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Abstract—In this paper we present the smoothed piece-
wise-linear (SPWL) model as a useful tool in the device modeling
field. The SPWL model is an extension of the well-known canon-
ical piecewise-linear model proposed by Chua, which substitutes
the abrupt absolute value function for a smoothing function
(the logarithm of hyperbolic cosine), thus providing the model
with several interesting properties. In particular, this function
makes the model derivable, which is important to predict the
intermodulation distortion behavior. Moreover, it allows one to
control the smoothness of the global model by means of a single
smoothing parameter. The parameters of the model are adapted
to fit the nonlinear function, while the smoothing parameter is
selected according to derivative constraints. The applied learning
algorithm is a second-order gradient method. The proposed
SPWL model is successfully applied to model a microwave HEMT
transistor under optical illumination using real measurements.
The model receives as input the bias voltages of the transistor,
the instantaneous voltages, and the optical power and provides
the drain to source current. The performance and computational
burden of the SPWL model is compared with an empirical model
and with some neural networks-based alternatives.

Index Terms—MESFET/HEMT modeling, nonlinear modeling,
piecewise-linear modeling, smoothing methods.

I. INTRODUCTION

T HE design of microwave and millimeter-wave circuits and
the increasing integration of hybrid and monolithic circuits

has reinforced the need for accurate large-signal device models
to improve the performance of these circuits and to minimize the
number of design and fabrication steps required. Therefore, it is
very important for efficient CAD tools to have good modeling
methods able to predict the small and large-signal nonlinear dy-
namic behavior of microwave GaAs devices, such as a metal
semiconductor field effect transistor (MESFET) or a high elec-
tron mobility transistor (HEMT).

Conventional nonlinear techniques applied to device mod-
eling, such as closed-form equations [1], [2], Volterra series
[3], or the use of look-up tables [4], are difficult to implement
in commercial simulators because of their high memory
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requirements or their computational burden. Moreover, these
techniques fail to reproduce adequately the nonlinear
function derivatives around the bias point, which is interesting,
for instance, to model and predict the intermodulation distortion
behavior [5]. Most of the MESFET’s and HEMT’s models used
for years were not conceived for intermodulation prediction
and have poor performance when this nonlinear behavior either
in large-signal or small-signal regimes is of primary interest.

Recently, some attempts have been made to model the non-
linear behavior of active devices and circuits by using neural
networks [6]–[8]. Neural networks have the capability of ap-
proximating any nonlinear function and the ability to learn from
experimental data; therefore, they are good candidates to solve
device modeling problems. However, practically all of these
neural approaches only consider the use of the multilayer per-
ceptron (MLP) and, in this case, the memory requirements to
give an accurate approximation, and the computational require-
ments to carry out the training process of the network, are high.
In some specific applications, for instance, to model the deriva-
tives around the bias point for small-signal intermodulation pre-
diction, a different neural architecture, the generalized radial
basis function (GRBF) network [9], [10], has shown better per-
formance than the MLP. However, the semilocal activation func-
tion used in the GRBF network is not adequate for large-signal
modeling problems. Besides, like all the radial basis function
based networks, the GRBF requires a large number of units
when the input space dimensionality is high.

An interesting alternative, specially suited for nonlinear
device modeling, is the canonical piecewise-linear (CPWL)
model proposed by Chua [11], [12]. This model provides
accurate approximations with a low number of parameters and
with a computational burden lower than the neural networks
solutions. However, it lacks the capability of approximating
the derivatives of the function because of its piecewise-linear
nature: the second and higher order derivatives are always zero.
In [13], a generalization of the CPWL model is proposed, which
substitutes the local linear activation functions for polynomial
functions, thus yielding a piecewise-smooth model. Although
the higher derivatives for this piecewise-smooth model are no
longer zero, the use of polynomial functions does not seem
appropriate for device modeling problems, since they tend to
oscillate when the input space is partitioned into just a few
large regions.

