184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 2, FEBRUARY 2001

Smoothing the Canonical Piecewise-Linear Model:
An Efficient and Derivable Large-Signal Model for
MESFET/HEMT Transistors

Marcelino Lazaro, Ignacio Santamaria, Carlos Pantaleén, Angel Mediavilla Samteewer, IEEE
Antonio Tazén PuentedMember, IEEEand Tomas Fernandez

Abstract—In this paper we present the smoothed piece- requirements or their computational burden. Moreover, these
wise-linear (SPWL) model as a useful tool in the device modeling techniques fail to reproduce adequately the nonline&r
field. The SPWL model is an extension of the well-known canon- f,,¢tjon derivatives around the bias point, which is interesting,
ical piecewise-linear model proposed by Chua, which substitutes fori del and dictthe i dulation di .
the abrupt absolute value function for a smoothing function orms‘gance,to model and predict the intermodulation distortion
(the logarithm of hyperbolic cosine), thus providing the model behavior [5]. Most of the MESFET's and HEMT'’s models used
with several interesting properties. In particular, this function for years were not conceived for intermodulation prediction
makes the model derivable, which is important to predict the and have poor performance when this nonlinear behavior either
intermodulation distortion behavior. Moreover, it allows one to in large-signal or small-signal regimes is of primary interest.
control the smoothness of the global model by means of a single R | h b d del th
smoothing parameter. The parameters of the model are adapted ecently, §ome attgmpts .ave een ma _e to mo _e the non-
to fit the nonlinear function, while the smoothing parameter is linear behavior of active devices and circuits by using neural
selected according to derivative constraints. The applied learning networks [6]-[8]. Neural networks have the capability of ap-
algorithm is a second-order gradient method. The proposed proximating any nonlinear function and the ability to learn from

SPWL model is successfully applied to model a microwave HEMT oy herimental data; therefore, they are good candidates to solve
transistor under optical illumination using real measurements.

The model receives as input the bias voltages of the transistor, device modeling problems. However, practically all _Of these
the instantaneous voltages, and the optical power and provides Neural approaches only consider the use of the multilayer per-
the drain to source current. The performance and computational ceptron (MLP) and, in this case, the memory requirements to
burden of the SPWL model is compared with an empirical model  give an accurate approximation, and the computational require-
and with some neural networks-based alternatives. ments to carry out the training process of the network, are high.
Index Terms—MESFET/HEMT modeling, nonlinear modeling,  In some specific applications, for instance, to model the deriva-

piecewise-linear modeling, smoothing methods. tives around the bias point for small-signal intermodulation pre-
diction, a different neural architecture, the generalized radial
I. INTRODUCTION basis function (GRBF) network [9], [10], has shown better per-

formance than the MLP. However, the semilocal activation func-

T HE design of microwave and millimeter-wave circuits anglon used in the GRBF network is not adequate for large-signal
the increasing integration of hybrid and monolithic circuitgyodeling problems. Besides, like all the radial basis function

has reinforced the need for accurate large-signal device modgdsed networks, the GRBF requires a large number of units
toimprove the performance of these circuits and to minimize thghen the input space dimensionality is high.

numt_)erof design anc_if_abrication steps required.Thereforg, itisan interesting alternative, specially suited for nonlinear
very important for efficient CAD tools to have good modelingeyice modeling, is the canonical piecewise-linear (CPWL)
methods able to predict the small and large-signal nonlinear gijpdel proposed by Chua [11], [12]. This model provides
namic behavior of microwave GaAs devices, such as a mefgurate approximations with a low number of parameters and
semiconductor field effect transistor (MESFET) or a high eleggith a computational burden lower than the neural networks
tron mobility transistor (HEMT). solutions. However, it lacks the capability of approximating
‘Conventional nonlinear techniques applied to device Moghe derivatives of the function because of its piecewise-linear
eling, such as closed-form equations [1], [2], Volterra seriggtyre: the second and higher order derivatives are always zero.
[3], or the use of look-up tables [4], are difficult to implemeni, [13], a generalization of the CPWL model is proposed, which
in commercial simulators because of their high memoxypstitutes the local linear activation functions for polynomial
functions, thus yielding a piecewise-smooth model. Although
the higher derivatives for this piecewise-smooth model are no
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of the PWL model, makes it smooth and derivable. We denoigth a low number of parameters, but it lacks the capability of
this generalization as the smoothed piecewise-linear (SPWApproximating the derivatives.

