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Abstract—In this paper, the conditions for blind identifia-
bility from second-order statistics (SOS) of multiple-input mul-
tiple-output (MIMO) channels under orthogonal space–time block
coded (OSTBC) transmissions are studied. The main contribution
of the paper consists in the proof that, assuming more than one
receive antenna, any OSTBC with a transmission rate higher than
a given threshold, which is inversely proportional to the number of
transmit antennas, permits the blind identification of the MIMO
channel from SOS. Additionally, it has been proven that any real
OSTBC with an odd number of transmit antennas is identifiable,
and that any OSTBC transmitting an odd number of real symbols
permits the blind identification of the MIMO channel regardless
of the number of receive antennas, which extends previous iden-
tifiability results and suggests that any nonidentifiable OSTBC
can be made identifiable by slightly reducing its code rate. The
implications of these theoretical results include the explanation of
previous simulation examples and, from a practical point of view,
they show that the only nonidentifiable OSTBCs with practical
interest are the Alamouti codes and the real square orthogonal
design with four transmit antennas. Simulation examples and
further discussion are also provided.

Index Terms—Blind identifiability, multiple-input multiple-
output (MIMO) communications, orthogonal space–time block
codes (OSTBC), second-order statistics (SOS).

I. INTRODUCTION

SINCE the pioneering work of Foschini [2] and Telatar [3],
multiple transmit and receive diversity has been exploited

to drastically improve the performance of wireless communi-
cation systems [4]–[8]. Specifically, since the work of Alamouti
[9], and the later generalization by Tarokh et al. [10], space–time
block coding (STBC) has emerged as one of the most promising
techniques to exploit spatial diversity in multiple-input mul-
tiple-output (MIMO) systems.

Among space–time coding schemes, the orthogonal space–
time block coding (OSTBC) [9], [10] is one of the most attrac-
tive because it is able to provide full diversity gain with very
simple encoding and decoding. The special structure of OS-
TBCs implies that the optimal maximum-likelihood (ML) de-
coder is a simple linear receiver, which can be seen as a matched
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filter, followed by a symbol-by-symbol detector. This linear re-
ceiver maximizes the signal-to-noise ratio (SNR) for each data
symbol [11] using the knowledge of the channel matrix. When
the channel state information (CSI) is not available at the re-
ceiver, training approaches can be used to obtain an estimate of
the channel [12]. However, the price to be paid is reduced band-
width efficiency, and even inaccurate channel estimates due to
the effect of the noise and the limited number of training sym-
bols. These shortcomings suggest the use of blind or semiblind
methods [13], [14], as well as techniques based on redundant
linear precoding [15]–[18].

Popular approaches to avoid the penalty in bandwidth ef-
ficiency include the so-called differential space–time coding
schemes [19]–[23] and unitary space–time modulation [24],
[25], which do not require channel knowledge at the receiver.
However, these approaches incur a penalty in performance of
3 dB (differential coding) and 2–4 dB (unitary modulation) as
compared with the coherent ML receiver [24]. Moreover, the
receiver complexity for the unitary scheme increases expo-
nentially with the number of points in the unitary space–time
constellation.

Recently, several methods for blind channel estimation or
blind decoding have been proposed. These methods include the
optimal ML blind decoder, which implies a prohibitive compu-
tational cost, as well as several suboptimal approaches. In par-
ticular, the technique proposed in [14], [26] is based on alter-
nating minimizations over the channel and the signal estimates;
whereas the methods in [27] assume BPSK or QPSK source sig-
nals and are based on a semidefinite relaxation approach (subop-
timal) or the sphere decoder (optimal). Unfortunately, the com-
putational complexity of these approaches remains relatively
high.

A common assumption to alleviate the computational com-
plexity of blind techniques consists in the relaxation of the
finite alphabet property of the sources. Thus, several subspace
methods have been proposed. For instance, in [28], [29], a
general class of STBCs is described, and a blind receiver is
proposed. However, the proposed receiver is not applicable to
any rate-one OSTBC. A more interesting technique for blind
channel estimation in OSTBC systems has been proposed in
[30]. This method is solely based on second-order statistics
(SOS), it does not require any assumption about the correlation
properties of the sources, and its computational complexity
reduces to the extraction of the principal eigenvector of a
modified correlation matrix. Under white Gaussian noise, the
method proposed in [30] is equivalent to the relaxed blind ML
detector, and its performance has been evaluated by means of
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numerical examples, finding that, if receive antennas
are available, it provides accurate channel estimates in most
of the cases. Unfortunately, some OSTBCs (including the
Alamouti code [9]) cannot be identified with this technique.
This raises the question of whether a particular OSTBC can be
identified using SOS-based methods. There are some partial
identifiability results in the literature, but, to the best of our
knowledge, the identifiability conditions still remain unclear.
The main goal of this paper is to fill this gap by presenting,
in a unified manner, some new results regarding the blind
identifiability conditions of OSTBCs.

Previous work on identifiability conditions for blind channel
estimation or symbol detection under real OSTBC transmis-
sions can be found in [31], [32]. Specifically, [31] deals with
SOS-based blind channel estimation and two main results have
been proven for the case of real OSTBCs: first, if the OSTBC
symbol dimension is odd, the channel can be identified up to a
scalar; and second, if the number of transmit antennas is odd,
any full row rank channel matrix is identifiable (which implies
that the number of transmit antennas cannot be greater than the
number of receive antennas). In [32], the study is carried out
considering finite alphabet constraints on the information sym-
bols, which is used to introduce the definition of rotatable, non-
rotatable and strictly nonrotatable OSTBCs. Specifically, it has
been proven that OSTBCs transmitting an odd number of real
information symbols, and real OSTBCs with an odd number of
transmit antennas, are strictly nonrotatable. Thus, exploiting the
finite alphabet property of the sources, the channel can be ex-
tracted up to a sign change. Unfortunately, in many practical
cases, these conditions are not satisfied, and the identifiability
properties of a large number of codes have been obtained by
means of numerical examples [30], [32].

