amplitudes agéctly the same number of samples. The resampling proce-
phases are estimated by solving a linear least-squares probfife is performed using oversampling plus linear interpolation
[1]. In vibration analysis, however, long data records af@chniques. After this transformation, the discrete Fourier
usually available and resolution is not a problem. Thereforgansform (DFT) evaluates the spectrum at integer multiples
the frequencies can be estimated by selecting the largest pestkghe running frequency; therefore, windowing and leakage
of the periodogram, which is implemented using an FFT, whilgtfects are avoided and the amplitudes and phases are accurate.
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running speed). Considering a sampling frequeficy= 1/7; B. Optimal Window Length Selection
and that the signals are observed durifigeconds, we have |, s section we propose a simple procedure for improving

the following discrete-time signals at the transducer’s outpUfe estimates of the amplitudes and phases. It does not require
r the estimation of the frequency deviation neither additional

z[n] =Y Aicos(win+6;)+7[n]  n=0,---,N—-1  hardware. The method is based on the idea that using a shorter
i=1 window is equivalent to broadening its main lobe. Therefore,

(1) for the same frequency deviation, the amplitude and phase

where A; are the amplitudes of the harmonids, are their ©MOrs are reduced.

phasesy|[n] is the measurement noise afic= NT. Our objective is to obtain the maximum window length

Considering that the observation interval is long enough fo for @ given amplitude errot\Auax = [Ao — Aol/Ao.
resolve the harmonics, i.e., Considering that the frequency deviation is a small value

(AwpL/2 < 1), we can obtain a bound for the amplitude error

N> (2m)/ (W41 — wi) (2) by using the following Taylor series expansion
we can obtain the frequency estimates by selecting thegest
peaks of the discrete Fourier transform (DFT), which is given sin(Awo/2) = Awg (8)
by 2
r Awel 1 [ Aw 3
N-1 . 0 0
. . AwoL/2) = - = Lj. 9
X[ = 3 aln]e IO g0 N-1. (3) sin(Awol/2) =—5 3!< 2 ) ©)
n=0

Since only a finite data register is available when we Substituting (8) and (9) in (6), we obtain
estimate the amplitude and phase of ttie harmonic from the
k spectral peak, two kinds of leakage errors may exist. The first 1/ Awa\2
one is concerned with the interference among the harmonics; AAnax < = <—0> L?. (20)
the energy in the main lobe of a spectral component “leaks” 6\ 2
into the sidelobes, distorting other spectral components. This
kind of leakage is know as long-range leakage. In this paper,Now, assuming that the frequency estimate was obtained in
we assume (2), therefore long-range leakage will not ldeprevious step using the whole register lengthgamples),
considered. the frequency deviation is less than half frequency bin, i.e.,
The second kind of leakage is denoted as short-rangeo < (7/N). Substituting this value in (10), we obtain the
leakage. It is caused by the nonflat-top main lobe of theaximum window length for a given error in amplitude

window. When there is an error in the frequency estimate, 2/6
the amplitude and phase estimates are attenuated and shifted, L<——NVAA .« (11)
respectively. T

To illustrate this effect, let us consider a discrete-time Forinstance, if we have a register&8f= 2048 samples, the
sinusoidal signalr[n] of frequencywy, amplitude 4, and above expression indicates that we should select a window of

phased,. If we take L samples of:[n], its spectrum is given by approximatelyl. = 325 samples in order to keep the amplitude
error below 1%. The use of suitable windows can reduce the

Ao Ao _; X
X(w) = ?OCJQOW(LU —wo) + ?OC_]QOW(W +wo) (4) number of samples needed to reduce the interference between
harmonics to a negligible level.
where Finally, the proposed method can be summarized in the
W(w) = —ie(L=1)/2 sin(wL /2) (5) following steps.
sin(w/2) 1) Select the maximum admissible amplitude error:
AAmax-

is the Fourier transform of a rectangular window of length
Now, let us assume thakwy is the error in the frequency
estimate; then, the amplitude and phase estimates are given by

2) From the registeg[n] of lengthN (n =10, ---,N — 1),
estimate the frequencies, , - - - w, as the largest peaks
of the periodogram.