In this paper, we propose a different extension of the canon-
ical piecewise-linear model, which, retaining the advantages
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of the PWL model, makes it smooth and derivable. We denote
this generalization as the smoothed piecewise-linear (SPWL)
model. The SPWL uses a summation of smooth functions (in
particular, it uses the logarithm of hyperbolic cosine), of the
boundary functions instead of the absolute values used in the
conventional CPWL model. This modification allows the model
to be derivable, smoothing the transitions between different
linear regions of the input space. A single parameter controls
the smoothness (the integral of the squared second derivative)
of the new activation function and, as it is shown in the paper,
the smoothness of the global model. This fact provides a link
with regularization theory; in particular, the parameter control-
ling the smoothness can be seen as a regularization parameter.

The paper is organized as follows. In Section II we present
the SPWL model where first, we revise the canonical PWL
model; second, we propose and discuss functions to smooth the
model. Finally, it is shown that, by using the selected function,
the smoothness of the global model is a monotone function of
the parameter that controls the smoothness between boundaries.
Section III describes the learning algorithm employed to obtain
the parameters of the model. In Section IV the proposed SPWL
model is applied to approximate the nonlinear character-
istic of a microwave HEMT, including the effect of the optical
power illumination applied to it. Using real measurements, a
SPWL model is adjusted; it receives as inputs the optical power,
the bias voltages and the instantaneous voltages and provides as
output the drain to source current. A comparison is made with
the standard PWL model, with an empirical model based on
closed-form equations as well as with some neural network al-
ternatives. Finally, the conclusions are presented in Section V.

II. THE SMOOTHED PIECEWISE-LINEAR MODEL

A. The Canonical piecewise-linear Model

Although it is known that the canonical PWL is a subset of the
general class of PWL functions, it is the only one that admits an
explicit and compact formulation [14]. In its basic formulation,
the canonical PWL model proposed by Chua [11], [12] performs
a mapping as follows:

(1)

where
, , , and vectors of the same dimension, , as the

input space;
matrix;

scalar;
inner product.

The model divides the input space into different regions by
means of several boundaries implemented by hyperplanes
of dimension . In each region of the domain space,
the function is composed by a linear combination of linear
hyperplanes. It can be seen that the expression inside the
absolute value function defines the boundaries partitioning the
domain space. It has the characteristic of the absolute value in
zero: it is continuous but not derivable. For device modeling
problems, this model is capable to provide a good performance

with a low number of parameters, but it lacks the capability of
approximating the derivatives.

B. Smoothing the Absolute Value Function

The smoothed PWL model that we propose in this section
overcomes this lack of derivability without increasing the
memory requirements. This is achieved by substituting in (1)
the abrupt absolute value for a derivable function in order to
smooth the joint of hyperplanes at the boundaries defining the
domain space partition.

There are several possibilities to carry out smooth transitions
between linear regimes. To illustrate this point, let us consider a
function composed by two linear sections separated
by a breakpoint

(2)

equivalently, (2) can be rewritten using the signum (sgn) func-
tion as follows:

sgn (3)

It would be clearly desirable to have a family of functions
providing a smooth transition and allowing parametric control
of the “sharpness” of the transition. There are several such
functions in the bibliography; for example, in [15] the sgn
is replaced by a member of a family of functions, denoted
as . They include a parameter,, that controls the
smoothness of the transition; by changingwe control the
smoothness around the breakpoint. Some of these functions are
[16]

(4)

and

.
(5)

A geometrical parameter, which can give some insight about
the behavior of these smoothing functions, is the radius of cur-
vature, which is given by

(6)

at the breakpoint , the radius of curvature for (4) and (5) is
and , respectively. It can be seen that for high values of

, the functions tend faster to the absolute value function. Also,
it can be shown that both functions reach values greater than
one for the first derivative and negative values for the second
derivative. Their derivatives, therefore, have “overshootings”
that make difficult the task of obtaining smooth derivatives. To
alleviate this problem other smoothing functions can be used;
for instance, Griffiths and Miller in [17] proposed replacing the

function by

(7)
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Fig. 1. Smoothing functions and their derivatives. (a) Smoothing functions. (b) First derivatives. (c) Second derivatives.

