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Abstract—Digital filtering is a common approach to achieve simulta-
neous sampling of several input signals acquired with a multiplexing delay.
In this brief, an error bound is obtained for Lagrange interpolation fil-
ters as a function of the oversampling ratio of the input signals, the frac-
tional delay, and the filter’s order. This bound can be used to ensure that
the error is small enough to maintain a desired resolution (number of sig-
nificant bits), thus leading to design equations for simultaneous sampling
systems. For example, using these equations, we are able to find that an
oversampling ratio of 71 is necessary to maintain a resolution of 12 bits
with a first order Lagrange’s filter, while a sixth-order filter is required
when the oversampling ratio is only five. The theoretical results are val-
idated through simulation, and the computational cost of the Lagrange’s
interpolator is compared with a polyphase filter.

Index Terms—Analog–digital conversion, data acquisition, digital filters,
Lagrange interpolation, signal sampling, time delay.

I. INTRODUCTION

In many signal processing applications, it is required to delay
a signal by a fractional multiple of the sampling period: irrational
sampling-rate conversion [1], timing adjustment, and synchronization
in digital modems [2], [3], high-resolution pitch prediction [4],
high-precision beam steering [5], discrete-time modeling of acoustic
tubes [6], or multichannel acquisition systems [7]. A typical low-cost
data acquisition system for multiple input channels consists of an
analog multiplexer followed by a single sample-and-hold and an
analog to digital converter. This architecture introduces a fractional
sample delay between consecutive channels, which must be corrected
in applications that require a high resolution. Besides the obvious, but
costly, solution of using one sample-and-hold for each channel, two
alternative solutions exist: multirate techniques and digital filtering.

Multirate techniques [8] solve this problem by interpolating the in-
coming signals by a factorM (M being the number of channels),
then delaying every signal by an integer number of samples at the
resulting (higher rate) sampling period, and finally decimating to re-
store the original sampling rate. This method can be efficiently im-
plemented using polyphase structures [8]. An alternative approach is
to use low-order fractional delay filters (FDF’s), for which an exten-
sive description of design techniques is provided in [9]. These design
techniques usually attempt to achieve a good fractional delay over the
full band. However, in data acquisition systems, the input signals are
typically highly oversampled to facilitate the design of the analog an-
tialiasing filters. Therefore, only the low portion of the spectrum con-
tains useful information. In this case, Lagrange interpolators are the
most attractive solution because of their maximally flat frequency re-
sponse and smooth transition approximation to the ideal all-pass filter
at low frequencies with very few taps [9].

The problem addressed in this brief is the analysis of fractional delay
Lagrange filtering compensation of multiplexing delay. If the resolu-
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tion (number of significant bits) of the A/D converter is maintained
for every input signal, then simultaneous sampling is achieved. In Sec-
tion II, the problem is stated, the worst error case presented, and an
error bound is obtained that relates the number of significant bits of the
A/D converter with the Lagrange filter’s order and the oversampling
ratio. It is shown that by increasing the oversampling ratio, the distor-
tion introduced by the delay compensation stage can be made as low
as desired, and expressions are developed that, given a filter’s order,
provide the oversampling required to achieve a certain resolution. In
Section III, the results of the simulations are shown and the computa-
tional cost of the proposed solution is compared with a polyphase filter.

II. FRACTIONAL DELAY COMPENSATION

A. Problem Statement

Let us consider an analog input signalx(t) bandlimited in the range
[0; fo] Hz (minimum periodTo = 1=fo), sampled atfs > 2fo Hz
(oversampling ratioR = fs=2fo = To=2Ts) using an analog-to-dig-
ital converter (ADC) with a certain resolution. This input signal must
be delayed by a desired amountD which, in general, will consist of
an integer number of samples and a fractional delay. This delay will be
accomplished using anN th-order Lagrange filter (N+1 taps), leading
to a total delay

D =
N

2
+ d (1)

whereN=2 is the delay of a causal linear phase FIR filter, which will
already have a fractional part ifN is odd, andd is the additional frac-
tional delay. This delay will be in the range [�0.5, 0.5] to obtain an in-
terpolation region around the filter’s center of symmetry(D = N=2).
Restricting the interpolation range to this region (between the two cen-
tral taps forN odd, and centered on the filter’s central tap forN even)
will produce the best interpolation results for a given set of samples [9].

