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Abstract—In this paper, the second-order circularity of quater-
nion random vectors is analyzed. Unlike the case of complex
vectors, there exist three different kinds of quaternion properness,
which are based on the vanishing of three different complemen-
tary covariance matrices. The different kinds of properness have
direct implications on the Cayley–Dickson representation of the
quaternion vector, and also on several well-known multivariate
statistical analysis methods. In particular, the quaternion exten-
sions of the partial least squares (PLS), multiple linear regression
(MLR) and canonical correlation analysis (CCA) techniques are
analyzed, showing that, in general, the optimal linear processing
is full-widely linear. However, in the case of jointly -proper or
�-proper vectors, the optimal processing reduces, respectively,

to the conventional or semi-widely linear processing. Finally, a
measure for the degree of improperness of a quaternion random
vector is proposed, which is based on the Kullback–Leibler diver-
gence between two zero-mean Gaussian distributions, one of them
with the actual augmented covariance matrix, and the other with
its closest proper version. This measure quantifies the entropy loss
due to the improperness of the quaternion vector, and it admits
an intuitive geometrical interpretation based on Kullback–Leibler
projections onto sets of proper augmented covariance matrices.

Index Terms—Canonical correlation analysis (CCA), proper-
ness, propriety, quaternions, second-order circularity, widely
linear (WL) processing.

I. INTRODUCTION

I N recent years, quaternion algebra [1] has been successfully
applied to several signal processing and communications

problems, such as array processing [2], wave separation [3]–[5],
design of orthogonal space-time-polarization block codes [6],
and wind forecasting [7]. However, unlike the case of complex
vectors [8]–[17], the properness/propriety1 (or second-order cir-
cularity) analysis of quaternion random vectors has received
limited attention [4], [5], [18], [19], and a clear definition of
quaternion widely linear processing is still lacking [7].
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1In this paper, we will mainly use the term properness. However, it should
be noted that both propriety [14]–[16] and properness [8], [18]–[20] have been
used in the literature as synonyms of second-order circularity.

In this paper, we analyze the different kinds of properness for
quaternion-valued random vectors, study their implications on
optimal linear processing, and provide several measures for the
degree of quaternion improperness. In particular, in Section III,
we introduce the definition of the complementary covariance
matrices, which measure the correlation between the quater-
nion vector and its involutions over three pure unit quaternions,
and show their relationship with the Cayley–Dickson represen-
tation of the quaternion vector. Then, we present the defini-
tions of -properness (cancelation of one complementary co-
variance matrix), which resembles the properness conditions on
the real and imaginary parts of complex vectors; -proper-
ness (cancelation of two complementary covariance matrices),
which results in the complex joint-properness of the vectors in
the Cayley–Dickson representation; and -properness (cance-
lation of the three complementary covariance matrices), which
combines the two previous definitions. The and proper-
ness definitions in this paper are closely related, but different,
to those in [4], [5], [18], and [19]. More precisely, unlike the
previous approaches, which are based on the invariance of the
second-order statistics (SOS) to left Clifford translations, the
definitions in this paper are directly based on the complemen-
tary covariance matrices (in analogy with the complex case), and
they naturally result in SOS invariance to right Clifford transla-
tions. Even more importantly, unlike previous approaches, the
proposed kinds of properness are invariant to quaternion linear
transformations, i.e., if is a proper quaternion vector, then

(with a quaternion matrix) is also proper. Analogously
to the complex case, the invariance to quaternion linear trans-
formations represents a key property for signal processing ap-
plications.

In Section IV, several well-known multivariate statistical
analysis methods are generalized to the case of quaternion
vectors. Specifically, we show that in the cases of principal
component analysis (PCA) [21], partial least squares (PLS)
[22], multiple linear regression (MLR) [23] and canonical
correlation analysis (CCA) [24], [25], the optimal linear pro-
cessing is in general full-widely linear, which means that we
must simultaneously operate on the four real vectors composing
the quaternion vector, or equivalently, on the quaternion vector
and its three involutions. Interestingly, in the case of jointly

-proper vectors, the optimal processing is linear, i.e., we do
not need to operate on the vector involutions, whereas in the

-proper case, the optimal processing is semi-widely linear,
which amounts to operate on the quaternion vector and its
involution over the pure unit quaternion . Thus, we can con-
clude that different kinds of quaternion improperness require
different kinds of linear processing.
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In Section V, we propose an improperness measure for
quaternion random vectors, which is based on the Kull-
back–Leibler divergence between multivariate quaternion
Gaussian distributions. In particular, we consider the diver-
gence between the distribution with the actual augmented
covariance matrix, and its Kullback–Leibler projection onto the
space of Gaussian proper distributions. Although the different
kinds of properness result in different measures, all of them
can be obtained from a (generalized) CCA problem [24]–[26],
and can be interpreted as the mutual information among the
quaternion vector and its involutions. In other words, the pro-
posed measure provides the entropy loss due to the quaternion
improperness. Finally, we show that the proposed improperness
measure admits a straightforward geometrical interpretation
based on projections onto sets of proper augmented covariance
matrices. In particular, we illustrate the complementarity of the

and -properness by showing that the -improperness
measure can be decomposed as the sum of the and
improperness.

