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Deconvolution of Seismic Data
Using Adaptive Gaussian Mixtures

Ignacio Santamarı́a, Carlos J. Pantaleón,
Jeśus Ib́añez, and Antonio Art́es

Abstract—Based on a Gaussian mixture model for the reflectivity
sequence, we present a new technique for blind deconvolution of seismic
data. The method obtains a deconvolution filter that maximizes at its
output a measure of the relative entropy between the proposed Gaussian
mixture and a pure Gaussian distribution. A new updating procedure for
the mixture parameters is included in the algorithm: it allows us to apply
the algorithm without any prior knowledge about the signal and noise. A
simulation example illustrates the performance of the proposed method.

Index Terms—Deconvolution, estimation, iterative methods, seismology.

I. INTRODUCTION

In seismic deconvolution, it is generally recognized that the re-
flectivity can be represented by a sparse spike train: each reflector
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stands for a change in the acoustic impedance at the layer interfaces.
A typical model for the reflectivity is the Bernoulli–Gaussian (BG)
model [1], for which the signal follows a Gaussian distribution with
probability �, and its value is zero with probability1� �.

For deconvolution of BG signals, a commonly used technique
consists of maximizing a global likelihood function to obtain the
nonzero positions and their amplitudes, the BG model parameters,
and possibly the distorting linear system. However, the proposed
maximization approaches [1], [2] have a high computational cost
mainly due to the detection part of the problem (i.e., the Bernoulli
part of the model).

In the present work, we consider a Gaussian mixture model for the
reflectivity sequence in the context of iterative seismic deconvolution.
In particular, we assume that the prior distribution of the reflection
coefficient sequence can be approximated with a mixture of a narrow
and a broad zero-mean Gaussian. This model offers some advantages
when compared to the BG model: first, unlike the BG model, it
accounts for the diffraction effects that produce a scattering noise
added to the sparse reflectivity signal. That is, with the proposed
model, the narrow Gaussian models the smaller reflectors due to
backscattering as well as the noise, whereas the broad one models the
mayor layering effects. It is also possible to include these scattering
effects in the BG model by adding a zero-mean Gaussian sequence
[1], but then the likelihood function turns even harder to maximize.

Second, the BG model can be considered as a particular case of
the Gaussian mixture: when the variance of the narrow Gaussian
approaches zero, the Gaussian mixture model approaches a BG
distribution.

Finally, when we consider iterative deconvolution approaches, at
each iteration we obtain a new inverse filter such that the convolution
with the seismic data results in the complete or partial removal of
the distorting linear filter. Therefore, the output of the deconvolution
filter can be modeled again as a Gaussian mixture [3]. In this case,
the narrow Gaussian models not only the backscattering noise, but
the convolutional noise, which accounts for an incomplete removal
of the distorting filter.

Based on a Gaussian mixture model, Godfrey and Rocca proposed
the zero-memory nonlinear deconvolution method [3] (also called
Bussgang method [4]). At each iteration, this technique obtains
rough estimates of the reflectivity by means of a matched nonlinear
function. This estimate is cross correlated with the observations, and
a new deconvolution filter is obtained. From the deconvolved signal,
a new reflectivity is estimated and the procedure is iterated until
convergence. In [3], the parameters of the mixture and therefore the
nonlinear estimator are fixed in advance.

In this paper, we proposed a new blind deconvolution approach
for seismic data that is also based on a Gaussian mixture model
for the reflectivity. The deconvolution filter maximizes at its output
a measure of the relative entropy between the assumed Gaussian
mixture and a single Gaussian having the same variance as the
data. The maximization procedure leads to a new nonlinear estimator
for the input signal. At each iteration, the mixture parameters are
reestimated to fit the distribution of the estimated reflectivity.

II. NEW INVERSE FILTER CRITERION FOR SEISMIC DECONVOLUTION

In seismic exploration, it is customary to consider the following
convolutional model for the observed seismic datafzig:

fzig = fxig � fhig+ fnig (1)
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where fxig is the reflectivity,fhig is a linear time-invariant and
possibly nonminimum-phase system (seismic wavelet),fnig models
the noise, and� denotes convolution.