with radius of curvature . In this paper, we propose
the function

(8)

with radius of curvature .
Fig. 1 shows the four smoothing functions ,

, , and , as well as their
derivatives for a value . We can see that the derivatives
of and do not present overshootings;
moreover, it can be proven that, for the same curvature, these
two functions are smoother (i.e., the squared second derivative
has smaller area) than and . Besides,
we have observed that, in practice, and
give the best performance for device modeling problems.
Finally, we have chosen the function to smooth the
canonical piecewise-linear model (1) mainly for notational
convenience, since its derivatives can be easily calculated as

and .
Although in the above discussion we have considered

one-dimensional (1-D) functions, the extension to an input
space of higher dimensionality is straightforward. Therefore,
the smoothed piecewise-linear (SPWL) model performs a
mapping as follows:

(9)

Now, the th boundary is governed by the function
, a smooth function, continuous and

derivable, and consequently, the whole model is endowed with
these properties.

C. Smoothness of the SPWL Model

In this section we show that the smoothness of the global
model is a monotone function of the parameter(here we will
consider a simplified model using the samefor all the bound-
aries). Then, behaves like a regularization parameter, allowing
a tradeoff between fidelity to the measurements and smoothness
of the model.

Standard regularization techniques minimize a cost func-
tional consisting of two terms: the first one measures the
closeness to the data and the second term weights the cost
associated with a functional that measures the smoothness of
the solution, i.e.,

(10)

where
measurements;
regularization parameter, which controls the compro-
mise between degree of smoothness of the solution and
its closeness to the data;
functional (stabilizer).

Smoothness can be measured in a number of different ways;
generally, the stabilizer involves some derivatives of the func-
tion. A widely used class of stabilizers is given by the following
functionals [18]:

(11)

where and . We will use
here this type of stabilizers, which are invariant under rotation
and translation.
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Fig. 2. Smoothness functional for the one dimensional SPWL model.

With these premises, we will point out a link between the
SPWL model and regularization theory. Specifically, we will
show that the relation between the smoothness (evaluated by
means of integrals of the second order derivatives) and the pa-
rameter is monotone and that, therefore, it is possible to con-
trol the model smoothness by means of an adequate selection of

.
Let us start with a 1-D example: in this case, the particular

expression of the stabilizer is the squared second derivative of
the model. On the other hand, the second derivative of each unit
has a shape, which is a localized function. There-
fore we can assume that the second derivative of each compo-
nent only overlaps with the nearest components. Without lack
of generality, we can assume that the model is composed of two
weighted components, separated a distance

(12)

Then, the regularization term is given by

(13)

which is monotone with independently of , fixing the sepa-
ration between components, or of the weighting parameters
and . Fig. 2 shows the value of this functional versus the dis-
tance and the smoothing parameter, for . The
same behavior is observed for any value of the weighting coef-
ficients.

To extend the above analysis to a bidimensional input space,
we encounter the problem that now the second derivative has
not finite support along the direction of the boundaries. How-
ever, we can avoid this problem by integrating over a suitable
finite region. To simplify the evaluation of the integrals, straight
lines orthogonal to the boundaries delimit the region of integra-
tion. Fig. 3 shows this kind of region for two boundaries in the

Fig. 3. Region of integration for a bidimensional input space.

input space. Now, denoting the region of integration as, the
stabilizer has the following expression:

(14)

Considering again a model composed of two overlapped com-
ponents, we have

(15)

Without lack of generality, we can assume that one of the com-
ponents has , and denote the parameters of the
other component as , . Then, the regularization
term is calculated as

(16)

The first two terms correspond to the contribution of each
component, while the third term corresponds to the intersection
of both components. Let us point out that the last term can be
integrated over the whole input space, since the intersection of
two functions is finite. The expression finally obtained
is

(17)

Equation (17) shows again a linear and monotone dependence
of the smoothness of the model with. To increase makes the
transitions between linear sections more abrupt and correspond-
ingly the smoothness of the global model is reduced.

The extension of the previous results to an input space of
dimension higher than two seems rather involved and it has not
been pursued here. Nevertheless, it is reasonable to assume the
same behavior with respect to the smoothing parameter.