II. PRELIMINARIES

A. Notation

Throughout this paper, we will use bold-faced upper case let-
ters to denote matrices, bold-faced lower case letters for column
vectors, and light-faced lower case letters for scalar quantities.
Superscripts , and denote quaternion (or complex)
conjugate, transpose and Hermitian (i.e., transpose and quater-
nion conjugate), respectively. The notation (respec-
tively or ) means that is a real (re-
spectively complex or quaternion) matrix. and

denote the trace and determinant of , is a diag-
onal matrix with vector along its diagonal, is the Kronecker
product, is the identity matrix of dimension , and de-
notes the zero matrix. Additionally, (respectively

) is the Hermitian square root of the Hermitian matrix
(respectively ). Finally, is the expectation operator, and
in general, is the cross-correlation matrix for vectors and

, i.e., .

B. Properness of Complex Vectors

Let us start by considering a -dimensional zero-mean2 com-
plex vector with real and imaginary parts

and , respectively. The second-order statis-
tics (SOS) of are given by the covariance
and complementary covariance matrices [11],
[14], or equivalently by the augmented covariance ma-
trix [13], [14]

where is defined as the augmented
complex vector.

2Through this paper, we consider zero-mean vectors for notational simplicity.
The extension of the results to the nonzero mean case is straightforward.

With the above definitions, the complex vector is said to be
proper (or second-order circular) if and only if (iff) [8]

(1)

i.e., iff is uncorrelated with its complex conjugate . Obvi-
ously, the definition of a proper complex vector can also be made
in terms of the real vectors and [16]. In particular, it is easy
to check that (1) is equivalent to the two following conditions:

(2)

(3)

which, in the scalar case, reduce to have uncorrelated real and
imaginary parts with the same variance. However, in the gen-
eral vector case, condition (1) provides much more insight than
conditions (2) and (3) [14], [17].

The properness definition can be easily extended to the case
of two complex random vectors and .
In particular, and are cross proper iff the complementary
cross-covariance matrix vanishes. Finally,
and are jointly proper iff they are proper and cross proper, or
equivalently, iff the composite vector is proper [14],
[17].

From a practical point of view, the (joint)-properness of
random vectors translates into the optimality of conventional
linear processing. Consider as an example the problem of esti-
mating a vector (or its augmented version ) from
a reduced-rank (with rank ) version of . In a general
case, the optimal linear processing is of the form ,
where is the estimate of , and
are widely linear operators given by [14]

and are the projection matrices, and
and are the reconstruction matrices.

The above solution is an example of widely linear processing
[10], [14], which is a linear transformation operating on , i.e.,
both on and its conjugate. Obviously, this is a more general
processing than that given by the conventional linear transfor-
mations. However, if and are jointly proper, the optimal
linear processing takes the form , i.e., ,

. In other words, the widely linear processing of
jointly proper vectors does not provide any advantage over the
conventional linear processing [14], [17].

C. Quaternion Algebra

In this subsection, the basic quaternion algebra concepts are
briefly reviewed. For an advanced reading on quaternions, we
refer to [27], as well as to [3], [28] for several important results
on matrices of quaternions.
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Quaternions are 4-D hypercomplex numbers invented by
Hamilton [1]. A quaternion is defined as

(4)

where , , , are four real numbers, and the imaginary
units ( , , ) satisfy the following properties:

Quaternions form a noncommutative normed division algebra
, i.e., for , in general. The conjugate

of a quaternion is , and the
conjugate of the product satisfies . The inner
product between two quaternions is defined as the
real part of , and two quaternions are orthogonal if and only
if (iff) their inner product is zero. The quaternion norm is de-

fined as , and it is easy to

check that . The inverse of a quaternion is
, and we say that is a pure unit quaternion iff

(i.e., iff and its real part is zero). Quaternions
also admit the Euler representation

where is a pure unit

quaternion and is the angle (or argu-
ment) of the quaternion. Thus, given an angle and a pure unit
quaternion , we can define the left (respectively right) Clifford
translation [29] as the product (resp. ). Let us now in-
troduce the rotation and involution operations.