model. The SPWL uses a summation of smooth functions (in

particular, it uses the logarithm of hyperbolic cosine), of thB. Smoothing the Absolute Value Function

boundary functions instead of the absolute values used in therhe smoothed PWL model that we propose in this section
conventional CPWL model. This modification allows the modelvercomes this lack of derivability without increasing the
to be derivable, smoothing the transitions between differeffemory requirements. This is achieved by substituting in (1)
linear regions of the input space. A single parameter contr@ife abrupt absolute value for a derivable function in order to
the smoothness (the integral of the squared second derivatiyiglooth the joint of hyperplanes at the boundaries defining the
of the new activation function and, as it is shown in the pap&fomain space partition.

the smoothness of the global model. This fact provides a link There are several possibilities to carry out smooth transitions
with regularization theory; in particular, the parameter controbetween linear regimes. To illustrate this point, let us consider a

ling the smoothness can be seen as a regularization paramefgfiction f: R — R composed by two linear sections separated
The paper is organized as follows. In Section Il we presepy a breakpoint

the SPWL model where first, we revise the canonical PWL

model; second, we propose and discuss functions to smooth the f(z) =00+ 01(z — a) + O]z — o )
model. Finally, it is shown that, by using the selected function, . _ . .

the smoothness of the global model is a monotone function giuivalently, (2) can be rewritten using the signum (sgn) func-
the parameter that controls the smoothness between boundafi@g as follows:

Section Il describes the learning aIg_orithm employed to obtain F@) =00+ 01(z — ) +bo(z — a)sg(z — ). (3)

the parameters of the model. In Section IV the proposed SPWL
model is applied to approximate tg}” nonlinear character- |t would be clearly desirable to have a family of functions
istic of a microwave HEMT, including the effect of the opticaproviding a smooth transition and allowing parametric control
power illumination applied to it. Using real measurements, gf the “sharpness” of the transition. There are several such
SPWL model is adjusted; it receives as inputs the optical powgtinctions in the bibliography; for example, in [15] the $gh

the bias voltages and the instantaneous voltages and provides agplaced by a member of a family of functions, denoted
output the drain to source current. A comparison is made wigls trn(vx). They include a parametes, that controls the

the standard PWL model, with an empirical model based @moothness of the transition; by changingwve control the
closed-form equations as well as with some neural network gmoothness around the breakpoint. Some of these functions are
ternatives. Finally, the conclusions are presented in Section Y46]

[l. THE SMOOTHED PIECEWISELINEAR MODEL fran(e, v) = @ tanh(yz) (4)

A. The Canonical piecewise-linear Model and
Although itis known that the canonical PWL is a subset of the |
e its ot POL: V)
general class of PWL functions, it is the only one that admits a 1
explicit and compact formulation [14]. In its basic formulation, 8—[15(73:)2 —10(yx)* + 3(v2)%], |z| < =
the canonical PWL model proposed by Chua[11], [12] performs = v v (5)
a mappingf: RV — RM as follows: |z, |z| > 1
4 . . . -
f(z) =a+ Bz + Z el ©) — Bl 1) A geometrical parameter, which can give some insight about

the behavior of these smoothing functions, is the radius of cur-
vature, which is given by

i=1

where 11
a, z, ¢;, ande; vectors of the same dimensiofy, as the K= f"(z) (6)
input space; 1+ (f(x))?)*/?
B M x M matrix; at the breakpoint = 0, the radius of curvature for (4) and (5) is
Bi scalar; 2+v and15v/4, respectively. It can be seen that for high values of
() inner product. K, the functions tend faster to the absolute value function. Also,

The model divides the input space into different regions Qi can be shown that both functions reach values greater than
means of several boundaries implemented by hyperplangfe for the first derivative and negative values for the second
of dimensionA — 1. In each region of the domain spacegerivative. Their derivatives, therefore, have “overshootings”
the function is composed by a linear combination of lineghat make difficult the task of obtaining smooth derivatives. To
hyperplanes. It can be seen that the expression inside HMviate this problem other smoothing functions can be used;

absolute value function defines the boundaries partitioning th& instance, Griffiths and Miller in [17] proposed replacing the
domain space. It has the characteristic of the absolute value infynction by

zero: it is continuous but not derivable. For device modeling
problems, this model is capable to provide a good performance hyp(zx, v) = Va2 +~ @)
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Fig. 1. Smoothing functions and their derivatives. (a) Smoothing functions. (b) First derivatives. (c) Second derivatives.