The main contribution of this work is based on the defini-
tion of identifiable and nonidentifiable OSTBCs, and consists
in the proof that any OSTBC transmitting at a rate higher than a
given threshold, which is inversely proportional to the number
of transmit antennas, permits the blind channel identification for
any number of receive antennas . Additionally, we have
found that any OSTBC transmitting an odd number of real sym-
bols permits the blind identification of the MIMO channel re-
gardless of the number of receive antennas, which extends to
complex OSTBCs the first result in [31]. As a by-product, this
result suggests that by slightly reducing its code rate, any non-
identifiable OSTBC can be made identifiable [1]. Moreover, it
has been proven that any real OSTBC with an odd number of
transmit antennas is identifiable, which explains some of the re-
sults in [32] avoiding the finite alphabet constraint.

The implications of these results include the explanation of
the simulation examples in [30]; the generalization of the iden-
tifiability conditions in [31] and [32], and finally, that the only
nonidentifiable OSTBCs with practical interest are the Alamouti
code and the real OSTBC with transmit antennas and
transmission rate .

The organization of this paper is as follows. In Section II,
the notation and OSTBC data model are presented. Section III
summarizes the blind identification method proposed in [30]
and presents some previous results on blind identifiability of
MIMO channels under OSTBC transmissions. The main contri-
bution of the paper is presented in Section IV. Section V intro-

duces some properties of skew-Hermitian matrices, which are
exploited in Section VI to prove the results in Section IV. Fi-
nally, additional discussions and numerical examples are pre-
sented in Section VII, and the main conclusions are summarized
in Section VIII.

II. SOME BACKGROUND ON OSTBCS

A. Notation

1) Vectors/Matrices: Throughout this paper, we will use
bold-faced upper case letters to denote matrices, e.g., , with
elements ; bold-faced lower case letters for column vector,
e.g., , and light-face lower case letters for scalar quantities.
The superscripts and denote transpose and Hermi-
tian, respectively. The real and imaginary parts will be denoted
as and , and superscript will denote estimated
matrices, vectors or scalars. The trace, range (or column space)
and Frobenius norm of matrix will be denoted as ,

and , respectively. The notation
and will be used to denote that is a complex
or real matrix of dimension . Finally, the identity and
zero matrices of dimensions will be denoted as and

(although the subindex will be omitted when confusion is
not possible), will denote the expectation operator and
will denote the smallest integer greater or equal than .

2) MIMO Parameters: In this paper, a flat-fading MIMO
system with transmit and receive antennas is assumed.
The complex channel matrix is

...
. . .

...

where denotes the channel response between the th
transmit and the th receive antennas, and contains the
channel response associated with the th receive antenna.
The complex noise at the receive antennas is considered both
spatially and temporally white with variance .

B. Data Model for STBCs

Let us consider a space–time block code (STBC) transmitting
symbols during time slots and using antennas at the

transmitter side. The transmission rate is defined as ,
and the number of real symbols transmitted in each block is

for real constellations
for complex constellations

For a STBC, the th block of data can be expressed as

where , are the STBC code
matrices
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and denotes the th complex information symbol of the
th STBC block. In the case of real STBCs, the transmitted

matrix and the code matrices are real.
The combined effect of the STBC and the th channel can be

represented by the complex vectors

and taking into account the isomorphism be-
tween complex vectors and real vectors

we can de-
fine the extended code matrices with real elements

which imply

(1)

with . The signal at the th receive
antenna is

where is the white complex noise with variance .
Defining now the real vectors

and

the above equation can be rewritten as

where contains the trans-
mitted real symbols and .
Finally, stacking all the received signals into

, we can write

where is the equivalent
channel, and is defined analogously to .

If is known at the receiver, and assuming a white Gaussian
distribution for the noise, the coherent maximum likelihood
(ML) decoder amounts to minimizing the following criterion
[33]:

subject to the constraint that the elements of belong to a
finite set . This is a NP-hard problem and optimal algorithms
to solve it, such as sphere decoding, can be computationally
expensive [5], [34]–[36].

C. Properties of OSTBCs

In the case of orthogonal STBCs (OSTBCs), the equivalent
channel matrix satisfies

(2)

which reduces the complexity of the ML receiver to find the
closest symbols to the estimated signal

The necessary and sufficient conditions on the code matrices to
satisfy (2) are [33], for ,

(3)

It is straightforward to prove that the above condition must be
also satisfied by the real extended code matrices

The following properties are direct consequences of (2) and (3)

Property 2.1: The transmitted signals using an OSTBC sat-
isfy .

Property 2.2: Given the OSTBC code matrices
, and a pair of unitary matrices

and , the modified matrices

define a new OSTBC with the same parameters and .

Property 2.3: Given the OSTBC code matrices
, and an orthogonal matrix

with elements in its th row and th
column, the matrices

define a new OSTBC with the same parameters and .

III. PREVIOUS WORK ON BLIND OSTBC
CHANNEL ESTIMATION

In this paper, we consider the problem of blind channel
estimation from second-order statistics (SOS) without as-
suming any particular structure in the correlation matrix

of the sources. In the case of correlated or
linearly precoded sources, it is easy to prove that the channel
can be recovered up to a sign change [30], [37]. However, the
transmission of correlated sources translates into a penalty in
the system capacity, and the assumption of known correlation
matrices introduces a noise floor in the channel estimate,
which is due to the difference between theoretic and estimated
statistics [30].

In the case of uncorrelated sources, or sources with an un-
known correlation matrix , the channel can be estimated by
means of the method proposed in [30], which is equivalent to the
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relaxed ML technique for joint channel estimation and symbol
detection. This approach is able to blindly identify the channel,
up to a real scalar ambiguity, in most of the analyzed OSTBCs
when the number of receive antennas is . However, some
OSTBCs (including the Alamouti code [9]) do not permit the
unambiguous blind channel estimation by using this technique.