Definition 1 (Quaternion Rotation): Consider a quaternion
, then3

represents a 3-D rotation of the imaginary part of [27]. In
particular, the vector is rotated clockwise an angle

in the pure imaginary plane orthogonal to .

Definition 2 (Quaternion Involution): The involution of a
quaternion over a pure unit quaternion is

and it represents the reflection of over the plane spanned by
[27].

3From now on, we will use the notation � to denote the element-wise
rotation of matrix �.

With the above definitions, and given two quaternions
, it is easy to check the following properties [4], [5]:

Here we must point out that the real representation in (4) can be
easily generalized to other orthogonal bases. In particular, we
will consider an orthogonal system given by

where is an orthogonal matrix, i.e., .
Furthermore, we will assume that the signs of the rows of are
chosen in order to ensure

Thus, any quaternion can be represented as

(5)

where . Moreover, we can use the
following modified Cayley–Dickson representations

(6)

where

can be seen as complex numbers in the planes spanned by
, or .

Finally, it is important to note that the Cayley–Dickson repre-
sentations in (6) differ from those in [4], [5], [18], and [19].4 Al-
though this is only a notational difference, we will see later that
the choice of the formulation in (6) results in a clear relationship
between the quaternion properness definitions and the statistical
properties of the complex vectors in the Cayley–Dickson repre-
sentation.

4In particular, the Cayley–Dickson representations in the cited papers can be
rewritten as � � � �� � � � � � � � � � � � , with � � � , � � �
and � � � . Therefore, the results in this paper can be easily rewritten in terms
of these alternative Cayley–Dickson formulas.
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TABLE I
CORRESPONDENCE BETWEEN THE QUATERNION COVARIANCE MATRICES AND THE REAL AND COMPLEX (CROSS)-COVARIANCES

III. PROPERNESS OF QUATERNION VECTORS

A. Augmented Covariance Matrix

Analogously to the case of complex vectors, the circularity
analysis of a -dimensional quaternion random vector

can be based on the real vectors
, , and [18]. However, here we follow a similar

derivation to that in [19] for the case of scalar quaternions. In
particular, we define the augmented quaternion vector as

, whose relationship with the real
vectors is given by

where , and

(7)

is a unitary quaternion operator, i.e., .

Based on the above definitions, we can introduce the aug-
mented covariance matrix

where we can readily identify the covariance matrix
and three complementary covariance ma-

trices , and

. The relationship among these ma-
trices, the real representation in (5), and the Cayley–Dickson
representations in (6), can be obtained by means of straightfor-
ward but tedious algebra, and are summarized inTable I.

As we have previously pointed out, the different definitions of
quaternion properness are based on the cancelation of the com-
plementary covariance matrices. However, before proceeding,
we must introduce the following lemmas, which present three
key properties of the augmented covariance matrix.
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Lemma 1: The structure (location of zero complementary
covariance matrices) of is invariant to linear transforma-
tions5 of the form , with .

Proof: It can be easily checked that
and , . The proof concludes
particularizing for , , .

Lemma 2: A rotation results in a simultaneous
rotation of the orthogonal basis and the augmented
covariance matrix

where the expressions in parentheses make explicit the bases for
the augmented covariance matrices.

Proof: The covariance matrix can be easily obtained as
. On the other

hand, , we have

and right-multiplying by , we obtain

The proof concludes particularizing for , , and .

Lemma 3: The augmented covariance matrices in two dif-
ferent orthogonal bases are related as

where

is the matrix for the change of basis
and

.
Proof: Let us consider the pure unit quaternion

, where is the first row of . Thus,
the involution of over is

Repeating this procedure for and , we obtain the mapping
between the augmented quaternion vectors in the two different
bases

Finally, as a direct consequence of the previous relationship, we
have .

Lemma 1 ensures the invariance of the structure of to
linear transformations, which will translate into the invariance

5In this paper, we focus on left multiplications, which agrees with most of the
quaternion signal processing literature [2], [3], [7].

of the properness definitions. On the other hand, Lemma 2 states
that, taking into account the rotation of the orthogonal basis

, the structure of the augmented covariance ma-
trix is also invariant to rotations, which include involutions as
a particular case. This property will allow us to easily relate the
properness of the original quaternion vector with that of its ro-
tated version. Finally, Lemma 3 shows that the complementary
covariance matrices in an arbitrary base can be
easily obtained as quaternion linear combinations of ,

and . From our point of view, these nice prop-
erties justify the use of the augmented covariance matrix in-
stead of other cross-covariance matrices based on the real or
Cayley–Dickson representations [4], [5].

B. -Properness

Let us start by the weakest properness definition.