We assume that the probability distribution function (pdf) of the
reflectivity can be approximated with a mixture of a narrow (subscript
1) and a broad (subscript 2) zero-mean Gaussian

p(x) =
�1p
2��1

e�(x =2� ) +
�2p
2��2

e�(x =2� ) (2)

where�1 and�2 are the mixing proportions and they are therefore,
constrained to sum 1.

Given a set ofN samples of the reflectivity generated according
to the previous modelfx1; � � � ; xNg, and denoting each component
of the mixture asGj , the detection part of the problem consists of
determining the posterior probabilitiesp(Gj jxi), which are given by

p(Gj jxi) = rj(xi) =
�jpj(xi)

k

�kpk(xi)
; j = 1; 2 (3)

wherepj(xi) is the probability density ofxi under Gaussianj, i.e.,

pj(xi) =
1p
2��j

exp � x2i
2�2j

: (4)

The object of seismic deconvolution is to obtain an inverse filter
ffig, such that the convolution offfig with the seismogramfzig
removes the distorting wavelet and the noise. On the other hand, as it
is shown in [5], convolution always increases the Gaussian character
of the pdf; therefore, the deconvolution filter should remove this effect
by making its output to fit (2) again. For doing so, we propose to
obtain an inverse filter that maximizes at its output a measure of the
relative entropy between mixture model (2) and a single Gaussian
distribution having the same variance, i.e.,

J =
i

log
j

�jpj(yi)�
i

log f(yi) (5)

wherepj(yi) is the probability density ofyi under Gaussianj in the
mixture andf(yi) is a Gaussian pdf with variance�2 = �1�

2
1+�2�

2
2 .

This objective function is used to drive the pdf of the inverse filter’s
output away from the initial Gaussian distribution toward the assumed
Gaussian mixture model.

The maximization of (5) with respect to the filter coefficients gives

@J

@fm
=

i

yi

�2

j

rj(yi)

�2j

� yi
@yi
@fm

= 0 (6)

where the factorsrj(yi) are the posterior probabilities given by (3).
Considering a deconvolution filter of lengthL+1 and a sequence

of observationsfzig of lengthM , we have

yi =

L

j=0

fjzi�j ; i = 0; � � � ; N � 1 (7)

whereN = M + L.
Therefore,@yi=@fm = zi�m and substituting (7) for the rightmost

yi term in (6), we obtain

l

fl
i

zi�lzi�m =
i

yi

�2

j

rj(yi)

�2j

zi�m: (8)

The set of equations (8) can be written in matrix notation as

Rzzf = g (9)

whereRzz is the Toeplitz autocorrelation matrix of the observations
andg is the cross-correlation vector between the observations and a
nonlinear estimate of the input signal, which is given by

x̂ = g(y) =
y

�2

j

rj(y)

�2j

: (10)

The set of equations (9) can be solved using the iterative procedure
proposed in [3]: starting from an initial inverse filter, an estimate of
the input signal is obtained using (10); this new estimate is cross
correlated with the observations, and a new inverse filter is obtained
solving (9). At each iteration the energy of the estimated signal
must be normalized to a fixed value. This procedure is iterated until
convergence is obtained.

III. N ONLINEARITY OPTIMIZATION

A complete application of the proposed method requires a careful
selection of the parameters defining the mixture model and therefore
the nonlinearity. Conventional Bussgang approaches use a fixed
nonlinearity: for instance, in [3] from the three parameters defining
the Gaussian mixture, the ratio between the variancesS = �22=�

2
1

and the proportion of the broad Gaussian�2 are fixed in advance
(independent of iteration). To make the algorithm data dependent,
the variance of the estimated signal after each iteration must be equal
to the mixture variance: this provides an additional constraint to get
the mixture parameters.

To avoid thisa priori selection, in this paper, we propose a method
to update the mixture parameters and, therefore, the nonlinear func-
tion g(y), at each step of the deconvolution process. This updating
procedure has been previously applied to nonblind deconvolution
problems [6].

The key idea of the method is to obtain a maximum likelihood
estimate of the mixture parameters� = (�1; �1; �2; �2) for each
new estimate of the reflectivity signal. These estimates can be
obtained applying the expectation-maximization (EM) algorithm [7].