with radius of curvaturds = 1/,/7. In this paper, we propose C. Smoothness of the SPWL Model

the function In this section we show that the smoothness of the global
1 model is a monotone function of the parametdhere we will
Ich(z, v) = ~ In(cosh(yz)) (8) consider a simplified model using the samor all the bound-
i aries). Theny behaves like a regularization parameter, allowing
with radius of curvature’ = . a tradeoff between fidelity to the measurements and smoothness

Fig. 1 shows the four smoothing functiong tan(z, v), ©f the model.
fpol(z, v), hyp(z,v), and lch(z, 7)), as well as their Standard regularization techniques minimize a cost func-

derivatives for a valug = 4. We can see that the derivativedional consisting of two terms: the first one measures the
of hyp(z, v) and Ich(zx, v) do not present overshootings;closeness to the data and the second term weights the cost

moreover, it can be proven that, for the same curvature, th@&sgociated with a functional that measures the smoothness of

two functions are smoother (i.e., the squared second derivatiie solution, i.e.,

has smaller area) thafitan(z, v) and f pol(z, ). Besides,

we have observed that, in practideyp(z, v) andlch(z, ~) E= Z 2 NIPf()? (10)

give the best performance for device modeling problems.

Finally, we have chosen the functideh(x, +v) to smooth the

canonical piecewise-linear model (1) mainly for notational - measurements:

convenience, since its derivatives can be easily calculated a%z reqularizati ' . i
gularization parameter, which controls the compro

/ _ " _ 2
1ChA(I?r{oYJ) E 22n};éi72223éCh di(sa(j:’uz)signry \S;;h h(;j\;ev)(.:onsi dered mise between degree of smoothness of the solution and
9 its closeness to the data;

O oheneior 1 oxenon 1 0 o tunctona tbilzen
P 9 ) Stonaiity 9 ' ' Smoothness can be measured in a number of different ways;
the smoothed piecewise-linear (SPWL) model performs a v th bilizeP invol d fthe f
mappingf: B — RM as follows: generally, the stabilizeP involves some derivatives of the func-
) ' tion. A widely used class of stabilizers is given by the following
functionals [18]:

here

4
f®)=a+Bz+Y_ clh((ai, z) =B, 7). (9)
= 1P g2 = Z | o s@r
Now, the ith boundary is governed by the function R
lch({e;, 2} — B;, v:), a smooth function, continuous andwhered;, ; = 8™ /0z; ...0x; andm > 1. We will use
derivable, and consequently, the whole model is endowed wiihkre this type of stabilizers, which are invariant under rotation

these properties. and translation.
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(14)

With these premises, we will point out a link between the Considering again a model composed of two overlanped com-
SPWL model and regularization theory. Specifically, we will 9ag P P

show that the relation between the smoothness (evaluatedpf)))r/] ents, we have

means of integrals of the second order derivatives) and the pa- 2

rametery is monotone and that, therefore, it is possible to con- f@) =) cildh(mizy —za + i, 7). (15)

trol the model smoothness by means of an adequate selection of i=1

¥ Without lack of generality, we can assume that one of the com-

Let us start with a 1-D example: in this case, the particulgonents hasn; = ¢, = 0, and denote the parameters of the

expression of the stabilizer is the squared second derivativeg@fer component as, = m, ¢, = t. Then, the regularization
the model. On the other hand, the second derivative of each ygim is calculated as

has asech?(z+y) shape, which is a localized function. There-

fore we can assume that the second derivative of each compol{ P2 f||? = / Ay? sech*(—vyao) day dwo

nent only overlaps with the nearest components. Without lack R’

of generality, we can assume that the model is composed of two + / 22 Sech‘*(,y(mxl — x2 + 1)) day dzo
weighted components, separated a distdnce R

—|—/ clchstechQ(—fyafg)

-sech®(y(mazy — xo + 1)) dy das. (16)

f(@) =c1lch(z, v) + c2lch(z — b, A). (12)