Definition 3 ( -Properness): A quaternion random vector
is -proper iff the complementary covariance matrix
vanishes.

To our best knowledge, the definition of -proper vectors
is completely new. Obviously, it translates into the following
structure in the augmented covariance matrix

and its main implication can be established with the help of
the Cayley–Dickson representation summarized in Table I. In
particular, we can see that a quaternion vector is -proper iff

(8)

(9)

which can be seen as the complex analogue of the conditions
in (2) and (3) for the real and imaginary parts of a complex
proper vector. From a practical point of view, the implications
of this kind of properness are rather limited. In particular, unlike
the and properness, it does not translate into a simplified
kind of quaternion linear signal processing, and neither implies
the invariance of all the SOS of to a right Clifford transla-
tion. However, the next lemma proves the equivalence between

-properness and a relaxed6 kind of SOS invariance.

Lemma 4: A quaternion random vector is
-proper iff the covariance , and cross covari-

ance matrices are invariant to a right multiplication by
the pure unit quaternion .

Proof: As a result of the right product, we have

6Note that Lemma 4 only considers right Clifford translations with angle
��� �� � �� , and it does not ensure the invariance of the second
order statistics given by� ,� , and� .
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and the new covariance and cross-covariance matrices are

Obviously, the covariance and cross-covariance matrices are in-
variant to the product iff ,

and . Thus, we have

which are the necessary and sufficient conditions for -proper-
ness given in (8) and (9).

Additionally, we will see later that the -properness defini-
tion allows us to shed some light on the relationship between the
two main kinds of quaternion properness, which are presented
in Sections III-C and D. Finally, we must note that the defini-
tion of -proper vectors obviously depends on the choice of
the pure unit quaternion , but it is independent of the two or-
thogonal quaternions and .

C. -Properness

In this subsection, we introduce the definition of -proper
vectors, which is closely related (but different) to those in [4],
[5], [18], and [19]. The main difference is due to the fact that
the previous approaches were based on the invariance of the
SOS to left Clifford translations , whereas the definition in
this paper naturally results in SOS invariance to right Clifford
translations . More importantly, as a direct consequence of
Lemma 1, the properness definitions in this paper are invariant to
linear quaternion transformations of the form , which
is not the case if we impose the invariance of the SOS to left
Clifford translations.7 Obviously, this is a very desirable prop-
erty from a practical point of view, which has its well-known
counterpart in the case of complex vectors. Therefore, we think
that the properness definitions in this paper will be more useful
for the signal processing community.

Definition 4 ( -Properness): A quaternion random vector
is -proper iff the complementary covariance matrices

and vanish.
At this point, one could be tempted to think that the defini-

tion of -proper vectors depends on and . However, the
following lemma ensures that it only depends on .

Lemma 5: The definition of -properness for quaternion
vectors depends on , but not on the particular choice of and

7If the SOS of � are invariant to left Clifford translations of the form� � ��,
the covariance matrices of � and � should be identical. Thus, we have� �
� � � , which implies that the elements of � belong to the plane
��� ��. Now, it is easy to find a linear transformation � � �� (for instance,
� � ���� �� ) such that� � �� � �� � , i.e., the properness
of � can be lost due to a linear transformation (and vice versa).

. In other words, is -proper iff it is -proper for all
pure unit quaternions orthogonal to .

Proof: The proof can be seen as a particular case of Lemma
3. It is based on the fact that all pure unit quaternions orthog-
onal to can be written as real linear combinations of and

, which also implies that can be written as a quaternion
linear combination of and . Therefore, if and

vanish, so does .

Analogously to the previous case, and from the expressions
in Table I, we can conclude that a vector is -proper iff

(10)

In other words, is -proper iff it can be represented by means
of two jointly proper complex vectors ( and

) in the plane spanned by . Here, we must
note that a similar conclusion was obtained in [18], [19] for the
definition of -proper vectors based on the SOS invariance to
left Clifford translations.

From a practical point of view, it is clear that the augmented
covariance matrix of a -proper quaternion vector can be
written as

where can be defined as a semi-augmented co-

variance matrix and is the semi-augmented
quaternion vector. Thus, it is easy to prove that the -proper-
ness is invariant under semi-widely linear transformations, i.e.,
linear transformations of the form

(11)

where and . In other words, if
is -proper, all the vectors obtained as (11) are -proper.
Finally, the following lemma establishes the equivalence be-

tween -properness and the invariance of the SOS to right Clif-
ford translations in the plane .