Let us start by defining the observed incomplete data as the estimate
of the reflectivity obtained from (10) after iterationk: fx̂kg. On the
other hand, the unobserved data are given by� = (d1; d2), where
dj , j = 1; 2 are vectors of Bernoulli random variables. Theith
element ofdj selects the Gaussian associated to theith sample, i.e.,

dj; i =
1; if xi 2 Gj

0; if xi 62 Gj .
(11)

Using this particular choice for the complete data(fx̂kg; d1; d2),
and denoting the current estimate of� after k iterations of the EM
algorithm as�k, it is easy to see that theE-step of the next iteration
is given by

E[dj; ijfx̂kg; �k] = rj(x̂i; k) (12)

whereE[�] denotes expectation. Therefore, theE-step is equivalent
to recomputing the posterior probabilities for the estimated signal.

Once rj(x̂i; k) is known, in theM -step, we maximizeJ with
respect to�; taking the derivative and equating it to zero gives

�2j; k+1 = i

x̂2i;krj(x̂i;k)

i

rj(x̂i;k)
(13)

�j; k+1 =
1

N
i

rj(x̂i; k): (14)

It is known that the convergence rate of the EM algorithm may be
slow; to avoid this problem, we propose the following modification:
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after each newfx̂kg is obtained, only one iteration of the EM
algorithm is carried out to obtain a new estimate of�.

On the other hand, note that each new estimate of� changes the
cost function; therefore, to avoid instability, it is important to force
a slow change in the parameters of the mixture. For this reason, we
choose the following updating procedure:

�2j; k+1 = �2j; k + (1� ) i

x̂2i;krj(x̂i;k)

i

rj(x̂i;k)
(15)

�j; k+1 = �j; k + (1� )
1

N
i

rj(x̂i; k) (16)

 being a constant such that0:8 <  < 0:95.
In fact, note that from four parameters in� only two must be

estimated in each iteration since�2 = 1��1 and one of the variances
is fixed by the following constraint

�2x; k = �1�
2

1 + �2�
2

2 (17)

where�2x; k is the variance of the estimatêx at iterationk.
This updating procedure allows the starting of the algorithm with

a very soft nonlinearity and, progressively, the increasing of the
nonlinear character of the estimator as iteration proceeds. In this
way, the proposed algorithm has a greater flexibility than Godfrey’s
approach [3], which uses a fixed nonlinearity.

On the other hand, if we are looking for a fully sparse reflectivity,
the final nonlinearity can be used as a detector; this is important in
high noise situations since, in these cases, the deconvolution filter
is unable to remove completely the forward distorting filter while
simultaneously eliminating the noise. Using the proposed approach,
the partial removal of the forward filter can be corrected after the
nonlinearity.

Finally, the proposed algorithm can be summarized in the following
steps.

1) Initialize the mixture parameters�j; 0; �j; 0, j = 1; 2. A
reasonable mixture initialization could be�1 = �2 = 0:5
and�22 > �21 , with �21 being a small fraction of the observa-
tions variance�2z . These mixture parameters lead to an initial
nonlinear estimatorg(y).

2) Initialize the inverse filterf0 = [0; � � � ; 1; � � � ; 0] and the
smoothing parameter0:8 <  < 0:95.

3) For k = 0 to m � 1:

3.1. obtain the deconvolved outputyk = z � fk;
3.2. recompute the posterior probabilities using (3) and (4);
3.3. update the signal model according to (15) and (16);
3.4. obtain a new signal estimate:x̂k = g(yk);
3.5. reestimate the cross-correlation vectorg;
3.6. obtain a new deconvolution filterfk+1 by solving (9);

end.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our algorithm using
a synthetic signal of 500 samples (sampling period= 2 ms), generated
according to the BG model [1], with� = 0:1 and�2x = 10. The BG
input signal was convolved with a fourth-order nonminimum-phase
ARMA wavelet, shown in Fig. 1(a), with transfer function given by

H(z) =

�0:76286 + 1:5884z�1 � 0:82356z�2 + 0:000222419z�3

1� 2:2633z�1 + 1:7734z�2 � 0:49803z�3+ 0:045546z�4
:

(18)

(a)

(b)

Fig. 1. (a) Fourth-order ARMA wavelet and (b) synthetic seismic data
(SNR= 20 dB).