In this section, the method proposed in [30] is summarized,
and the identifiability condition for a given code and channel re-
alization is introduced. Additionally, we point out that this tech-
nique does not introduce additional ambiguities to those asso-
ciated to the problem of blind channel estimation from SOS.
Finally, we summarize some previous results on blind channel
identifiability.

A. A SOS-Based Criterion

Given a set of observations , and as-
suming a Gaussian distribution for the noise, the relaxed blind
ML decoder amounts to minimizing

(4)

Here, it is straightforward to see that the relaxation of the finite
alphabet constraint introduces a real scalar ambiguity affecting

and , i.e., if is a solution of (4), then ,
with an arbitrary real scalar, also minimizes (4). There-
fore, from now on we will assume, without loss of generality

The solution of (4) with respect to is

and substituting in (4), the final channel estimation criterion can
be rewritten as

(5)

where

can be interpreted as the finite sample estimate of the correlation
matrix associated to the observations .

Assuming a persistently exciting source signal, i.e., consid-
ering that the matrix

is full row rank, the theoretical1 principal eigenvectors of
span the subspace defined by the columns of , and

then it is easy to prove [30] that the theoretical solutions to (5)
satisfy

range range (6)

1These are the principal eigenvectors in the absence of noise and asymptoti-
cally when N ! 1.

Finally, it is interesting to point out that the proposed cri-
terion is deterministic, i.e., considering a noise-free situation,
and assuming that (6) is only satisfied by (being
a real scale factor), the method is able to exactly recover the
channel up to a real scalar within a finite number of received
blocks. Furthermore, it can be easily proven that, although in the
derivation of the relaxed blind ML decoder we have assumed a
Gaussian noise distribution, the criterion in (5) is able to recover
the channel for any uncorrelated noise distribution [30].

B. Algorithm Implementation-PCA Equivalence

Let us start by rewriting the channel identification criterion
(5) as

s.t.

where is the th column

of and .
Taking (1) into account, the channel estimation criterion can

be rewritten as

s.t. (7)

where the modified data matrix is defined as
, and

...
. . .

...

i.e., the criterion (5) has been reduced to a principal component
analysis (PCA) problem. This reformulation permits a straight-
forward derivation of adaptive versions of the algorithm [30],
for instance, by direct application of the Oja’s rule [37], [38].
Finally, we must note that, once the channel has been extracted,
and under white Gaussian noise, the relaxed ML estimate of the
signal is

C. Indeterminacy Problems

As previously pointed out, the relaxation of the finite alphabet
constraint translates into a real scalar ambiguity in the channel
estimate. Fortunately, this ambiguity is not important in prac-
tice, and it can be resolved in a later step, for instance, taking
into account the total transmitted energy. Thus, we can assume

.
A more important indeterminacy is revealed by (6), which im-

plies that, if there exists an estimated channel such that
its associated equivalent channel matrix spans the same
subspace as , then the MIMO channel cannot be unam-
biguously recovered by the method proposed in [30]. An inter-
esting question is whether this ambiguity problem is associated
to this specific SOS-based estimation method, i.e., if the channel
could be unambiguously estimated by a different SOS-based
technique. Here, we prove that, unlike other approaches [14],
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[29], [31], the criterion in (7) does not introduce additional am-
biguities to those associated to the problem of blind channel es-
timation from SOS.

Let us start by rewriting (6) as ,
where is an orthogonal (i.e., real and unitary) matrix of
dimensions , and introducing the following lemma.

Lemma 3.1: In OSTBC systems, the MIMO channel can
be identified up to a real scalar based only on second-order sta-
tistics iff the equality

(8)

where is an orthogonal matrix, is only satisfied by
and .
Proof: From (6) it is clear that, if (8) is only satisfied by

and , the channel can be estimated up to a
real scalar ambiguity by means of the criterion in (7). Assuming
that (8) is satisfied by and , then we can
define such that

which implies that the observation vector could be the re-
sult of a channel and a signal instead of the true channel

and signal .

The above lemma implies that if the method proposed in [30]
is not able to identify the channel, it is because the channel
cannot be unambiguously identified without exploiting other
properties of , such as its belonging to a finite alphabet, or
a known and colored correlation matrix [1], [30], [37]. Fi-
nally, from a practical point of view, the indeterminacy in (6)
translates into a multiplicity of the largest eigenvalue of
the matrix in (7) [30].

D. Previous Work on Blind Identifiability

The ambiguity problems associated to the blind channel
estimation problem have been observed in several works. For
instance, in [14] the authors propose a method similar to the
relaxed blind ML estimator. In particular, the finite alphabet
constraint is relaxed, the channel is expressed as a function
of the information symbols, and the estimated symbols are
obtained by means of an eigenvalue problem similar to (7). The
identifiability problem in [14] is again related with the multi-
plicity of the largest eigenvalue of the associated eigenvalue
problem. However, in [14] the identifiability analysis is reduced
to ensure that the OSTBCs with are not identifiable,
which we will prove is wrong.

Recently, some other works have tried to analyze the identifi-
ability conditions of OSTBCs. In [29] the authors have pointed
out that it is impossible to achieve blind equalization for the
Alamouti code [9] without using some precoding or assuming a
correlation matrix with nonequal eigenvalues. In [31], it has
been proven that, for real OSTBCs, if the symbol dimension

is odd, or if the number of transmit antennas is odd and the
channel matrix is full row rank , then the channel

is identifiable up to a scalar ambiguity based solely on SOS. In
[32], the author studies the identifiability conditions considering
the blind ML decoder and assuming BPSK or QPSK signals.
Specifically, the concepts of nonrotatable and strictly nonrotat-
able codes are introduced, and some new identifiability results
have been obtained for the particular cases of real OSTBCs with
an odd number of transmit antennas, and OSTBCs with an odd
number of real information symbols. However, to the best of our
knowledge, the question of why some particular OSTBCs pro-
voke the ambiguity, while others not, remains unclear. In other
words: What are the conditions, related to the underlying struc-
ture of the OSTBC, which yield a nonidentifiable code? The
goal of this paper is to shed some light on this point.

