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A Simple Expression for the Optimization of Spread-Spectrum Code Acquisition
Detectors Operating in the Presence of Carrier-Frequency Offset
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Abstract—In this letter, we present a simple expression for the
optimization of the threshold detection performance for direct-se-
quence spread-spectrum code acquisition in the presence of car-
rier-frequency offset. The proposed scheme divides the total in-
tegration time into subintervals, and the results of the coherent
integrations performed over these subintervals are noncoherently
combined prior to detection. The proposed expression allows ob-
taining the optimum number of coherent-integration subintervals
for a given total integration time.

Index Terms—Code acquisition, direct sequence, frequency
offset, noncoherent integration, spread spectrum.

I. INTRODUCTION

CODE synchronization between the received pseudonoise
(PN) code and the local despreading code is the first and

one of the most important tasks in any spread-spectrum system.
This process is generally carried out in two steps: acquisition
and tracking. In this letter, we focus on code acquisition. There
has been considerable research on this issue [1]–[3]. In a
nutshell, code acquisition is achieved by performing a search
over the code-phase uncertainty region, advancing the code
phase in fractions of code chips. For each code-phase offset,
test statistics are derived and a detection strategy is applied to
them in order to distinguish synchronous conditions, where a
signal component is present, from asynchronous conditions,
exclusively determined by noise. Apart from the chosen search
strategy, acquisition performance crucially depends on the
detection performance.

Carrier-frequency offset, e.g., due to Doppler shift or oscil-
lator frequency drift, is one of the most important causes of de-
tection failure and, thus, acquisition performance degradation.
The problem is studied in [4], where a square-law noncoherent
combining detector with partial correlation is proposed to alle-
viate the effect of Doppler shift. The same approach was also
considered in [5] to reduce the effect of data modulation. In
this letter, we develop a simple expression aiding the design of
the direct-sequence spread-spectrum (DS/SS) code-acquisition
scheme proposed in [4] and [5] in the presence of carrier-fre-
quency offset. The total correlation time is partitioned into
subintervals, and the results of the coherent integrations per-
formed over these subintervals are noncoherently combined to

Paper approved by R. De Gaudenzi, the Editor for Synchronization and
CDMA of the IEEE Communications Society. Manuscript received September
25, 2002; revised February 2, 2003 and August 10, 2003. This work was
supported in part by the European Commission and the Spanish Government
under Grant 1FD97-1066-C02-01 and Grant TIC2001-0751-C04-03.

The authors are with the Communications Engineering Department
(DICOM), ETSII y Telecom, Universidad de Cantabria, 39005 Santander,
Spain (e-mail: luis@dicom.unican.es).

Digital Object Identifier 10.1109/TCOMM.2004.826345

form detection test statistics. The design objective is to find the
optimum number of subintervals , since we are reducing the
effect of the carrier-frequency offset at the price of a nonco-
herent combining loss, increasing with . In Section II, we
study the noncoherent combining detector, evaluating its prob-
abilities of detection and false alarm. Then, in Section III, we
derive both a lower bound as well as the proposed expression
for the optimum number of subintervals.

II. CODE-ACQUISITION SCHEME

Code acquisition is assumed to be based on the distinction
between “signal” and “no-signal” test statistics by comparing
the output of a square-law noncoherent combining receiver with
a threshold, adjusted to achieve a particular false-alarm proba-
bility for “no-signal” statistics. This detector is shown in Fig. 1.
The incoming signal is

where is the transmitter signal power, is the PN signal,
and is the carrier frequency. For the received signal,
denotes the code-phase offset, while is the random carrier
phase. is additive white Gaussian noise (AWGN) with
two-sided power spectral density . The carrier-frequency
offset includes both the effect of the Doppler shift and
the oscillator frequency drift. We assume that symbol tran-
sitions will not occur during the coherent integration time.
After down-conversion to baseband in-phase (I) and quadra-
ture-phase (Q) components, the received signal is despread.
The total correlation time is partitioned into subintervals
of seconds each, where is a positive integer and
is the chip duration of the PN code. To optimize the number
of coherent-integration subintervals, we assume that a correct
local code phase is selected, and that the code-fre-
quency offset is so small that it can be neglected [5]. Since the
integrators eliminate the high-frequency terms, the integration
outputs for the quadrature components are found as

where and can be shown to be independent
Gaussian random variables with zero mean and variance
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Fig. 1. Noncoherent receiver block diagram.