As a conclusion of this section, we have shown that the
smoothing parametercan be seen as a standard regularization
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parameter. In this way, to minimize the squared error alone,
together with a proper selection of according to some
smoothness constraints (derivative constraints, for instance) is
equivalent to minimize a regularized functional as (10).

III. M ODEL TRAINING

The SPWL model has three different kinds of parameters:
those defining the boundaries partitioning the domain space:
and ; those defining the linear combination of the model com-
ponents: , , and ; and the smoothing parameter.

The learning algorithm of the SPWL model is an iterative al-
gorithm based in the successive adaptation of the partition of
the domain space and the estimate of the optimal coefficients
defining the linear model components for that given partition.
The adaptation of the parameters defining the boundaries in
the domain space is based in a second-order gradient method,
i.e., the gradient and the Hessian of the error function with re-
spect to the parameters are calculated and used to carry out the
adaptation. Once the boundaries of the domain space are fixed,
then the approximation error is a quadratic function of the pa-
rameters defining the linear combination of the components,
and the minimum can be easily found by solving a linear least
squares problem. Then, the boundaries are adapted again and
the process is repeated iteratively. This is basically the method
proposed by Chua to optimize the parameters of the canon-
ical piecewise-linear model [11] and it is particularized for our
smoothing function in Appendix A.

Finally, we will consider the estimation of, which is a key
parameter of the SPWL model. Specifically, we will describe its
estimation for large-signal device modeling problems. Several
strategies are possible: the simplest one consists of using a
selected to minimize the error of the approximation and, at the
same time, to fulfill some smoothness constraint. The optimal
can be obtained by applying a gradient descent algorithm

(18)

where is the mean squared error. A differentcan be used for
each boundary; however, the improvement over using a common

for all the boundaries does not compensate for the increase in
the number of model parameters.

A more interesting alternative for device modeling problems
is to use information about the function derivatives. As it
was said before, to reproduce the intermodulation distortion
behavior it is necessary to model the higher order derivatives.
It seems reasonable, therefore, to look for a tradeoff between
the approximation of the function and the approximation of the
derivatives. If some information about the derivatives is avail-
able (for instance, obtained from two tones measurements),
then the optimal parameter can be selected according to it.
For example, let us assume that it is possible to measure the first
derivative of the model with respect to theth input parameter;

, then can be selected to minimize

(19)

where the inner parentheses corresponds to the derivative of the
SPWL model with respect to theth input parameter. In this
case, the optimal is obtained by applying

(20)

Again, a different smoothing parameter can be used for each
boundary.

As a conclusion of this section, we can say that one of the
most relevant characteristics of the SPWL model is that we can
take advantage of the additional degree of freedom provided by

without degrading noticeably the fit to the function.

IV. L ARGE-SIGNAL MODELING OF HEMT TRANSISTORS

UNDER OPTICAL ILLUMINATION

A. Background

The distinct advantages of optical transmission systems and
the increasing use of microwave frequencies within general
communication systems, coupled with the ability to integrate
microwave and optical components onto a single slice of
GaAs, have stimulated considerable interest in the development
of microwave opto-electronic systems. The optical circuits
are advantageous because they can be integrated into the
microwave circuits without interfering with them, and they
have low losses and small dimensions, short reaction time,
and wide band. Direct illumination on the microwave or mil-
limeter-wave monolithic circuit is very attractive for versatility
of applications associated with the optical fiber communication
and control systems. The GaAs FET, the basic building block
of MMIC’s, can be used as a photo-detector embedded on the
monolithic chip itself, and thus serves as an optical port. Then,
it is significant to examine optical-microwave interaction on a
FET in a monolithic circuit and how the variation of the FET
model parameters is due to the illumination.

It is well known that when we illuminate an GaAs device, an
interesting absorption effect takes place at the Gate-Drain and
Gate-Source spacing, and a free carrier photoexcitation occurs
at the active area level. In fact these devices exhibit both pho-
toconductive and photovoltaic effects that can be conveniently
amplified by using external buffer resistors. This means that the
static DC curves as well as the small signal equivalent circuit pa-
rameters change when optical energy goes into the device [19],
[20].