Lemma 6: A quaternion random vector is -proper iff its
SOS are invariant under right Clifford translations ,

.
Proof: As we have seen, the SOS of a quaternion vector are

given by the covariance and three complementary covariance
matrices. Consider the right product , with , which
can be rewritten as . Thus, from Lemma 2, we obtain
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where , , . Now, particularizing
for , we have , , , which
yields

i.e., the covariance and complementary covariance
are invariant under right Clifford translations .

On the other hand, writing the
complementary covariance matrices and can
be further simplified to

Thus, it is easy to see that the SOS are invariant under right
Clifford translations iff

(12)

where

and . Therefore, excluding the trivial
case of , (12) is only satisfied for

, i.e., the quaternion vector is invariant to right Clifford
translations iff it is -proper.

D. -Properness

So far, we have presented two different kinds of properness
for quaternion random vectors. The last and strongest kind of
properness can be seen as a combination of the and
properness and is defined as follows:8

Definition 5 ( -Properness): A quaternion random vector
is -proper iff the three complementary covariance matrices

, and vanish.
The following lemmas establish the main properties of
-proper quaternion vectors.

Lemma 7: A quaternion random vector is -proper iff
all the complementary covariance matrices (for all
pure unit quaternions ) vanish. In other words, the definition
of -proper vectors does not depend on the orthogonal basis

, and it is equivalent to the and properness
of for all .

8Note again that the -properness definition in this paper differs from those
based on the invariance of the SOS to left Clifford translations [4], [5], which
are not invariant to quaternion linear transformations.

Proof: This is a direct consequence of Lemma 3 and the
-properness definition. Note that the complementary covari-

ance matrix is given by a quaternion linear combina-
tion of , and . Thus, if is -proper
we have for all pure unit quaternions . Ob-
viously, this also implies that is -proper and -proper for
all pure unit quaternions .

Lemma 8: The covariance matrix of a -proper quaternion
vector can be written as

regardless of the choice of the orthogonal basis .
Equivalently, the vectors in the real representation of satisfy

Proof: This can be seen as a consequence of the simulta-
neous and properness, and can be easily checked with
the help of Table I.

Lemma 9: A quaternion random vector is -proper iff its
SOS are invariant to right Clifford translations for all pure
unit quaternions and .

Proof: This is a direct consequence of Lemma 6 and the
-properness of for all .

To summarize, we can say that -properness combines
the two previous kinds of properness as follows: First, the

-properness ensures the equality (up to a complex conju-
gation) of the covariance matrices, and the skew-symmetry
of the cross covariance between and [see (8) and (9)],
which can be seen as the complex version of (2) and (3) for
proper complex vectors. On the other hand, the -properness
ensures that the complex vectors and are jointly proper.
Thus, -properness and -properness can be seen as two
complementary kinds of properness for quaternion random
vectors, which together result in -properness.

E. Extension to Two Random Vectors

In order to conclude this section, we introduce properness
definitions for two quaternion random vectors and

. Analogously to the complex case, we start by the
definition of cross-proper vectors.

Definition 6 (Cross Properness): Two quaternion random
vectors and are:

• cross -proper iff the complementary cross-covariance
matrix vanishes;
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• cross -proper iff the complementary cross-covari-
ance matrices and

vanish;
• cross -proper iff all the complementary cross-covariance

matrices ( , and ) vanish.
Finally, combining the definitions of properness and cross

properness, we arrive to the concept of jointly proper vectors.

Definition 7 (Joint-Properness): Two quaternion random
vectors and are jointly (respectively or ) proper iff
the composite vector is (resp. or ) proper.
Equivalently, and are jointly proper iff they are proper and
cross proper.

IV. FULL AND SEMI-WIDELY LINEAR PROCESSING OF

QUATERNION RANDOM VECTORS

To our best knowledge, the only work dealing with widely
linear processing of quaternion random vectors is [7]. In that
work, inspired by the case of complex vectors, the authors
propose to simultaneously operate on the quaternion vector
and its conjugate . Here, we show that, unlike the complex
case, there exist different kinds of quaternion widely linear
processing. The most general linear transformation, which
we refer to as full-widely linear processing, consists in the
simultaneous operation on the four involutions

where is a quaternion
matrix. In terms of the augmented vectors and , the above
equation can be written as

(13)

where

is a general full-widely linear operator. Equivalently, we can use
the real version of (13)

where , , and
is given by

(14)

with (and ) defined in (7).
In this section, we follow a similar derivation to that in [17]

for the case of complex vectors. Our goal is to present a rig-
orous generalization of several well-known multivariate statis-
tical analysis techniques to the case of quaternion vectors and,
more importantly, to show the implications of the and
properness on the optimal linear processing.