Then, the regularization term is given by
The first two terms correspond to the contribution of each

|1P2f|2 = 4 (2 + )y + 8¢y cay cosech®(vb) component, while the third term_ corresponds to the intersection
3 of both components. Let us point out that the last term can be
] [ v 1} (13) integrated over the whole input space, since the intersection of
tanh(vb) two sech?(z) functions is finite. The expression finally obtained
_ L - is
which is monotone withy independently ob, fixing the sepa-
X S 4 4
ration between components, or of the weighting parameters P2 fII* = = vL(c + ¢3) + — ciea. 17)
andcs. Fig. 2 shows the value of this functional versus the dis- 3 m

tanceb and the smoothing parametgrfor ¢c; = ¢o = 1. The Equation (17) shows again a linear and monotone dependence

same behavior is observed for any value of the weighting coefrthe smoothness of the model withTo increasey makes the

ficients. transitions between linear sections more abrupt and correspond-
To extend the above analysis to a bidimensional input spagggly the smoothness of the global model is reduced.

we encounter the problem that now the second derivative has’he extension of the previous results to an input space of

not finite support along the direction of the boundaries. Hovdimension higher than two seems rather involved and it has not

ever, we can avoid this problem by integrating over a suitalibeen pursued here. Nevertheless, it is reasonable to assume the

finite region. To simplify the evaluation of the integrals, straightame behavior with respect to the smoothing parameter.

lines orthogonal to the boundaries delimit the region of integra- As a conclusion of this section, we have shown that the

tion. Fig. 3 shows this kind of region for two boundaries in themoothing parametercan be seen as a standard regularization
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parameter. In this way, to minimize the squared error alonghere the inner parentheses corresponds to the derivative of the
together with a proper selection of according to some SPWL model with respect to thggh input parameter. In this
smoothness constraints (derivative constraints, for instanceg#se, the optimay is obtained by applying

equivalent to minimize a regularized functional as (10).

N 4
[1l. M ODEL TRAINING Vel = Ve F “Z € <Z cimi, jbi(1) SeChQ(’Ybi(iﬂl))> .

=1 =1

The SPWL model has three different kinds of parameters: (20)
those defining the boundaries partitioning the domain space:
andg;; those defining the linear combination of the model corAgain, a different smoothing parameter can be used for each
ponentsa, B, ande;; and the smoothing parameter boundary.

The learning algorithm of the SPWL model is an iterative al- As @ conclusion of this section, we can say that one of the
gorithm based in the successive adaptation of the partitionpst relevant characteristics of the SPWL model is that we can
the domain space and the estimate of the optimal coefficieit#e advantage of the additional degree of freedom provided by
defining the linear model components for that given partitiory. without degrading noticeably the fit to the function.

The adaptation of the parameters defining the boundaries in

the domain space is based in a second-order gradient methodV. LARGE-SIGNAL MODELING OF HEMT TRANSISTORS
i.e., the gradient and the Hessian of the error function with re- UNDER OPTICAL |LLUMINATION

spect to the parameters are calculated and used to carry OUtA.h%ackground

adaptation. Once the boundaries of the domain space are fixed, e _ o
then the approximation error is a quadratic function of the pa_The distinct advantages of optical transmission systems and

rameters defining the linear combination of the component§€ increasing use of microwave frequencies within general
and the minimum can be easily found by solving a linear legg@mmunication systems, coupled with the ability to integrate
squares problem. Then, the boundaries are adapted again Bfffowave and optical components onto a single slice of
the process is repeated iteratively. This is basically the meth&@AS, have stimulated considerable interest in the development
proposed by Chua to optimize the parameters of the can&ii-microwave opto-electronic systems. The optical circuits

ical piecewise-linear model [11] and it is particularized for ou#"® advantageous because they can be integrated into the
smoothing function in Appendix A. microwave circuits without interfering with them, and they

Finally, we will consider the estimation ef, which is a key have low losses and small dimensions, short reaction time,

parameter of the SPWL model. Specifically, we will describe i@"d wide band. Direct illumination on the microwave or mil-
estimation for large-signal device modeling problems. Sevefineter-wave monolithic circuit is very attractive for versatility
strategies are possible: the simplest one consists of using gf applications associated with the optical fiber communication
selected to minimize the error of the approximation and, at tR@d control systems. The GaAs FET, the basic building block
same time, to fulfill some smoothness constraint. The optimaPf MMIC’s, can be used as a photo-detector embedded on the

can be obtained by applying a gradient descent algorithm monolithic chip itself, and thus serves as an optical port. Then,
it is significant to examine optical-microwave interaction on a

el = Vo — f1 3_E (18) FET in a monolithic circuit and how the variation of the FET
* vy model parameters is due to the illumination.