IV. NEW RESULTS ON BLIND IDENTIFIABILITY OF OSTBCS

In this section, we establish sufficient conditions for the blind
identifiability of MIMO channels under OSTBC transmissions.
These conditions validate the experimental results in [30], and
they relate the identifiability properties of the code with its trans-
mission rate. Specifically, we derive a threshold in the transmis-
sion rate, which decreases with the number of transmit antennas,
and ensure that all the OSTBCs transmitting with a higher rate
are identifiable. Interestingly, the conditions include, as a partic-
ular case, the results in [31], and in some cases they are closely
related to the conditions in [32], where the identifiability anal-
ysis is based on the finite alphabet properties of the sources.

A. Main Results

Let us start by introducing the following definition.

Definition 4.1 (Identifiable OSTBCs): An OSTBC is said to
be identifiable iff there exists at least one channel such that
the equality

with an orthogonal matrix, is only satisfied by
and . Otherwise, the OSTBC is said to be

nonidentifiable.

The following theorem ensures blind channel identifiability
for any number of receive antennas.

Theorem 4.1: If an OSTBC transmits an odd number of real
symbols ( odd), then the channel can be identified, from
SOS, regardless of the number of receive antennas.

The following theorems state sufficient conditions for an
OSTBC to be identifiable.

Theorem 4.2: All the real OSTBCs with an odd number of
transmit antennas are identifiable.

Theorem 4.3: If an OSTBC with transmit antennas, and
transmitting real symbols over slots satisfies

then, the code is identifiable.

From Definition 4.1, we know that for any identifiable
OSTBC there exists at least one channel such that the
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TABLE I
IDENTIFIABILITY CHARACTERISTICS FOR THE MOST COMMON OSTBCS

criterion in (7) is able to recover the channel with the only am-
biguity of a real scale factor. Additionally, taking into account
Definition 4.1 it is easy to prove the following theorem:

Theorem 4.3: For a MIMO system transmitting with an iden-
tifiable OSTBC and a full row rank channel matrix

, the channel can be extracted, up to a real scalar, from SOS.

The above theorem constitutes a sufficient condition for
blind channel identifiability based on SOS. However, simula-
tion results have shown that the full row rank condition on the
channel matrix is not necessary for channel identification (see
Section VII and [30]). In order to shed some light into the cases
with , we introduce the following condition:

Condition 4.1: The MIMO channel matrix is complex cir-
cular Gaussian distributed, and the correlation matrix
associated to all the multiple-input–single-output (MISO) chan-
nels is full rank regardless of the value of the remaining
MISO channels.

Note that the above condition includes, as a particular case,
the popular independent and identically distributed (i.i.d.)
Rayleigh channel model. This is a sufficient, but not necessary
condition for the proof of the following theorem.

Theorem 4.5: Consider an identifiable OSTBC and a MIMO
channel such that the multiplicity of the largest eigenvalue
of (7) is . Then, under Condition 4.1, the addition of a
new receive antenna will decrease the multiplicity of the new
blind channel estimation problem with probability one.

As a direct consequence of the previous theorem we can state
the following corollary.

Corollary 4.1: Consider an identifiable OSTBC such that,
for , the multiplicity of the blind channel estimation
problem is with probability one. Then, for , the
MIMO channel can be extracted, up to a real scalar, with prob-
ability one.

The relevance of the above results is increased by the fol-
lowing conjecture, which has been validated by means of nu-
merical results (see Table I and [30]):

Conjecture 4.1: Consider an identifiable OSTBC and a MISO
channel satisfying Condition 4.1, then, the multiplicity of the
largest eigenvalue of the PCA problem in (7) is with
probability one.

Thus, we can state the following corollary.

Corollary 4.2: Assuming an identifiable OSTBC, and under
Condition 4.1, if the number of receive antennas is , the
channel can be extracted from SOS, and up to a real scalar, with
probability one.

Finally, the proof of these results is provided in Section VI.

B. Further Discussion and Relationship With Other Results

Here we analyze, in more detail, the identifiability results.
• Theorem 4.1 extends to complex OSTBCs the first result

in [31] reducing the ambiguity to a real scalar. Here it is
important to note that the complex scalar ambiguity intro-
duced by the algorithm in [31] translates into a non trivial
indeterminacy in the decoded information symbols. On the
other hand, in [32] the author has proven that when is
odd, the code is a nonintersecting subspace OSTBC, which
ensures blind identifiability when the blind ML decoder is
used. Therefore, Theorem 4.1 proves this result avoiding
the finite alphabet constraint.

• Theorem 4.2, in combination with Theorem 4.4, is equiva-
lent to the second result in [31]. However, in combination
with Theorem 4.5 or Corollary 4.2, the identifiability of
the channel is explained for cases with .
Analogously, in [32] it has been proven that real OSTBCs
with odd are strictly nonrotatable, which ensures blind
identifiability, for any number of receive antennas, by ex-
ploiting the finite alphabet property of the sources. The-
orem 4.2 can be seen as the SOS counterpart of that result.

• Theorem 4.3 is completely new. Interestingly, this result
could seem rather counterintuitive, since the more redun-
dant information (the less symbol rate) should promise the
better identifiability of the code. However, we must take
into account that Theorem 4.3 does not imply that OS-
TBCs with low rates are nonidentifiable. The right inter-
pretation of this result, which can be clarified by the proof
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in Section VI, is that nonidentifiable OSTBCs should have
a very special structure, and in order to design OSTBCs
with those properties, the transmission rate should remain
under the given threshold. On the other hand, it seems sen-
sible to think that, in the case of low transmission rates, the
large number of degrees of freedom for the code design can
be also exploited to obtain identifiable OSTBCs.