Our goal is to develop expressions that relate the interpolation error
with the oversampling ratioR, and the filter’s orderN . Then, if the
interpolation error does not exceed the maximum level of the quantiza-
tion noise imposed by the resolution of the ADC, it will be masked by
it, and the ADC’s resolution will be preserved. Therefore, we will be
able to ensure that the signal is correctly delayed without losing signal
resolution.

B. Interpolation Error Upper Bound

To guarantee that the ADC’s resolution is maintained for a given
oversampling ratio and filter’s order, we must find the conditions under
which the worst interpolation error occurs. Hence, we will be able to
obtain an upper error bound, and develop useful design equations. The
interpolation error is simply given by the difference between the signal
interpolated using the ideal all-pass filterxi and the signal interpolated
using Lagrange’s FDFxr

e[n] = xi[n�D]� xr[n �D] = x[n] � (hi[n]� hL[n]) (2)

where � stands for the convolution operator. The ideal filter is an
all-pass filter that simply introduces a delayD. Therefore, its impulse
response will be a delayed sinc

hi[n] =
sin[�(n�D)]

�(n�D)
= sin c[n �D] (3)

and the coefficients of the Lagrange’s FDF are given by [10]

hL[n] =

N

i=0

i6=n

D � i

n� i
= (�1)N�n

D

n

D � n� 1

N � n
: (4)
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TABLE I
LAGRANGEFRACTIONAL DELAY FILTER COEFFICIENTS

In Table I, the coefficients for filters of orders from one (linear in-
terpolation) to three are shown as a function ofD. The symmetry of
Lagrange’s FDF coefficients (h[N � n] for D = N=2� d is identical
to h[n] for D = N=2 + d) causes the error to be identical ford and
�d. Consequently, we will considerd only in the range [0, 0.5].

The interpolation error depends on two factors: the input signal and
the difference between the ideal and actual filters, which depends on the
fractional delay and the frequency (or equivalently the oversampling
ratio). The worst error case is a sinusoidal input signal whose frequency
is the maximum allowed input frequency [1],x(t) = A cos(2�fot).
The worst case of fractional delay will be the one for which the distance
from the interpolation point to the nearest sample is maximum [9]:d =
0 for N odd, andd = 0:5 for N even. However, we will keepD as
a parameter in subsequent expressions. The interpolation error in this
case is

e[n] = A cos[(n�D)!o]�

N

k=0

hL[k] cos[(n� k)!o] : (5)

We have a LTI system, so obviously, the error may be expressed as
a sinusoidal signal of the same frequency as the input with a certain
amplitude and phase

e[n] = Ae cos[n!o + �e]: (6)

In (6), the phase is irrelevant for our purpose of obtaining an upper
bound for the error, which may be obtained straightforwardly by taking
the absolute value of the well-known Lagrange’s remainder formula
[11]

je[n]j = 1

(N + 1)!

@N+1x(t)

@tN+1
t=�(t)

N

k=0

jt� tij (7)

where�(t) is an unspecified instant belonging to the interpolation in-
terval, in this casejt� tij = jD � ijTs, and the absolute value of the
(N + 1)-th derivative for a sinusoidal input is always lower than or
equal to(2�fo)N+1. Therefore, an upper bound for (7) may be written
as

je[n]j � A

(N + 1)!

2�fo
fs

N+1 N

k=0

jD � ij: (8)

Now, rearranging terms, we may obtain an estimate ofAe as

Ae
�= A

�

RCN(D)

N+1

(9)

whereCN(D) is a function that does not depend on the oversampling
ratio, and whose value is given by

CN(D) = (N + 1)!=

N

i=0

jD � ij
1=N+1

: (10)

Relating now the error’s amplitude to the ADC’s resolution will lead
us to the design equations we search in the next section.