Finally, white Gaussian noise was added to produce the synthetic
seismic data shown in Fig. 1(b) (SNR= 20 dB).

A deconvolution filter with 25 coefficients was used, with its
central tap initialized to one. To apply the proposed method, we
initialize the mixture parameters with the following values:�1 =

�2 = 0:5, �21 = �2z=2, and�22 = 2�2z , where�2z is the variance of
the observations. Finally, for this example, we select = 0:9.

Fig. 2(a) and (b) show the estimated sparse sequence obtained with
the proposed method (after 100 iterations) and with Godfrey’s method
(after ten iterations), respectively. The circles depict the true spikes of
the BG signal, and the delay between the input signal and the estimate
has been artificially removed. We see that the proposed method
obtains a very accurate estimate, while Godfrey’s method tends to
underestimate the small reflectors. On the other hand, considering
that the computational cost per iteration for both methods is roughly
the same, our procedure entails a noticeable increase in computational
complexity in relation to Godfrey’s deconvolution procedure.

To explain these differences, Fig. 3 compares the nonlinear estima-
tor used in the proposed method, while the algorithm proceeds, and
the one used in Godfrey’s method. Our method starts with a function
almost linear; the updating procedure for the mixture parameters
modifies the estimator, and after convergence, it yields a reasonable
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(a)

(b)

Fig. 2. Sparse sequence estimated with the (a) proposed method and with
(b) Godfrey’s method. Circles depict true spikes.

Fig. 3. Zero-memory nonlinearity for the proposed method (solid line) at
iterations one and 100 (final result) and for Godfrey’s method (dashed line).
Input and output are normalized by the standard deviation.

nonlinear mapping. On the other hand, the fixed nonlinear estimator
used in Godfrey’s method is much more aggressive in the sense of
suppressing the smaller peaks: this improves the convergence rate
but leads to worse estimates.

Finally, Fig. 4(a) and (b) illustrate the evolution of the mixture
parameters versus the number of iterations. Their final values (after

(a)

(b)

Fig. 4. Evolution of the Gaussian mixture parameters versus number of
iterations: (a) variances and (b) mixing proportions.

iteration 100) are�1 = 0:91, �2 = 0:09, �21 = 0:06, and�22 = 10:47,
which indicate that the proposed updating procedure approaches the
correct values defining the input BG model.

V. CONCLUSIONS

This paper has presented a new Bussgang-type algorithm for blind
deconvolution of seismic signals. An improvement and novelty in
comparison with other Bussgang approaches is the use of an updating
procedure for the parameters defining the nonlinear estimator (based
on a Gaussian mixture model for the reflectivity). This procedure
avoids an empirical selection of the hyperparameters that define both
the pdf of the input signal and the nonlinear estimator. The proposed
algorithm is able to find an appropriate distribution (belonging to a
parametrized family of Gaussian mixtures) for modeling the input
signal or, equivalently, it can select a zero-memory nonlinearity
to estimate the reflectivity sequence. It has been shown that this
technique achieves better estimates than Godfrey’s method, but with
a higher computational cost.
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Scatterometer Observations of Seasonal
Backscatter Variation Over Tropical Rain Forest

Iain H. Woodhouse, Joost J. van der Sanden, and Dirk H. Hoekman

Abstract—A strong correlation between theC-band ERS-1 windscat-
terometer (WSC) backscatter and local precipitation in Guyana has been
observed. The effect on the correlation of incidence angle and local time is
also examined. Characterizing such fluctuations may be useful for precise
calibration of active microwave instruments.

Index Terms—Calibration, radar cross sections, radar terrain factors,
remote sensing, spaceborne radar, tropical regions.