A. Multivariate Statistical Analysis of Quaternion Vectors

Several popular multivariate statistical analysis techniques
amount to maximize the correlation (under different constraints
or invariances) between projections of two random vectors [17].
In this subsection, we focus on the general problem of max-
imizing the correlation between the following -dimensional
projections of the quaternion vectors and

where , are real operators,9 and
. Specifically, our problem can be written

as

where . Obviously, in order to avoid trivial
solutions, some constraints (or invariances) have to be imposed
in the previous problem. In fact, the choice of constraints makes
the difference among the following well-known multivariate
statistical analysis techniques.

• Partial least squares (PLS) [22]: PLS maximizes the corre-
lations between the projections of two random vectors sub-
ject to the unitarity of the projectors, i.e., the constraints
are . In the particular case of

, PLS reduces to the principal component analysis
(PCA) technique [21].

• Multivariate linear regression (MLR) [23]: For this
method, which is also known as the rank-reduced Wiener
filter, half canonical correlation analysis [14], or or-
thogonalized PLS [30], the constraints can be written as

.
• Canonical correlation analysis (CCA) [24], [25]: This

technique imposes the energy and orthogonality con-
straints on the projections and , i.e., the constraints
are .

After a straightforward algebraic manipulation, the three pre-
vious problems can be rewritten as

(15)

where , ,

, and the expressions for and
in the three studied cases are summarized in Table II. Obvi-
ously, the solutions , of (15) are given by the singular
vectors associated to the largest singular values of the matrix

, whose singular value decomposition (SVD) can be
written as

with , unitary matrices and
a diagonal matrix containing the singular values. In par-

9Note that ��-dimensional real projections are equivalent to �-dimensional
full-widely linear quaternion projections.
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TABLE II
SUMMARY OF THE PRESENTED METHODS AND CONDITIONS FOR OPTIMALITY OF SEMI-WIDELY OR CONVENTIONAL LINEAR PROCESSING

ticular, we will order the singular values
in as

with

At this point, taking (14) into account, the full-widely linear
operators and can be obtained as

and due to the unitarity of the operator , we can write

where

are shown in Table II for the three studied cases, and
, are unitary full-widely linear

operators. Furthermore, defining the matrix

the operators and can be directly obtained from the de-
composition

(16)

which can be seen as an extension of the singular value de-
composition used in [14] for the second-order circularity anal-
ysis of complex vectors. In particular, it is easy to check that

, are unitary full-widely linear oper-
ators, and

with

(17)

(18)

(19)

(20)

B. Practical Implications of Quaternion Properness

In this subsection, we point out the main implications of
and properness in the previous multivariate statistical anal-
ysis techniques. We will start by analyzing the case of jointly

-proper vectors and , which also paves the way for the
-proper case.
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From the joint -properness definition it is clear that the
matrices , and (and, therefore, also ,
and ) take the block-diagonal structure

where , , are
the semi-augmented (cross)-covariance matrices, which are ob-

tained from the semi-augmented vectors

and . Thus, the block-diagonal structure also
appears in the decomposition in (16), which can be written as

, with

and

Now, we can state the two following theorems.

Theorem 1: For jointly -proper vectors and , the op-
timal PLS, MLR, and CCA projections reduce to semi-widely
linear processing, i.e., they have the form

Proof: The proof follows directly from the structure of ,
and the block-diagonality of and .

Theorem 2: Given two jointly -proper vectors and ,
the singular values of (and ) have mul-
tiplicity greater than or equal to two.

Proof: The block diagonal structure of implies
, which from (19) and (20) results in and

.

Theorem 1 constitutes a sufficient condition for the optimality
of semi-widely linear processing. In other words, we should not
expect any performance advantage from full-widely (instead of
semi-widely) linear processing two jointly -proper vectors.
However, we must note that the joint-properness is not a nec-
essary condition. As a matter of fact, several relaxed sufficient
conditions can be easily obtained by taking into account the par-
ticular expressions for (see Table II). On the other hand,

Theorem 2 ensures that the augmented covariance matrices of
-proper vectors have eigenvalues with multiplicity (at least)

two, which is also the multiplicity of the singular values of the
augmented cross-covariance matrices of cross -proper vec-
tors.

In the case of jointly -proper vectors and , the analysis
can be easily done following the previous lines. The two main
results, which are analogous to those in Theorems 1 and 2 are
the following.

Theorem 3: For jointly -proper vectors and , the optimal
PLS, MLR and CCA projections reduce to conventional linear
processing, i.e.,

Proof: The proof is based on the block-diagonality (four
blocks of the same size) of the matrices in the decomposition

.

Theorem 4: Given two jointly -proper vectors and , the
singular values of (and ) have multi-
plicity greater than or equal to four.