Fig. 1. C (D) for a total fractional delay 0.5 as a function of the filter’s order.

C. Design Equations

Let us consider a bipolar ADC withB + 1 significant bits and a
range[�Xm; Xm] or, equivalently, a unipolar ADC withB significant
bits and a range[0; Xm]. In order to consider that the fractional delay
compensation stage introduces no additional distortion, the maximum
interpolation error should be less than the error introduced by the ADC
in the quantization stage, which is usually expressed in terms of the
least significant bit (LSB). Thus, to achieve real simultaneous sampling
with a FDF, the amplitude of the error must be

Ae � �Xm

2B
(11)

where� is a number that will generally be in the range [0.5, 1], being
0.5 for an ideal ADC, and 1 meaning that a resolution bit is lost during
the quantization stage. If the signal uses the full range of the ADC
(A = Xm for a bipolar ADC, andA = Xm=2 for a unipolar ADC),
and we consider an ideal bipolar ADC(� = 0:5), we may immediately
obtain the value of the oversampling ratio necessary to achieve true
simultaneous sampling using Lagrange interpolation

R � �

CN(D)
2(B+1)=(N+1): (12)

Conversely, we may obtain the resolution (B+1 bits) attained using
a certain oversampling ratio

B + 1 �= (N + 1) log2
RCN(D)

�
: (13)

Obtaining an expression for the required filter’s order for a certain
oversampling ratio and resolution is more complex because of the de-
pendence ofCN(D) on the filter’s order. However, plotting this func-
tion versusN for the worst error case (d = 0 for N odd andd = 0:5
for N even), we observe in Fig. 1 that the maximum ofCN(D) is

p
8

obtained forN = 1, andCN(D) seems to tend to 2 asN increases.
Then, as the usual design scenario involves the design for the worst

case, these two values may be used as higher and lower bounds to es-
timateN

B + 1

log2
p
8R=�

� N + 1 � B + 1

log2(2R=�)
: (14)

These upper and lower bounds, which in general will be non integer
numbers, may be used to obtain the actual filter’s order required it-
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eratively (i.e., initializeN as the lowest integer greater or equal than
the left side of the inequality, calculate the resolution obtained using
(13) and continue iterating until the desired requirements are fulfilled).
Equations (12)–(14) are also valid for a unipolar ADC substituting
(B + 1) by B.

III. SIMULATION RESULTS

To validate the previous expressions through simulation, we have
generated a discrete time sinusoidal signalx[n] with random phase and
amplitudeA = 1. This signal has been filtered using Lagrange filters
of orders from 0–6 (withd = 0 for odd filters’ orders andd = 0:5 for
even orders), and compared to the ideally delayed replicax[n�D]. The
oversampling ratio was changed from 1 to 100 with step one. The sim-
ulation results, as well as the theoretical solution obtained from (13),
are shown in Fig. 2(a). The upper bound obtained is such an accurate
approximation for moderate and high oversampling ratios that both sets
of curves cannot be distinguished. The curves show how with a linear
interpolator and an oversampling ratio as high as 100, hardly 13 bits of
resolution are maintained, while using a sixth-order filter andR = 10
a resolution of 20 bits is possible.

In Fig. 2(b)the range of validity of the approximation is studied by
performing a zoom of the low oversampling ratio region forN = 1
to 5. NowR is changed between 1.5 and 3.5, with step 0.01. As the
design equations offer an upper error bound, the error is overestimated
and, therefore, the theoretical curves (dashed line) underestimate the
true resolution achieved (solid line).