Ao = 4o Sil_l(AWOL/Q) (6) 3) Select a new shorter window of length (n =
L sin(Awo/2) 0,---,L — 1) given by (11).
and 4) Fork = 1,---,;? estimate the amplitude and phase of
X (L—-1) the kth harmonic as
6o = 0y — Awg 5 . (7) L-1
X(ap) =Y afn]e I (12)

From (6) and (7) it is clear that if the length of the window
is large, even a small error in frequency can lead to large
errors in both amplitude and phase estimates. In fact, since
the phase error increases linearly withw,, phase estimates A 2 N

P ' Yy Wikwo, P Ay = 21X (@) (13)
can be useless without correction.

and
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b, = arg(X (wy))- (14) consists of finding the new sampling instants by locatiig
A straightforward improvement of this method consists OL*mforme spaced samples between consecutive tachometer

!
averaging the amplitude and phase estimates obtained uﬁHlses(t 0’.T°/N” (N = DTo/Np, ). I fo doe;
, . not change with time, the ATSC reduces to a conventional
different (maybe overlapped) windows of lengthiIn order to . ) .
. o . sampling rate change frorf, to f! = N,.fo. In this case, the
average the phase estimates, it is necessary to take into aCC(rgllénuisition of an integer numbersof revolutions avoids leakage
the additional shift produced between delayed windows. q 9 9

due to windowing. On the other hand, f§ changes with
time, the final sampling rate will change accordingly: in this
case the ATSC eliminates, in addition to leakage, the spectral
broadening caused by the fluctuations fgf

To obtain the new samples #tany interpolation technique

In this section we propose an alternative procedure fgbuld be used [9], [10]. In particular, if we use linear inter-
accurate amplitude and phase estimation which is able gglation, the maximum interpolation error will occur at times
eliminate completely the distortion caused by leakage. Unlike — ¢ 4 T,/2, i.e., when the new time instant lies halfway
the previous method, it also provides a solution for situatiomgtween two consecutive samples of the original signal. It can

where the running frequency changes slowly. This secopd shown [11] that this error is given by
method requires an additional sensor (tachometer) giving a
once-per-turn pulse. The information given by this new sensor Aemax = A(L = cos(m fin/ f5)).- (15)

is used to synchronize (approximately) the transducer's OUPULrhe resultant signal after the conversion can be viewed

with the running frequency. as the true signal plus some additive noise due to nonideal

Tolgwe ﬁn m;umve |C!ea ?bOUt how tr}e t?wetr;]o?tvyorks, |Et_l'|r°1j[erpolation. A reasonable model for this noise is a uniform
const er that the running Irequency o the shaft Is changi stribution within the intervall—Aepax, Aenax]; therefore,
in this case we will observe a different number of samples - i-nce is given by

in each revolution. Since we know the starting and ending

points of each revolution (i.e., the pulse locations given by the o2 A*(1 = cos(m fm/ f5))? (16)
tachometer), we can interpolate the signal in order to obtain a ¢ 3 '

fixed number of samples in each revolution. Using this tech-1aking into account that the variance of the signal is
nique we have transformed a signal acquired asynchronougly _ A2/2, the distortion due to nonideal interpolation can

with the running frequency into a synchronous signal acquirgd measured in terms of signal-to-noise ratio (SNR)
with a sampling rate which is an integer multiple of the running

frequency: we will denote this procedure asynchronous t&NR= 10log(o?/0?) = 1.76 — 201og(1 — cos(7 fu/ f)).
synchronous conversion (ATSC). (17)
In fact, the ATSC method is an off-line resampling proce-
dure to transform a signal sampled at equispaced time interval§0r €xample, iff, = 2., (the Nyquist sampling rate), then
into a signal sampled at equispaced angular intervals. TRIYR = 1.76 dB and it becomes clear that we would obtain
transformation can be carried out using the ideal interpolatiénréduced performance from any frequency, amplitude and
schemes derived in [9] and [10], but as we will show ifhase estimation procedure.
the next subsection a simpler procedure consists of using®S @ final example, if we want to keep the distortion lower
oversampling plus linear interpolation. than 80 dB (representing the signal with a resolution of 12
Finally, the proposed method can be summarized in tRis), the required oversampling ratioA$ ~ 100. It would be
following steps: first, the signal is acquired during an inPOSsible to reduce this ratio using a higher order interpolator.
teger number of revolutions; second, the asynchronous td-inally, we want to remark that the above worst case anal-
synchronous conversion is performed. Finally, the frequenci¥$iS iS very pessimistic. In practice, to use linear interpolation
amplitudes and phases are estimated from the largest peak¥i§i an oversampling ratio within the interval<M <10,
the DFT. Let us note that even if the running frequency doé?ds to highly accurate estimates.
not change the acquisition of an integer number of revolutions
avoids leakage effects. V. SIMULATION RESULTS