• Finally, taking into account Definition 4.1 it is straight-
forward to prove that identifiable codes are also nonrotat-
able [32], which, under mild assumptions, ensures the blind
channel identifiability, for any number of receive antennas,
by exploiting the finite alphabet property of the sources.

V. PRELIMINARIES: PROPERTIES OF SKEW-HERMITIAN

MATRICES

In this section, some properties of skew-Hermitian and skew-
symmetric matrices are introduced. They will be used in the next
section to prove the main results of the paper. Let us start by
defining skew-Hermitian and skew-symmetric matrices.

Definition 5.1 (Skew-Hermitian): A square matrix with
complex entries is skew-Hermitian, iff .

Definition 5.2 (Skew-symmetric): A square matrix with
real entries is skew-symmetric, iff .

Definition 5.3 (Unitarily/Orthogonally Equivalent [39]): A
square matrix is said to be unitarily equivalent to if there
is a unitary matrix such that . If may be
taken to be real (and hence is orthogonal), then is said to be
orthogonally equivalent to .

Some well-known properties of skew-symmetric and skew-
Hermitian matrices are the following.

Property 5.1: All eigenvalues of skew-Hermitian matrices
are purely imaginary or zero.

Property 5.2: If is skew-symmetric the elements along its
main diagonal are zero: . Consequently, .

A Proof of Properties 5.1 and 5.2 can be found in [39]. For
unitary matrices it is easy to prove the following properties.

Property 5.3: The eigenvalue decomposition of a unitary
skew-Hermitian matrix can be written as ,
where the eigenvalues in are or , and is a unitary
matrix.

Proof: Assuming the eigenvalue decomposition
and taking into account

we can write

which implies and . Hence, the eigen-
values of are . Denoting the orthonormal basis of the
eigenvectors with eigenvalues and as and , re-
spectively, we can write and then

i.e., the eigenvectors of can be chosen to form an orthonormal
basis.

Property 5.4: Any orthogonal skew-symmetric matrix has
even order and the same number of and eigenvalues.

Proof: Considering Properties 5.2 and 5.3, and taking into
account that the trace of a matrix is equal to the sum of its
eigenvalues, it is clear that an orthogonal skew-symmetric ma-
trix must have the same number of and eigenvalues, and
hence, its order must be even.

Property 5.5: Any pair of unitary skew-Hermitian matrices
with the same eigenvalues is unitarily equivalent.

Proof: Let and be two skew-Hermitian matrices
with the same eigenvalues. Writing their eigenvalue decompo-
sitions as and , it is easy to
prove that

where is a unitary matrix.

Property 5.6: Any pair of orthogonal skew-symmetric ma-
trices is orthogonally equivalent.

Proof: This is a direct consequence of Properties 5.4 and
5.5.

In other words, Property 5.6 states that there exists an or-
thonormal change of basis between any pair of orthogonal skew-
symmetric matrices.

VI. PROOF OF THE MAIN THEOREMS

The organization of this section is as follows: firstly, the prop-
erties of the indeterminacy matrices are studied, which is used
to prove Theorem 4.1. Secondly, (8) is rewritten as a linear set
of equations relating and , and the nonidentifiable OSTBCs
are analyzed, proving Theorems 4.2 and 4.3. Finally, the identi-
fiable codes are studied, and Theorems 4.4 and 4.5 are proven.

A. Properties of the Indeterminacy Matrices: Proof of
Theorem 4.1

We first extend Lemma 3.1 by showing that the orthog-
onal matrix in (8) must also be skew-symmetric, i.e.,

.

Lemma 6.1: In OSTBC systems, the MIMO channel can
be identified up to a real scalar based only on second-order sta-
tistics iff the equality

(9)

cannot be satisfied for any orthogonal skew-symmetric matrix
of dimensions .

Proof: Rewriting (8) as

and multiplying from the left by we obtain
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Taking into account that and
, we can write the element in the th row

and th column of as

and considering that, for , the above
equation implies

Therefore, it can be easily proven that can be written as

where , , and is an
orthogonal and skew-symmetric matrix. Thus, (8) yields

which implies that, assuming , i.e., , we can
find a channel satisfying

In other words, we can assume, without loss of generality, that
in (8), matrix is orthogonal and skew-symmetric, and

satisfies for .

The combination of Lemma 6.1 and Property 5.4 yields the
Proof of Theorem 4.1.

Proof: (Theorem 4.1): The proof proceeds by contradic-
tion. Let us assume that the channel cannot be unambiguously
identified for an OSTBC transmitting an odd number of real
symbols ( odd), then from Lemma 6.1 there exists an orthog-
onal and skew-symmetric matrix of dimensions

relating and . From Property 5.4 it is clear
that an orthogonal skew-symmetric matrix of odd order cannot
exist and therefore the MIMO channel can be identified up to a
real scalar.

Theorem 4.1 establishes that any OSTBC transmitting an odd
number of real symbols permits the blind identification of the
MIMO channel. For real OSTBCs, this results is only of lim-
ited value from a practical standpoint since most of the useful
codes transmit an even number of real symbols (see [30], [33]).
On the other hand, for complex OSTBCs we obviously have

, where is the number of complex symbols. There-
fore is always even and the theorem does not apply. How-
ever, an interesting idea derived from this theorem is that a non-
identifiable complex OSTBC can be made identifiable simply
by not transmitting one real symbol (either the real or imag-
inary part of a symbol in the case of complex OSTBCs) [1].
Obviously, the price we pay is a reduction in the code rate: for
a complex OSTBC transmitting symbols the original

code rate would be reduced by . This idea will be illustrated
by computer simulations in Section VII-B.