. The subintegration results of the
square-law detector are then noncoherently combined, yielding

(1)

where and are the integration outputs associated with
the th subinterval. The probability density function (PDF) of
the decision variable (1) is given by [6]

where , and is the modified Bessel function of the
first kind of order . This PDF is a noncentral chi-squared
with degrees of freedom (DOFs) and with the following
normalized noncentrality parameter [6]:

(2)

where is the signal energy associated with the total
observation time. The probabilities of detection and false alarm
are given by

(3)

(4)

where is the detection threshold, and is Marcum’s
generalized -function [6].

III. EXPRESSION FOR THE OPTIMUM

NUMBER OF SUBINTERVALS

In the proposed code-acquisition scheme, results of coherent
integrations performed over small subintervals are noncoher-
ently combined prior to detection. In this way, the effect of the
carrier-frequency offset is reduced at the price of a loss due to
the noncoherent combining. For a fixed total integration time,

the loss due to the carrier-frequency error dominates for a small
number of coherent integration subintervals, while the nonco-
herent combining loss dominates if is large. Therefore, an
optimum number of subintervals exists. A lower bound for

can be derived, considering the optimum integration time
when noncoherent combination is not used, i.e., ,

, and . In this case, for a given prob-
ability of false alarm, the integration time that maximizes the
probability of detection (3) is the one that maximizes the nor-
malized noncentrality parameter . Taking the deriva-
tive of (2) with respect to the integration time, equating it to
zero, and solving numerically, we obtain

(5)

where . This result sets an upper bound on and,
therefore, for a given , a lower bound on , according to

(6)

To verify this fact, it is just necessary to realize that, in the gen-
eral case, any increase in over (5) will degrade the co-
herent-integration result and, due to the fixed , also decrease
the number of noncoherent combinations , reducing the prob-
ability of detection. However, a higher number of subintegra-
tions could provide even better results, and the next objective
is to find, given a total observation time, the optimum or,
equivalently, the optimum that maximizes the probability of
detection, if the effect of noncoherent integration is fully con-
sidered.

To obtain an analytic expression for this general case, it would
be necessary to take the derivative of (3) with respect to
or . Because this does not seem feasible, we have developed
an approximate expression, based on observations, which we
have validated through exhaustive numerical evaluations. From
(2)–(4), it can be inferred that the which maximizes the
probability of detection depends only on the signal energy-to-
noise ratio , the product , and the probability of
false alarm . It was concluded empirically that pri-
marily depends on and less pronounced on . Fig. 2
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Fig. 2. Optimum number of subintervals as a function of �fT (P =
10 ).

TABLE I
MAXIMUM ERROR (E ) IN P USING (7)

shows some results obtained by numerically evaluating the the-
oretical probability distributions. It can be observed that
depends almost linearly on . Further, we found that the
slope of this linear variation depends on the natural logarithm
of (in linear units), and that shows only little de-
pendence on . With these empirical evidences, we obtained
by means of a curve fit the following expression for the optimum
number of coherent-integration subintervals:

(7)

where , , and denotes the closest integer to
. The expression is applicable for values of and

that make , and supposing that, as it was introduced
above, code-frequency offset is so small that it can be ignored.
In Fig. 2, we compare the results obtained using this approxi-
mation formula with those obtained by numerically evaluating
the theoretical probability distributions.

Numerical evaluation of (2), (3), and (4) was also used to
validate (7) and to check its accuracy. Two thousand cases were
selected with ranging from to , from
10 to 80 (linear units), and from 0.3 to 8. For each case,

was obtained by integrating (3) numerically. The results
show that (7) gives the true optimum in 57% of the cases, and
that the absolute error in the approximation of is never
greater than two in the considered frequency-error range. The
more relevant conclusion is inferred from Table I, where the
maximum absolute error in as a consequence of the
error in the approximation of using (7), is shown. This

Fig. 3. Probability of missed detection as a function of the number of
subintervals (P = 10 , �fT = 1).

error decreases as the probability of detection increases, and it
is always less than . As an example, Fig. 3 shows
the probability of missed detection as a function of for

, , and of 25, 40, and 64. This
figure, which has been obtained by evaluating (3) numerically
for these particular cases, shows that noncoherent combination
is necessary to allow detection. We can see that when

is 25 and 40, and for . These
results can also be obtained from (7).

IV. CONCLUSIONS

In this letter, we have analyzed a DS/SS code-acquisition
scheme. Noncoherent integration was used to optimize the
threshold detection performance in the presence of car-
rier-frequency offset. An expression to calculate the optimum
number of coherent-integration subintervals has been obtained.
Exhaustive numerical evaluations have shown the excellent
performance of the proposed expression.
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