However, the true large signal behavior is governed by the
dynamic pulsed characteristic that depends on the quiescent
bias point. As far as we know, the only report on the effects of
optical illumination on this bias dependent dynamic behavior
that is responsible of the output power and efficiency capabilities
of these electron devices is an analytic functions based method
[21]. This method is based in an extensive investigation on the
largesignaldynamicbehaviorof thedevice. It studies itsdifferent
dependencies and then fits these dependencies by means of a
set of suitable analytic functions. For example, in the particular
case of a HEMT, it has identified a logarithmic dependence
with the optical power and a hyperbolic tangent shape with the
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gate voltage. Although this method obtains acceptable results,
it has the drawback of being specific for each device. For each
new device, the whole study must be repeated and the optimal
analytical functions must be selected again to fit the specific
data. This kind of process is time consuming, and an automated
method that could be used independently of the specific device
and only from the available measured data would be desirable.

In the next section, we present the results obtained in the ap-
plication of the SPWL model to this problem, as well as its com-
parison with other neural network alternatives.

B. Modeling Results

The experimentally measured data for a Philips D02AH (
m) microwave HEMT, with 0.2-m gate length, were em-

ployed to train the SPWL network in order to accurately model
the nonlinear dependence of the drain to source currentwith
respect to the bias voltages ( , ), the instantaneous volt-
ages , and the incident optical power (). The dc
behavior of the transistor was measured at the following bias
points: 0.75 V, 0 V, and 0.75 V; 0 V, 2 V, and
4 V. For the instantaneous voltages, is swept from 0 V to 4
V in steps of 0.25 V, and from 1 V to 0.75 V in steps of
0.25 V. Finally, these measurements were repeated for the fol-
lowing incident optical power: 0 mW, 0.25 mW, 0.50 mW,
0.75 mW, 1 mW, 2 mW, 5 mW, and 10 mW. With this grid, we
dispose of a set of 9792 input/output samples, which have been
used to train the different models.

We adjusted and compared the performance of five different
models: an MLP, a GRBF network, an analytical model [9], a
conventional CPWL model, and the proposed SPWL model.

To evaluate the accuracy of each model, a signal to noise ratio
(SNR) for the estimate provided by the model was employed
as a figure of merit.

To perform the training of the CPWL, SPWL, and GRBF
models a data training subset of 1000 randomly chosen sam-
ples was selected. The models were validated using the rest of
the points and theSNRwas evaluated using the whole data set
available (9792 data points). Using this smaller training data
set the computational burden of the learning process is reduced
without affecting their generalization capability. For the training
of the MLP model, better results were obtained by using a larger
training set of 2000 points and a test set of 7292 points to avoid
overtraining. The MLP was trained using the conventional back-
propagation algorithm with an adaptive learning rate, while the
GRBF network was trained adding a centroid at a time and re-
training the whole network following the algorithm described in
[9].

Table Ipresents theSNRvalues for theestimatesandfor the
firstderivativeswithrespecttotheinstantaneousvoltages(and

), provided by the different models. For the transistor used in
this example the true derivatives have not been measured, instead
wehavefittedacubicsplinemodel to thewholedataset (givingan
unpracticalmodelwithahugenumberofparameters)andthenwe
estimated the derivatives from that spline model. In this example,
the SPWL model was fitted using the algorithm described in Sec-
tion III, adapting the smoothing parameter by means of the infor-
mation of the first derivative. From the Table I, we can see that for
a given numberof parameters, the SPWL modelprovides the best

TABLE I
COMPARISON OFMODELING RESULTS FOR AHEMT: PHILLIPS D02AH (4 � 30
�m): THE FIRST COLUMN INDICATES THE MODEL AND THE SECOND THE

NUMBER OFPARAMETERS OF THEMODEL. THE REMAINDER THREECOLUMNS

INDICATES THE APPROXIMATION RESULTS FOR THEFUNCTION AND THE

DERIVATIVES WITH RESPECT TOv AND v RESPECTIVELYEXPRESSED BY

THE SNR RATIO IN dB

results for both the function and the derivatives. Fig. 4 shows the
original function and derivatives and the approximation given by
the model for ( , ), the instantaneous voltages ,
anincidentopticalpower mW,andabiasvoltage
V and V.