Itis well known that when we illuminate an GaAs device, an
Haresting absorption effect takes place at the Gate-Drain and
ﬂte-Source spacing, and a free carrier photoexcitation occurs
I ) i S
the number of model parameters at the active area level. In fact these devices exhibit both pho-

A more interesting alternative for device modeling prob|en{§’C°f?‘?'“C“"e ar_1d photovoltaic effectg that can be conveniently
is to use information about the function derivatives. As ﬁlmplmed by using external buffer resistors. This means that the

was said before, to reproduce the intermodulation distorti(§|1|atiC DC curves aswellast.he small signal equivalent cirpuit pa-
behavior it is necessary to model the higher order derivativ meters change when optical energy goes into the device [19],

It seems reasonable, therefore, to look for a tradeoff betw )

the approximation of the function and the approximation of th owever, the true large S'.gn.al behavior is governed. by the
derivatives. If some information about the derivatives is ava ),’”am'c pulsed /V’ characteristic that depends onthe quiescent

able (for instance, obtained from two tones measuremen ,S point. As far as we know, the only report on the effects of

then the optimaly parameter can be selected according to it. t!{qal |Ilum|n§1l';||on fotrrlw th'stb'?s dependgn'[ﬁ_(j)_/namlc beg"?ll\.{{'.or
For example, let us assume that it is possible to measure the fipgt's responsible ofthe output power and efficiency capabilities

derivative of the model with respect to tligh input parameter; of these electron devices is an analytic functions based method
v = (¥, )T, theny can be selected to minimize " [21]. This method is based in an extensive investigation on the
—\Jly 0 IN ’

large signal dynamic behavior ofthe device. It studies its different
N ] 2 dependencies and then fits these dependencies by means of a

E = Z <y§ — <bja:jjl + Z Cimi, § tanh(fybi(xl))>> set of suitable analytic functions. For example, in the particular

=1 case of a HEMT, it has identified a logarithmic dependence

(19) with the optical power and a hyperbolic tangent shape with the

whereF is the mean squared error. A differentan be used for .
each boundary; however, the improvement over using acomm
~ for all the boundaries does not compensate for the increas

=1
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gate voltage. Although this method obtains acceptable results, TABLE |

it has the drawback of being specific for each device. For eaeﬁMPARISON OFMODELING RESULTS FOR AHEMT: PHiLLIPS DO2AH (4 * 30
. . prm): THE FIRST COLUMN INDICATES THE MODEL AND THE SECOND THE

new device, the whole study must be repeated and the optirigliser or PARAMETERS OF THEMODEL. THE REMAINDER THREE COLUMNS

analytical functions must be selected again to fit the specific INDICATES THE APPROXIMATION RESULTS FOR THEFUNCTION AND THE

data. This kind of process is time consuming, and an automat@§RIVATIVES WITH RESPECT TOv4, AND v, RESPECTIVELY EXPRESSED BY

SNR Rx dB
method that could be used independently of the specific device e o

and only from the available measured data would be desirable Model Number of | Function v, dfdves
In the next section, we present the results obtained in the : Parameters |  SNR (dB) SNR (dB) SNR (dB)
plication of the SPWL model to this problem, as well as its con
parison with other neural network alternatives. MLP(@) 36 2530 14.00 14.40
CPWL(5) 36 30.62 9.52 13.04
B. Modeling Results
_ N SPWL(5) 37 32.13 16.63 16.40
The experimentally measured data for a Philips DO2AH (
MLP(9) 64 27.17 12.62 14.75

30 m) microwave HEMT, with 0.2:m gate length, were em-
ployed to train the SPWL network in order to accurately mod| CPWL(10) 66 3244 10.44 12.96
the nonlinear dependence of the drain to source cufggntith

respect to the bias voltagelg(,, Vas,), the instantaneous volt-
ages(vys, v4s), and the incident optical power). The dc

behavior of the transistor was measured at the following bij cpwrLaz) 78 33.04 1151 14.34
points: Vg, = —=0.75V, 0V, and 0.75 W, =0V, 2V, and