B. Nonidentifiable OSTBCs: Proofs of Theorems 4.2 and 4.3

In this section, we study the ambiguity conditions in the case
of nonidentifiable OSTBCs. We will start by taking into account

and ,
which can be used to easily prove that the relationship in (9) is
equivalent to

...
... (10)

where is a
block matrix given by

...
. . .

...

and are the elements of , which implies that
is also orthogonal and skew-symmetric. Furthermore, consid-
ering the structure of the matrices and , (10) can be
rewritten as

...
... (11)

where is an orthogonal and skew-sym-
metric matrix with blocks defined as

...
. . .

...

As a direct consequence of (11), and taking into account that
, we obtain , where

...
...

and (11) yields

...
...

In the case of nonidentifiable OSTBCs, the above equation must
hold even for full row rank channel matrices, which implies that
the dependency on can be eliminated, i.e.

...
... (12)

Here, it is interesting to point out that (12) constitutes a nec-
essary and sufficient condition for nonidentifiability of an
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OSTBC, which will be used later to prove Theorem 4.4. Now,
left-multiplying (12) by we can conclude
that is a unitary and skew-Hermitian matrix, which can be
exploited to directly prove Theorem 4.2.

Proof: (Theorem 4.2): The proof proceeds by contradic-
tion. Since is a real matrix, and real OSTBCs are defined
by real code matrices , we can
conclude that, if a real OSTBC is nonidentifiable, then there
exists an orthogonal and skew-symmetric matrix of dimen-
sions . From Property 5.4 it is clear that an orthogonal
skew-symmetric matrix of odd order cannot exist and therefore,
any real OSTBC with an odd number of transmit antennas is
identifiable.

Considering now an even number of real symbols,2 and
taking into account that is an orthogonal skew-symmetric
matrix, Property 5.6 implies that can be rewritten as

where is an orthogonal matrix with elements in its th row
and th column. Thus, we obtain

where is an orthogonal block matrix given by

...
. . .

...

Therefore, (12) can be rewritten as

...
...

and Property 2.3 implies that there exists an OSTBC with code
matrices given by

...
...

which satisfy

...
...

or equivalently, for

(13)

2The case of oddM is explained by Theorem 4.1.

Applying now Property 5.3 we can write

where is a unitary matrix and . Thus, defining the
OSTBC matrices (see Property 2.2), (13) yields

and decomposing these code matrices as ,
where and are and matrices, respectively,
it is straightforward to prove that the orthogonality condition

implies

for and . Analogously,
implies

and then, we can conclude that

for and . Thus, taking into account
that implies and , we can
prove Theorem 4.3 in a straightforward manner.

Proof (Theorem 4.3): Assuming a nonidentifiable OSTBC
and considering, without loss of generality, , it is easy
to realize that the columns of the matrix define
an orthogonal basis of a subspace of dimension into a
space of dimension , which implies . Finally,
taking into account , we conclude that
the transmission rate of any nonidentifiable OSTBC satisfies

Conversely, if the transmission rate satisfies

then the OSTBC is identifiable.

Theorem 4.3 relates the underlying structure of the OSTBC
codes with their identifiability properties and, as an example, it
ensures that the real OSTBC with [33] is
identifiable, which contradices the hypothesis in [14] and vali-
dates the experimental results in [30] and [40].
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C. Identifiable OSTBCs: Proofs of Theorems 4.4 and 4.5

We start this section by introducing the Proof of Theorem 4.4,
which extends the partial result for real OSTBCs and an odd
number of transmit antennas stated in [31].

Proof: (Theorem 4.4): For full row rank channel matrices
, the indeterminacy condition in (9) can be rewritten as (12),

which implies that if a full row rank channel matrix cannot be
unambiguously identified by means of SOS, then the OSTBC is
nonidentifiable. Equivalently, if the OSTBC is identifiable and
the channel matrix is full row rank, then the channel can
be unambiguously extracted, up to a real scalar, by means of
SOS.

Theorem 4.4 establishes a sufficient condition for blind
MIMO-OSTBC channel identification from SOS. Although
it is based on the constraint , which can be very
restrictive, it ensures, in combination with Theorems 4.2 and
4.3, that most of the practical OSTBCs permit the blind channel
identification without exploiting the finite alphabet properties
or the higher-order statistics (HOS) of the signals.

Let us now define, for each orthogonal and skew-symmetric
matrix , the subspace (and its complementary

) of multiple-input–single-output (MISO) channels

such that there exists an estimated channel satis-
fying

Then, we can introduce the following lemma.

Lemma 6.2: If the projection of a MISO channel
onto the subspace is not null, then we

cannot find an estimated channel satisfying the indetermi-

nacy equation .
Proof: The proof proceeds by contradiction. Writing

in terms of its projections onto and we obtain

#

which cannot be possible since .

Using this lemma, and assuming that Condition 4.1 is satis-
fied, we can prove Theorem 4.5.

Proof: (Theorem 4.5): Consider an identifiable OSTBC
and a MIMO channel such that the largest eigenvalue of (7)
has multiplicity . This implies the existence of spu-
rious channels , and orthogonal skew-symmetric matrices

, satisfying

If the multiplicity does not decrease with the addition of a new
receive antenna, then the new MISO channel satisfies

and taking into account Lemma 6.2, this implies

Assuming an identifiable OSTBC we know that .
Therefore, if is a Gaussian random vector with full rank
correlation matrix , then the probability of

is zero, and the multiplicity decreases with
probability one.

Finally, we must take into account that the results of The-
orem 4.5 will happen with probability one. This means that
there exist degenerated cases, for which the addition of a new
receive antenna does not guarantee the reduction of the mul-
tiplicity . These cases are those satisfying

and, fortunately, they define a set of measure
zero.

VII. DISCUSSION AND COMPUTER SIMULATIONS

In this Section, the main results are validated by means of
some simulation examples. Specifically, the new theorems allow
us to shed some light into the numerical examples presented in
[30]. Additionally, we propose a new OSTBC transmission tech-
nique which ensures blind channel identifiability with one single
receive antenna (see also [1]). Finally, some discussions about
the obtained results are presented, showing that blind channel
identifiability based on SOS is still an open issue, and pointing
out further research lines.