Proof: The block-diagonal structure of (four blocks of
size ) implies , and combining
(17)–(20), we obtain .

As can be seen, Theorem 3 ensures the optimality of conven-
tional linear processing of jointly -proper vectors (see Table II
for more relaxed sufficient conditions), whereas Theorem 4
shows that the augmented (cross)-covariance matrices of (cross)

-proper vectors have singular values (or eigenvalues [3], [28])
with multiplicity (at least) four. Thus, Theorems 3 and 4 can
be seen as extensions of Theorems 1 and 2. In particular, we
already knew that if and are jointly -proper, then they also
are jointly -proper and Theorems 1 and 2 apply. However,
the joint -properness also implies joint -properness, which
finally results in Theorems 3 and 4.

Finally, we must point out that the results in this section can be
seen as an extension to quaternion vectors of the results in [14],
[17]. Moreover, following the lines in [14], we could also intro-
duce the concepts of generalized and -properness, which
would be based on the multiplicities of the eigenvalues of the
augmented covariance matrices, and would translate into sim-
ilar results to those in [14] for the case of complex vectors.

V. IMPROPERNESS MEASURES FOR QUATERNION VECTORS

In the case of complex random vectors, improperness mea-
sures have been proposed in [15], [20], [31]. Here, we extend
this idea to the case of quaternion vectors. In particular, given
a random vector with augmented covariance matrix

, we propose to use the following improperness measure:

(21)

where denotes the set of proper augmented covariance
matrices (with the required kind of quaternion properness), and

is the Kullback–Leibler divergence between
two quaternion Gaussian distributions with zero mean and
augmented covariance matrices and .
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TABLE III
PROBABILITY DENSITY FUNCTION, ENTROPY AND KULLBACK-LEIBLER DIVERGENCE OF QUATERNION GAUSSIAN VECTORS

The probability density function (pdf) of quaternion Gaussian
vectors can be easily obtained from the pdf of the real vector
(see also [18], [32] for previous works on quaternion Gaussian
vectors), and it can be simplified in the case of -proper or

-proper vectors. Table III shows the pdf, entropy, and Kull-
back–Leibler divergence expressions for quaternion Gaussian
vectors.10

Before proceeding, we must remark the following reasons for
the choice of the measure in (21).

• First, the Gaussian assumption is justified by the fact
that Gaussian vectors are completely specified by their
second-order statistics. Therefore, the improperness mea-
sure should also be a noncircularity measure for Gaussian
vectors.

• As we have pointed out in Lemma 1, the structure of
the augmented covariance matrix is invariant under
quaternion linear transformations. As we will see later, the
improperness measure in (21) preserves this invariance.
Moreover, in the case of -properness, it is also invariant
to semi-widely linear transformations.

10Note that, due to the noncommutativity of the quaternion product, the term
�� �� � in the Kullback–Leibler expression has to be rewritten as

�� �� � � �� �� � �� . Alternatively, we could

have written �� �� � � � �� �� � , where ���� de-
notes the real part of the quaternion �.

• The choice of the Kullback–Leibler divergence is jus-
tified by its information-theoretic implications. On one
hand, the measure in (21) is closely related to the con-
cepts of entropy and mutual information. On the other
hand, provides the error exponent of
the Neyman-Pearson detector for the binary hypothesis
testing problem of deciding whether a set of i.i.d. vector
observations belongs to a zero-mean Gaussian distribution
with augmented covariance matrix or [33].11

Moreover, taking into account the minimization in (21),
can be interpreted as a worst-case error exponent,

or equivalently, as the error exponent associated to the
problem of deciding between and , i.e., all the aug-
mented covariance matrices with the required properness
structure.

A. Measure of -Improperness

Let us start our analysis by the strongest kind of quaternion
properness. The set of -proper augmented covariance ma-
trices is

11The error exponent is defined as the rate of exponential decay of the miss
probability under a constant false alarm probability. Here, the miss probability
is the probability of deciding� when �� is true.
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and the matrix minimizing is

Thus, the -improperness measure reduces to

where we have defined as the -co-
herence matrix. Interestingly, this matrix naturally appears in
the quaternion version of the maximum variance (MAXVAR)
generalization of canonical correlation analysis (CCA) to four
random vectors [26], [34], [35]. Therefore, the -improperness
measure is obtained from the canonical correlation analysis of
the random vectors , , and . Furthermore, we
can easily check that is invariant under rotations , basis
changes, linear transformations , and it can also be written
as

which represents the entropy loss due to the improperness of .
That is, can be seen as a measure of the mutual information
among the random vectors , , and [36].