I1l. PROPOSEDMETHOD Il

A. Asynchronous to Synchronous Conversion

B. ATSC Analysis A. Example |

In this section we evaluate the distortion caused by theln this section we present some simulation results in order
ATSC procedure when we use linear interpolation to obtato evaluate the performance of both methods. We generated a
the new samples. To simplify the analysis, let us considersausoidal signal composed of four harmonics with frequencies
single sinusoidal signal of frequendgy;, (the frequency of the f; = 18 Hz, f» = 36 Hz, f3 = 54 Hz, and f4 = 72 Hz,
maximum harmonic of interest), amplitude and a sampling amplitudesA4; = 1, 4, = 0.5, A3 = 0.25, and Ay = 0.125;
frequency f, = 1/T, (t = 0,7,,27;,---). The running and phase$; = 7/2,6; = 7 /4,63 = —0.37, andf, = 0.67.
frequency of the machine if = 1/, and f,,, = mfo. We acquire 2048 samples of this signal using a sampling

Assuming that the tachometer provides the true time instafitsquency of f; = 245 Hz, and finally we added white
in which each revolution starts, the first step of the ATSGaussian noise to obtain a final SNR of 20 dB. This represents
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TABLE |
MEAN VALUES AND ERROR PERCENTAGE (BELOW) FOR THE AMPLITUDE
EsTiMATES UsING (a) Raw FFT, (b) INTERPOLATED FFT (HANNING
Winbow), (c) PRoPoSEDMETHOD |, AND (d) PROPOSEDMETHOD IlI: ATSC
A=1]A4,=05]A4,=025| A, =0.125
raw FFT 0.681 0.497 0.191 0.121 a
31.9% 0.6% 23.6% 3.2% g
Interp. 1.000 | 0.500 0.250 0.125 g
FFT (Hanning) [6] | 0.2% | 0.5% 1.0% 2.0% %
Proposed 0.992 0.502 0.250 0.125 g
method I (N=325) | 0.8% 0.5% 0.9% 1.9%
Proposed 0.999 0.498 0.249 0.124
method I ATSC 0.2% 0.4% 0.7% 1.7%
TABLE 1 SNR (dB)
MEAN VALUES AND ERROR PERCENTAGE (BELOW) FOR THE PHASE
EsTiMATES UsING (a) Raw FFT, (b) INTERPOLATED FFT (HanNING Fig. 1. Mean square error ofs versus SNR.
WiNnDow), (c) PRoPOSEDMETHOD |, (d) PRoPOSEDMETHOD II: ATSC
01=1.5371 | 0, =0.785 | 03 = -0.943 | 0, = 1.885 40
raw FFT 7 3.033 0.565 0.299 1.449 15
93.1% 28.1% 131.8% 23.1%
Interp. 1.571 0.784 -0.941 1.887 30
FFT (Hanning) [6] |  0.3% L8% 2.6% 3.2% 2 25
Proposed 1.459 0.795 -1.0562 1.895 o
method T{N=325) | 7.1% 1.7% 11.6% 2.3% % 0
Proposed 1.570 0.785 -0.942 1.885 % 15F
method II: ATSC | 0.1% 0.3% 0.7% 0.8% = 0
S5t
a case where, due to the high number of samples acquired, a
small error in the frequency estimate can lead to larger errors 0

in amplitudes and phases.

Tables | and Il show the results for amplitude and phase SNR (dB)
estimation obtained averaging 500 independent simulations,
respectively. In these tables we perform a comparison of thig. 2. Mean square error @ versus SNR.
mean values and the percentage error (below) obtained by the

following algorithms.

The results obtained for the amplitudé; and the phase
i are detailed in Figs. 1 and 2, respectively, which show the
mean square error (MSE) versus the SNR. For comparison we
Interpolated FFT (Hanning window) [6]: using two SpeC_have included the Cramer—Rao bound indicating the minimum

tral lines surrounding the true frequency, the frequené\griance that can be attained by any unbiased estimator [12].
a

deviation is estimated and then, the amplitude and ph /e can conclude that the proposed method | gives similar re-
estimates are corrected. A Hanning window was used %Its than the interpolated FFT when a suitable window is used
reduce the spectral leakage. [6], but with a slightly lower computational cost. Moreover,

Proposed method I: the frequencies were obtained usiﬁg proposed method | does not require the estimation of the
the whole register length; then, the sequenge] was frequency deviation. In this example, due to the large number
divided into segments of length = 325 samples with of acquired sample$N = 2048), the use of windows with

a 25% of overlapping. The amplitudes and phases Jelobes lower than the Hanning window does not provide
the harmonics were obtained by averaging the estimafedtoticeable improvement in the interpolated FFT method.
obtained from all the segments. Finally, the best results are obtained by the ATSC method,

Proposed method Il (ATSC): the signal was over-samplé(@iCh attains the Cramer—Rao bound for SNR’s over 2 dB.

by a factor of 5 giving a sampling rate of 1225 Hz; then
the ATSC was performed fixingv,, = 14 samples per B
revolution. Taking into account that the rotation frequency In this second example we illustrate the effects of a change
is 18 Hz, the final sampling frequency is 252 Hz. in the running frequency, and we show how the ATSC can

Raw FFT: amplitude and phase estimation using t
whole register lengthV = 2048.