A. Interpretation of the Results in [30]

The combination of Theorems 4.2, 4.3 and 4.5 allows us to ex-
plain previous results obtained by others authors. Table I shows
the main results in [30], where we have added a column with
the transmission rate and the threshold derived from
Theorem 4.3

for real OSTBCs

for complex OSTBCs

which ensures that any OSTBC transmitting at a higher rate is
identifiable. The results of Table I have been obtained using the
most common OSTBCs based on the generalized orthogonal de-
signs [10] and amicable designs [33]. The elements of the
channel matrices have been generated as independent com-
plex zero-mean Gaussian random variables. As can be seen, any
OSTBC transmitting at a rate permits the channel
identification with receive antennas, as predicted by
Theorem 4.3 and Corollary 4.2. Furthermore, we must note that
the condition on the transmission rate is very restrictive and
there are only six OSTBC examples with , which are
the following.

• Alamouti codes: As pointed out in [29], it is impossible to
achieve blind identification for the Alamouti code without
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using some precoding or assuming a correlation matrix
with nonequal eigenvalues.

• Real OSTBC : Analogously to the
Alamouti code, this is a nonidentifiable code with practical
application.

• Real OSTBC : In this case, The-
orem 4.2 implies that the code is identifiable, and Corol-
lary 4.2 explains the blind identifiability of the channel
with .

• Complex OSTBC : This is a
nonidentifiable code with no practical use because we can
use the amicable design to transmit with the same number
of transmit antennas , but at a higher rate,
and , and with a lower decoding delay.

• Complex OSTBC : Analo-
gously to the previous case, this is an OSTBC with no prac-
tical use because we can transmit with rate using
the amicable design. Furthermore, in case of transmitting
with , we could use the real OSTBC with
to transmit complex symbols in
channel uses, which is an identifiable OSTBC (by direct
consequence of Theorem 4.2) with the same rate
and a lower decoding delay .

Finally, taking into account the maximum rate designs pro-
posed in [41], which ensure that for any number of transmit an-
tennas there exists a real OSTBC with transmission rate
and a complex OSTBC with

we can conclude that the only non identifiable OSTBCs with
practical interest are the Alamouti codes (real and complex)
and the real OSTBC with . Furthermore,
although we could find nonidentifiable OSTBCs with a much
lower decoding delay than that of the maximum rate OSTBCs,
the penalty in transmission rate pointed out by Theorem 4.3 is
so high that, in practice, they are useless.

B. Application of Theorem 4.1

In [1], we have proposed a transmission technique which en-
sures that the MIMO channel can be unambiguously extracted
with only one receive antenna.3 The technique is based on The-
orem 4.1, and it consists in a slight reduction of the transmission
rate simply by not transmitting one real symbol (either the real
or imaginary part of a symbol in the case of complex OSTBCs),
so that the OSTBC transmits an odd number of real symbols
and Theorem 4.1 applies. Furthermore, by grouping consec-
utive OSTBC blocks, the resulting transmission matrix can be
viewed as a new OSTBC with antennas transmitting
symbols in time slots, and deleting one real symbol of this
new OSTBC, the rate-reduction factor is

which increases with , and tends to one for .

3The same idea has been also exploited in [32], [42] for designing noninter-
secting subspace OSTBCs.

Considering i.i.d. Gaussian noise with variance , and as-
suming without loss of generality that the average transmitted
energy per antenna and time interval is , the capacity of
the OSTBC-MIMO channel for unity bandwidth is [33]

where is the received signal-to-noise ratio. In the
case of the proposed technique, and assuming perfect channel
estimation, the capacity reduces to

On the other hand, considering the 3-dB penalty incurred by
differential schemes, the capacity of a differential OSTBC is
given by [33]

Thus, considering , it can be readily proven that

if
if

where is a threshold given by

Fig. 1 shows the theoretical curves for three different
transmission rates ( and ). As can be
seen, the curves divide the plane in two regions, in the upper re-
gion (labeled as Differential OSTBC Receiver Region) the dif-
ferential scheme has more capacity than the proposed method
(referred to as Rate-Reduction), whereas the converse is true in
the lower region. It must be also noted that for rate-reduction
factors , the threshold is above 30 dB, which im-
plies that in practice the proposed technique is a better approach
than the differential OSTBC scheme in terms of capacity.

Here, we must point out that the theoretical capacity analysis
has been carried out considering perfect channel estimation,
which is only true in a noise free situation or in the case of
an infinite number of available received blocks. In order to
analyze the effect of the errors in the channel estimate, the
results of 1000 independent experiments have been averaged.
The elements of the flat fading MIMO channels are zero-mean,
circular, complex Gaussian random variables with variance

, the averaged transmitted energy per antenna and time
interval is , and the SNR at the transmitter side is defined
as . We have tested the amicable
design OSTBC for complex symbols, time slots
and transmit antennas, which is presented in [33, eq.
(7.4.10)]. The i.i.d. source signal belongs to a 16-QAM con-
stellation and the number of receive antennas is , which
provokes an ambiguity problem in the channel estimation (see
Table I). The number of available OSTBC blocks at the receiver
is (160 time-slots), and we compare the performance of
the proposed rate-reduction method, the informed ML (perfect
channel state information), the differential OSTBC receiver
proposed in [33] and the linear precoding technique proposed
in [30] (referred to as Weighted-PCA). For the Weighted-PCA,
the first weights have been selected to be equal to ,
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Fig. 1. Theoretical SNR threshold and capacity versus transmission rateR and
rate-reduction parameter �.

and the remaining one is selected as 0.1,0.2 or 0.5 (always nor-
malizing to transmit the same averaged energy per antenna and
channel use). This means that one of the real source signals
is transmitted with less energy than the rest. Note also that for

the proposed rate-reduction technique can be considered
as a limiting case of the Weighted-PCA in which the weight
assigned to one of the sources is zero (i.e., the symbol is not
transmitted at all). For the proposed rate-reduction technique
we consider and . The
estimated ergodic capacity has been obtained as the sum of the
capacities of the equivalent single-input single-output
(SISO) channels, considering the co-channel interferences due
to the error in the channel estimation as i.i.d. Gaussian noise.
Fig. 2 shows the estimated ergodic capacity for the different
techniques, where we can see that the proposed scheme with

outperforms the differential receiver for a large range of
SNRs.