B. Measure of -Improperness

In this case, the set of -proper augmented covariance ma-
trices is , and

the matrix minimizing is

Therefore, the -improperness measure reduces to

where is the -coherence matrix in
the quaternion extension of CCA for the random vectors and

. Furthermore, it is easy to prove that is invariant to
semi-widely linear transformations , and it also
represents the entropy loss due to the -improperness of , i.e.,

Additionally, rewriting the semi-augmented vector in terms
of the Cayley–Dickson representation

and taking into account the unitarity of the operator , the
-improperness measure can be rewritten as

where is the coherence matrix for the
complex vector , and

Thus, the -improperness measure reduces to an improper-
ness measure of the complex vector [15], [20], [31], which is
also a measure of the degree of joint-improperness of the com-
plex vectors , . That is, as pointed out in Section III-C, the

-properness of a vector can be seen as the joint-properness
of the complex vectors in the Cayley–Dickson representation

.

C. Measure of -Improperness

For the -improperness measure, the problem is more in-
volved than in the previous cases. This is due to the fact that,
given the set , obtaining the

matrix minimizing is far from
trivial, and it is closely related to the problem of maximum like-
lihood estimation of structured covariance matrices [23], [37].

Here we focus on an alternative and more meaningful mea-
sure. In particular, we consider the measurement of the -im-
properness of -proper vectors. That is, given an augmented
covariance matrix , we look for the closest (in the
Kullback–Leibler sense) matrix , and with a slight
abuse of notation define

Thus, following the lines in the previous subsections, the -im-
properness measure reduces to

where

and is the -coherence matrix, which
appears in the canonical correlation analysis of the random vec-
tors and . Finally, analogously to the previous cases, the
measure is invariant to linear transformations, and it pro-
vides the entropy loss due to the -improperness of the vector

or equivalently, the mutual information between and .

D. Further Comments

As we have shown, the three proposed improperness mea-
sures are directly related to the canonical correlation analysis
technique and its extension to four random vectors. In the case
of complex vectors, similar results have been obtained in [15],
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Fig. 1. Illustration of the -improperness measure decomposition. The figure
shows the sets of -proper (� ,� and� ), -proper (� ,� ,
and� ), and -proper �� � augmented covariance matrices. Point� rep-
resents a general augmented covariance matrix � . � is the closest (in the
Kullback–Leibler sense) point to � in � (matrix � ). � (matrix � )
is the projection of � onto� , which coincides with the projection of � onto
� . The length of the segment�� represents the measure� , which is equal
to the sum of the lengths of the segments�� �� � and�� �� �. The same
interpretation can be done in terms of the points � and � .

[20], [31], where the authors have shown that the canonical cor-
relations (eigenvalues of the coherence matrix) provide a mea-
sure of improperness, entropy loss and mutual information.

Interestingly, the improperness measures proposed in this
paper satisfy

(22)

which can be seen as a direct consequence of the Pythagorean
theorem for exponential families of pdf’s [38], [39], and cor-
roborates our intuition about the complementarity of and

properness. Moreover, since the -improperness measure
does not depend on the orthogonal basis , can
be decomposed as (22) for all pure unit quaternions . In other
words, the Kullback–Leibler “distance” from an augmented
covariance matrix to the closest -proper matrix
can be calculated as the divergence from to the closest

-proper matrix , plus the divergence from to the
closest -proper matrix . This fact is illustrated in Fig. 1
for three orthogonal pure unit quaternions , and .

VI. CONCLUSION

The properness of quaternion-valued random vectors has
been analyzed, showing its similarities and differences with
the complex case. In particular, the second-order statistics of
quaternion vectors are captured by the covariance matrix and
three complementary covariance matrices, which are obtained
as the correlation between the quaternion vector and its in-
volutions over three pure unit quaternions. The existence of
three complementary covariance matrices translates into three
different kinds of properness, all of them with direct implica-
tions on the Cayley–Dickson representations of the quaternion
vector. Analogously to the complex case, the optimal linear
processing of quaternion vectors is in general full-widely linear,
which means that we have to simultaneously operate on the

quaternion vector and its involutions. However, in the case
of -proper and -proper vectors, the optimal processing
reduces to conventional and semi-widely linear processing,
respectively. Finally, the improperness of a quaternion vector
can be measured by the Kullback–Leibler divergence between
two Gaussian distributions, one of them with the augmented
covariance matrix, and the other with its closest proper version.
This measure, which is closely related to the canonical corre-
lation analysis technique, provides the entropy loss due to the
improperness of the quaternion vector, and it admits a straight-
forward geometrical interpretation based on Kullback–Leibler
projections onto different sets of proper augmented covariance
matrices.
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