SPWL(10) 67 34.35 18.40 17.15

MLP(11) 78 28.09 13.71 14.66

) . SPWL(12) 79 35.16 18.88 17.16
4 V. For the instantaneous voltages, is swept from 0 V to 4
V in steps of 0.25 V, and,, from —1 V to 0.75 V in steps of GRBF(8) 88 28.84 10.09 13.79
0.25 V. Finally, these measurements were repeated for the I Analytical Model 98 292 08674 1653

lowing incident optical power?, = 0 mWw, 0.25 mW, 0.50 mW,
0.75 mW, 1 mW, 2 mW, 5 mW, and 10 mW. With this grid, we
dispose of a set of 9792 input/output Samp'esl which have be MLP(N): Multilayer Perceptron with N neurons in the hidden layer.
used to train the different models. GRBF(N): Generalized Radial Basis Function with N neurons.

We adjusted and compared the performance of five differe
models: an MLP, a GRBF network, an analytical model [9], ;
conventional CPWL model, and the proposed SPWL model. CPWL(N): Canonical Piecewise Linear Model with N boundaries in the input space.

To evaluate the accuracy of each mOdela a Signal to noise re SPWL(N): Smoothed Piecewise Linear model with N boundaries in the input space.
(SNR for the I, estimate provided by the model was employed

as a figure of merit. . - :
To perform the training of the CPWL, SPWL, and GRBI._re_sL_lltsfor bo_th the funct_lon _andthe der|vat|ves._F|g._4 shpws the
original function and derivatives and the approximation given by

models a data training subset of 1000 randomly chosen safn= .
ples was selected. The models were validated using the regﬁ:)efm()del for¥gso, Vaso), the instantaneous voltag@g. , vas ).

the points and th&NRwas evaluated using the whole data S({}mnmdentoptmal powdr, = 1mW,andabiasvoltage;., = 0

h . . . - andVy,, = 2 V.
vailabl 792 ints). Using this smaller trainin @5 . .
available (9792 data points). Using this smaller training da aAn important aspect is the computational burden needed to

set the computational burden of the learning process is reduce L .
; . : o o - ._eStimate the model parameters. A rough estimation, given by
without affecting their generalization capability. For the trainin S . .
training time necessary to carry out the training of the dif-

of the MLP model, better results were obtained by using a lar edent methods, is presented in Table Il. The different models

training set of 2000 points and a test set of 7292 points to av Iave been implemented in MATLAB programs over a Pentium
overtraining. The MLP was trained using the conventional bac IMX 200 Mhz. It can be seen that the required time is signifi-

propagation algorithm with an adaptive learning rate, while the
GRBF network was trained adding a centroid at a time and gantly lower for the CPWL and the SPWL models than for the

. . . . .other models. While these models require a few minutes to train
'E;a]unmgthe whole network following the algorithm described 't e model. the MLP and the GRBF need several hours. This

Table I presentsthe SNR values forfhgestimates and for the means a great advantage for both PWL models. For the method

firstderivativeswithrespecttotheinstantaneousvoltaggsid in [21], there is more important the time consumed by the data

v4s), provided by the different models. For the transistor used rpaly5|s that the computational burden because it is a method

. o . ased on the exhaustive investigation of the specific device in
this example the true derivatives have not been measured, inst a(ljae : :
er to extract the dependencies. Moreover, it does not work

we have fitted a cubic spline model to the whole data set (giving K
unpractical modelwith ahuge number of parameters) andthenyé" automated way and t.herefore the whole process must be
estimated the derivatives from that spline model. In this exampfg,peated for each new device to model.
the SPWL model was fitted using the algorithm described in Sec-
tion lll, adapting the smoothing parameter by means of the infor-
mation of the first derivative. From the Table |, we can see that for The SPWL model has been proposed as a useful tool to model

agiven number of parameters, the SPWL model provides the bigst large-signal behavior of MESFET/HEMT transistors. It al-

Analytical Model: Analytic functions proposed in [21].

V. CONCLUSIONS
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Fig. 4. Experimentally extracted and SPWL modeled surfaces. (a) Experimentally measured HEMT charadteristit MW, V,;, = 0V, Vi, = 2 V)
(squares) and SPWL modeled surface (circles). (b) Derivative with respegt &t the same point (squares) and SPWL estimate of the derivative with respect to
vy, (circles). (c) Derivative with respect tg, . at the same point (squares) and SPWL estimate of the derivative with respect(tircles).