. Example 2
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0.45 - . . T v v T T TABLE I
MEAN VALUES AND ERROR PERCENTAGE (BELOW) FOR THE AMPLITUDE
0.4f 1 ESTIMATES OF A MULTIHARMONIC SIGNAL GENERATED ACCORDING TO
(18): (a) Rw FFT, (b) NTERPOLATED FFT (HanNING WiINDOW), (C)
0.35} ] ProPoseDMETHOD |, AND (d) PrRoPoseEDMETHOD II: ATSC
0.3F E Ay=1]A;=05] A3 =025 | Ay =0.125
025k § raw FFT 0.667 0.375 0.112 0.071
s 33.3% | 25.0% | 55.0% 42.9%
0.2 ﬂ
Interpolated 0.939 0.383 0.128 0.073
0151 ] FFT (Hanning) [6] | 6.1% | 23.4% 18.8% 41.3%
0.1} 1 Proposed 0.930 0.385 0.129 0.076
0.0s| | method I (N=325) | 7.0% 23.0% 48.5% 39.4%
m M Proposed 0.999 0.499 0.248 0.124
0 A H
0 1 2 3 40 S0 6 70 80 %0 100 method 11 ATSC | 0.2% 0.4% 0.9% 1.7%
Frequency (Hz)
Fig. 3. Spectrum before ATSC. TABLE IV
MEAN VALUES AND ERROR PERCENTAGE (BELOW) FOR THE PHASE
ESTIMATES OF A MULTIHARMONIC SIGNAL GENERATED ACCORDING TO
0.45 . . B (18): (a) Rw FFT, (b) NTERPOLATED FFT (HANNING WINDOW),
' ' ' ' ' ' (c) ProposebMETHOD |, (d) PRoPOSEDMETHOD II: ATSC
0.4f 1
01=1.571 | 6, = 0.785 | 03 = —0.943 | 6, = 1.885
0351 1 raw FFT 3.027 0.568 0.285 -0.399
031 b 92.7% 27.6% 130.2% 121.1%
025k § Interpolated 1.561 0.783 -0.968 -0.226
; FFT (Hanning) [6] 0.7% 2.5% 5.8% 113.5%
0.2 1
Proposed 1.479 0.832 -0.985 0.083
015p ] method I (N=325) | 5.9% 5.9% 5.5% 97.5%
0.1+ l h Proposed 1.571 0.785 -0.912 1.887
0.05- h 1 method 11: ATSC 0.1% 04% 0.7% 0.7%
| T R R
0 10 20 30 40 50 60 70 80 90 100

V. CONCLUSIONS
Frequency (Hz) i .
In this paper we have proposed two improved procedures

Fig. 4. Spectrum after ATSC. for amplitude and phase estimation of sinusoidal signals in
vibration analysis. The first one allows to reduce the short-

reduce this distortion. In order to model the fluctuation of thé@nge leakage effects by working with a window with a
running speed, we consider that each harmonic componbfader main lobe. In vibration analysis of rotating machin-
of the signal generated in the previous example chang®y, Where the acquired registers can be very long, this
according to the following FM model: method achieves a noticeable improvement (equivalent to
use a windowed/interpolated FFT), with a moderate increase
in the computational cost. The second method performs an
fi(t) = fi(1 + 0.02sin(27(18/25)t)). (18) asynchronous to synchronous conversion (ATSC) to get a

fixed number of samples per revolution by means of linear

In order to show the performance of the ATSC we use tr|]réterpolat|on. In this way, it is possible to synchronize the

same parameters described in the previous example (5NRsampI|ng freq.uency with the fundamental one. By means of
some simulation examples we have shown that this method

20 dB). The spectrum of the signals before and after the, . . .
. I . obtains better estimates than the previous one, even when there
conversion are shown in Figs. 3 and 4, respectively. The .
iS a slow change in the frequency components. However, the

advantgges of the prqposed procedure in .the Presence fsc procedure has a higher computational cost and requires
fluctuations of the running frequency are obvious. I
additional hardware.

To confirm this idea, Tables Il and IV show the results
for amplitude and phase estimation obtained by averaging REFERENCES
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