I. INTRODUCTION

Precise calibration of spaceborne radar instruments [synthetic aper-
ture radar (SAR) and scatterometers] is difficult to achieve using
prelaunch calibration alone so extensive postlaunch calibration cam-
paigns are often carried out shortly after launch of a new instrument.
One approach to calibration is to use the signatures of distributed
targets of known radar cross section (RCS), such as extensive forests
or agricultural fields. The assumption is that the area in question is
uniform and that its average RCS for the particular radar configuration
and time of year is known. As well as providing a calibration
methodology for large footprint sensors [such as windscatterometers
(WSC’s)], this approach has been useful in determining relative
calibration errors within higher resolution imagery and has been
proposed for absolute calibration of SAR images ([1] and references
therein).

Of the potential calibration sites, tropical rain forests, such as
the Amazon and the Congo forests, show remarkably stable RCS
over a large area and extended time periods. However, these regions
do exhibit some degree of spatial and temporal variability that, if
unaccounted for, can lead to biases and increased uncertainty in
the calibration of the radar instrument. Seasonal variability has been
included in previous calibration studies (e.g., [2] and [3]) but only as
a seasonally fixed response and has not yet been directly related to
any ground parameter. Characterizing such fluctuations as a function
of measurable ground parameters could be of great benefit to the
calibration of active microwave instruments, allowing for distinction
between the seasonal variations in the forest and slow variations of
the system gain.

This paper presents data that shows monthly scale correlations of
ERS WSC RCS with precipitation for an area centered on Mabura
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Hill, Guyana. The results are compatible with other observations of
high-resolution SAR.

II. TEST REGION

Mabura Hill is situated at approximately 5� N and 59� W—about
250 km south of Guyana’s capital, Georgetown. The site covers
roughly 250 000 hectares (50� 50 km) of tropical rain forest that
has some areas undergoing industrial selective logging as well as an
area set aside as an ecological reserve. Rainfall measurements are
recorded at the Mabura Hill Weather Station, located at a clearing in
the forest of approximately 50� 50 m and operated by the Tropenbos
Foundation [4].

Seasonal change in Guyana is related to north–south movements of
the intertropical convergence zone (ITCZ), which influences mainly
annual rainfall distribution. A long wet season occurs from May to
August and a short wet season from December to February. The
remaining periods are dryer, with October generally being the driest
month. Most rainfall falls in the late afternoon and early evening,
which is related to instability in the atmosphere caused by irradiation.

III. SCATTEROMETER DATA

The ERS WSC’s are mounted on the ESA ERS-1 and 2 platforms
[5] and were designed to obtain information on wind speed and
direction over the sea surface, although measurements are also made
over land.

The instrument consists of three antennas producing three beams
looking 45� forward, sideways and 45� backward with respect to
the satellite’s orbit direction. These beams continuously illuminate a
500-km wide swath as the satellite moves along its orbit with local
incidence angles across the swath ranging from 18 to 59�.

The spatial resolution of the instrument is in the order of 50-km
along and across track with an estimated radiometric stability of
<0.22 dB [3]. The operating frequency is 5.3 GHz (C-band) with
vertical transmit and receive (VV) polarization. WSC measurements
have been made nearly continuously since July 1991 and are referred
to throughout this communications in terms of = �0= cos �i, where
�i is the local incidence angle (assuming a smooth earth).

IV. RESULTS AND DISCUSSION

A. Background

An investigation of the WSC backscatter properties over the
Mabura Hill test site showed an initial correlation between the
averaged monthly backscatter and the total monthly precipitation
measured at the test site over a period of two years [6]. Fig. 1 shows
these results for two incidence ranges for 1992 and 1993. Such a
correlation would be expected since the presence of additional water
in the forest canopy or ground (as surface water or as increased
moisture content) would result in an increased RCS.

In previous studies [7], individual rain cells have been identified
in high-resolution ERS SAR data, showing storm clouds resulting
in attenuation in the order of 2.5 dB, while behind the cloud, the
increased soil or vegetation humidity increases the backscatter by
about 0.6 dB. Another study, based on ERS-1 SAR data, has observed
considerable temporal change (ca., 1 dB) in the RCS for discrete
regions of intact forest in the Mabura Hill region, apparently related
to the seasonal variation in gravimetric water content of full grown
leaves (ca.,�0.1 gg�1) [8].
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