TABLE I rameters and with a low computational burden when compared
COMPUTATIONAL BURDEN OF THEDIFFERENT MODELS EXPRESSED with other alternatives applied to this problem. Moreover, it has
BY THE TRAINING TIME . . .
been shown that the smoothness (defined as a functional in-

Model Training Thme (minutes) volving second derivatives) varies monotonically with a single
MLP(5) 240 smoothing parameter of the function. In this way, the use of the
CPWLG) 3 SPWL mode_l inherently provides some kind of regularization
of the modeling problem. The smoothing parameter can be se-
SPWL(5) 12

lected to fit a derivative of th&/V characteristic, while the rest
MLP() 540 of the parameters of the model are selected to fit the function;
this opens a way to obtain large-signal models with the capa-

CPWL(10) 14 . T _ . . . .

bility of reproducing the small-signal intermodulation distortion
SPWLA0) 2 behavior. However, more work in this line is needed to achieve
MLP(11) 660 this goal.

The proposed SPWL model has been applied to model

CPWL(12) 17 . . . L .

a HEMT transistor under optical illumination using real
SPWL(12) 26 measurements. Its comparison with some neural networks-
GREF®) %0 based alternatives shows clear advantages both in terms of

performance and computational burden.

MLP(N): Multilayer Perceptron with N neurons in the hidden layer.
APPENDIX A

GRBF(N): Generalized Radial Basis Function with N neurons.
TRAINING OF THE SPWL MoODEL

CPWL(N): Canonical Piecewise Linear Model with N boundaries in the input space.

Let us consider that we want to approximate a mapping
(g: RM — R) using a set ofV input—output samplege;, ),
lows one to get a smooth and derivable approximation of the= 1, ..., N, with &; = (21, 22,1, ..., xA471)T. One
nonlinear! /V characteristic function with a low number of pa-coefficient from each boundary can be eliminated by rewriting

SPWL(N): Smoothed Piecewise Linear model with N boundaries in the input space.
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wheree = (ey, ..., ey)T is the vector of errors, anel andG

are
bi(x) = m; 101 + My 2x2 + -+ My Mo1ZM—1 — Ta
21 .
(1) K =diag| ¢, ..., c1¢c0, ..., C2...Co, ..., Cq,
whereb; () denotes theth boundary evaluated at Finally, M-l terms M—1terms M-l terms
taking into account thaB anda in (9) are now a vectob =
(b1, ..., byr)T, and a scalaa, respectively, our generic SPWL Ly €2, 00y 0o | & (31)
model, withd boundaries, can be written as
Gl
4 :
fl@)=a+bz+t ; ¢ileh(bi(z), 7). (22) G=1 g (32)
B P
The model parameters can be grouped into two veckgrs:
and z,, which correspond to the linear coefficients and thehere G* are M — 1 x N matrices with ggfj =z,

boundaries of the input space, respectively

zp=(a, b1, ..., by, €1, cooce)t (23)
Zp I(le, e, ML M—1, -+,
me,1, -..-Mg M—1, tl, ...tg)T (24)
The error function to be minimized is given by
E(zp, zr)
N 0 2
= Z w—|a+ blx + Zci leh(b;(x1), 7v)
1=1 i=1
(25)

For a set of fixed boundaries., the optimalz, parameters
are given by

Zp = (AAT) Ay (26)

wherey = (y1, ..., yn)?, Alis the followingM + 6 +1 x N
matrix:
1
A=|U 27)
14
where
1 row of N ones;

U M x N matrix with elementsy; ; = z; ;;
V8 x N matrix with elements; ; = Ich(b;(x;), 7).
The searching direction to modifg,. is evaluated by a
second-order method
s=-Y'g (28)
whereg is the gradient an@ the Hessian of (25). They are
evaluated by

g =2KGe
Y =2KGGTK + 2K§—G

2

(29)
(30)

tanh(vbx(x;)), and P is an § x N matrix with elements
pi,; = tanh(ybi(x;)).

The second term of the Hessian in (30) involves the second
derivative of the SPWL modekech?(b;(x;)), which is a lo-
calized function along the boundaries; only points close to the
boundaries contribute to this term. In practice, it has been ob-
served that a great computational saving (without any notice-
able degradation) can be achieved by dropping this term from
the Hessian; that i¥ = 2KGG' K.

The new boundaries are estimated as

(33)

Zr = 2Zp + Qs
wherea = argmin(E(zp, 2, + as)).
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