An important aspect is the computational burden needed to
estimate the model parameters. A rough estimation, given by
the training time necessary to carry out the training of the dif-
ferent methods, is presented in Table II. The different models
have been implemented in MATLAB programs over a Pentium
MMX 200 Mhz. It can be seen that the required time is signifi-
cantly lower for the CPWL and the SPWL models than for the
other models. While these models require a few minutes to train
the model, the MLP and the GRBF need several hours. This
means a great advantage for both PWL models. For the method
in [21], there is more important the time consumed by the data
analysis that the computational burden because it is a method
based on the exhaustive investigation of the specific device in
order to extract the dependencies. Moreover, it does not work
in an automated way and therefore the whole process must be
repeated for each new device to model.

V. CONCLUSIONS

The SPWL model has been proposed as a useful tool to model
the large-signal behavior of MESFET/HEMT transistors. It al-
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(a) (b)

(c)

Fig. 4. Experimentally extracted and SPWL modeled surfaces. (a) Experimentally measured HEMT characteristic (P = 1 mW, V = 0 V, V = 2 V)
(squares) and SPWL modeled surface (circles). (b) Derivative with respect tov at the same point (squares) and SPWL estimate of the derivative with respect to
v (circles). (c) Derivative with respect tov at the same point (squares) and SPWL estimate of the derivative with respect tov (circles).

TABLE II
COMPUTATIONAL BURDEN OF THEDIFFERENT MODELS EXPRESSED

BY THE TRAINING TIME

lows one to get a smooth and derivable approximation of the
nonlinear characteristic function with a low number of pa-

rameters and with a low computational burden when compared
with other alternatives applied to this problem. Moreover, it has
been shown that the smoothness (defined as a functional in-
volving second derivatives) varies monotonically with a single
smoothing parameter of the function. In this way, the use of the
SPWL model inherently provides some kind of regularization
of the modeling problem. The smoothing parameter can be se-
lected to fit a derivative of the characteristic, while the rest
of the parameters of the model are selected to fit the function;
this opens a way to obtain large-signal models with the capa-
bility of reproducing the small-signal intermodulation distortion
behavior. However, more work in this line is needed to achieve
this goal.

The proposed SPWL model has been applied to model
a HEMT transistor under optical illumination using real
measurements. Its comparison with some neural networks-
based alternatives shows clear advantages both in terms of
performance and computational burden.

APPENDIX A
TRAINING OF THE SPWL MODEL

Let us consider that we want to approximate a mapping
( ) using a set of input–output samples ,

, with . One
coefficient from each boundary can be eliminated by rewriting
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, as

(21)

where denotes theth boundary evaluated at. Finally,
taking into account that and in (9) are now a vector

, and a scalara, respectively, our generic SPWL
model, with boundaries, can be written as

(22)

The model parameters can be grouped into two vectors:
and , which correspond to the linear coefficients and the
boundaries of the input space, respectively

(23)

(24)

The error function to be minimized is given by

(25)

For a set of fixed boundaries , the optimal parameters
are given by

(26)

where , is the following
matrix:

(27)

where
row of ones;

matrix with elements, ;
matrix with elements .

The searching direction to modify is evaluated by a
second-order method

(28)

where is the gradient and the Hessian of (25). They are
evaluated by

(29)

(30)

where is the vector of errors, and and
are

diag

(31)

... (32)

where are matrices with
, and is an matrix with elements

.
The second term of the Hessian in (30) involves the second

derivative of the SPWL model, , which is a lo-
calized function along the boundaries; only points close to the
boundaries contribute to this term. In practice, it has been ob-
served that a great computational saving (without any notice-
able degradation) can be achieved by dropping this term from
the Hessian; that is .

The new boundaries are estimated as

(33)

where .
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