Finally, the tradeoff among the number of available OSTBC
blocks , the rate-reduction parameter (or ), the trans-
mitted SNR, and the ergodic capacity is illustrated in Fig. 3,
which shows the MSE of the channel estimate (left) and the er-
godic capacity (right) for different values of , number of avail-
able blocks and SNRs. It can be noted that, for a given , the
MSE of the channel estimate increases with , which is due
to the reduction of the number of available composite blocks

. On the other hand, the increase of yields a higher
transmission rate , and the combination of these effects im-
plies the existence of an optimum parameter , which maxi-
mizes the ergodic capacity, and depends on the SNR and the
number of available OSTBC blocks .

C. Additional Discussions and Further Lines

In this section, we present additional discussions about the
obtained results, pointing out that the study of blind channel
identifiability of MIMO-OSTBC systems is still an open issue.

Fig. 2. Ergodic capacity including channel estimation.

Fig. 3. Effect of the parameterB and number of available blocksN on channel
estimation and ergodic capacity.

1) Proof of Conjecture 4.1: Corollary 4.2 is based on Conjec-
ture 4.1, which has been validated by means of numerical exam-
ples (see Table I). However, a theoretical proof of this conjecture
has yet to be found. Furthermore, the assumption of identifiable
OSTBCs does not imply multiplicity for all the MISO
channels.4 Although in [30] the authors have concluded that the
multiplicity depends on the OSTBC and number of receive
antennas , but not on the specific channel realization (as
could be deduced from Table I ), we have found, by means of
numerical examples, that there exist a dependence between the
channel and the multiplicity order of the PCA problem (7).

2) Derivation of Tighter Transmission Rate Thresholds for
Nonidentifiable Real OSTBCs: Theorem 4.3 establishes a nec-
essary condition on the transmission rate for a nonidentifiable

4The multiplicity P � 2 is only guaranteed with probability one.
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OSTBC. A logical question is: There exist nonidentifiable
OSTBCs with transmission rate equal to the transmission rate
threshold? For complex OSTBCs, and following in reverse
order the derivation in Section VI-B, it can be easily proven
that we can design nonidentifiable complex OSTBCs with
transmission rate

and decoding delay for even , and for
an odd number of transmit antennas.

In the case of real OSTBCs, the transmission rate threshold
(considering that must be even) is

and it is obvious that it cannot be achieved for . There-
fore, this suggests that, for real OSTBCs, the derived threshold
is not tight enough. Furthermore, following a similar procedure
to the case of complex OSTBCs, and taking into account the
properties of Hurwitz–Radon matrix families (see [33], [43],
[44]), we can construct nonidentifiable real OSTBCs with trans-
mission rate

and decoding delay for multiple of , and
otherwise. Then, it is obvious that such constructions

only achieve the transmission rate threshold for multiple of
, which yields the following open question: What is the strict

transmission rate thresholds for nonidentifiable real OSTBCs?
3) Necessary Identifiability Conditions: All the theoretical

results obtained in this paper constitute sufficient conditions for
blind identification of MIMO channels, based on SOS, under
OSTBC transmissions. However, finding necessary conditions
remains as an open issue. Let us clarify the difficulty of this
problem with an example: Taking into account Table I, we can
consider three different complex OSTBCs with transmit
antennas and transmission rate .

• Real OSTBC with : Considering the real and imagi-
nary parts of complex symbols, it is easy to realize
that we can construct a complex OSTBC with and

. The multiplicity associated to this OSTBC
for is .

• Generalized Orthogonal Design: This is an identifiable
OSTBC with and . The multiplicity
associated to this OSTBC for is .

• Amicable Design: In this case the OSTBC has
complex symbols and , and the multiplicity
for is .

As can be seen, three different OSTBCs with the same
number of transmit antennas and the same trans-
mission rate , have different channel identifiability
properties. Furthermore, whereas the amicable design permits
the blind channel identification with one only receive antenna,
the OSTBC constructed from the real design, which has the
same parameters ( , and ) than the amicable design,
does not permit the blind channel recovery when . These

results suggest that the derivation of necessary identifiability
conditions, and their relationship with the underlying structure
of the OSTBCs, is a difficult task yet to be solved.

VIII. CONCLUSION

In this paper, we have presented identifiability conditions for
blind multiple-input–multiple-output (MIMO) channel identi-
fication, based on second-order statistics (SOS), in orthogonal
space–time block coded (OSTBC) systems. The analysis, which
does not exploit possible finite alphabet constraints on the infor-
mation symbols, shows that, if the OSTBC is identifiable and
the number of receive antennas is greater than one, the MIMO
channel can be identified with probability one by means of a
single principal component analysis (PCA) problem, which is
equivalent to the relaxed maximum likelihood (ML) estimator.
The study reveals that the identifiability characteristics of OS-
TBCs are related to their underlying structure. Specifically, we
have derived a threshold on the transmission rate, which is in-
versely proportional to the number of transmit antennas, and it
has been proven that any OSTBC with a higher transmission rate
is identifiable. The identifiability results include, as particular
cases, some previous studies on blind channel/symbol identifia-
bility under real OSTBCs or finite alphabet constraints. Finally,
we have presented additional discussions and validated the ob-
tained results by means of some numerical examples.
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