Finally, the computational cost of the Lagrange’s FDF is compared
with a multirate correction scheme implemented using a polyphase
filter with M branches (M being the number of channels). This filter
has been designed using the Parks McClellan equiripple design tech-
nique with a passband[0; �=MR], a stopband[(2� � �=R)=M; 2�],
an in-band ripplerp = 2�(B+1), and an out-of-band attenuation of
A = 6:02(B + 1) + 1:76 dB. Table II shows the number of taps of
the Lagrange’s FDF required for six values ofR and five different res-
olutions, compared to the number of taps of the corresponding branch
of the polyphase filter required to perform the delay (in parenthesis).
The values of the polyphase filter correspond toM = 16. For lower
values ofM , the number of taps per branch of the polyphase filter may
be slightly lower, while for greater values ofM , the number of taps
per channel may be slightly greater, but, in general, remains fairly con-
stant. The computational cost of Lagrange’s FDF is found to be lower
than that of the polyphase alternative for oversampling ratios greater
than ten.

IV. CONCLUSION

Simultaneous sampling of several input channels can be achieved
using Lagrange’s fractional delay filters. The performance of this ap-
proach depends on the oversampling ratio of the input signals and the
filter’s order. In applications where a high oversampling ratio is typ-
ical, such as multichannel data acquisition systems, Lagrange FDF’s
are very advantageous because of their smoothness at low frequencies
and low order required to obtain a good approximation to the ideal filter.

In this brief, we have obtained a bound for the interpolation error of
Lagrange’s fractional delay filters. Based on this bound, we have devel-
oped expressions that relate the number of significant bits with the over-
sampling ratio, the filter’s order, and the fractional delay. It is shown
that, by increasing the filter’s order for a given oversampling ratio, or
conversely, increasing the oversampling ratio for a given filter’s order,
any desired resolution may be achieved. These theoretical results are
validated through simulation. When the oversampling ratio is greater

Fig. 2. Number of significant bits (theoretical in dashed line and simulated in
solid line) for several filters’ orders as a function of the oversampling ratio (R)
for: (a)R in the range [1, 100] and (b) low oversampling ratios (R in the range
[1.5, 3.5]).

TABLE II
COMPARISON OF THENUMBER OF TAPS REQUIRED TOOBTAIN A DESIRED

RESOLUTION OFLAGRANGE’S FDF AND POLYPHASE FILTER FOR

M = 16 (IN PARENTHESIS)

than five, the interpolation errors obtained by simulation closely re-
semble the expected theoretical ones. Finally, the computational cost
of the method is compared to the alternative of polyphase filters and
found to be lower for oversampling ratios greater than ten.
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On Parallelism in the Ensemble Sense Between Time-Series
Models and Discrete Wavelet Transforms

of Stochastic Signals

Dušan Veselinovic´ and Daniel Graupe

Abstract—The brief is concerned with wavelet transforms (WT) of col-
ored (correlated) discrete stochastic signals (time-series) and their relation
to AR/ARMA models of the same signals. It derives the relations between
AR/ARMA models of WT coefficients and AR/ARMA model of the signal,
which eliminates the need to actually perform the WT of such signals in
order to derive models of WT coefficients. The brief explains how to arrive
at the WT coefficient ARMA models from the signal’s ARMA model and
vice-versa to show that WT properties of the ensemble are fully predictable
from the signal’s AR/ARMA model. In particular, the authors have shown
that from AR/ARMA parameters of the stochastic signal alone, one can de-
rive a realization of the WT coefficients of that stochastic signal and that
by invoking the inverse WT on those coefficients, one then retrieves a sto-
chastic signal whose AR/ARMA structure is the same as that of the original
signal. It is noted that for a stochastic signal, signal parameters, rather than
a particular realization, convey the information on the signal.

Index Terms—ARMA models, stochastic models, stochastic signals, time
series, wavelets.

I. INTRODUCTION

The present brief is concerned with interrelating stochastic process
models with wavelet transform (WT) models. In particular it investi-
gates the models of WT coefficients as obtained from ARMA models
of colored noise signals. It also investigates ARMA models of colored
noise signals as obtained from models of WT coefficients of such sig-
nals and as obtained directly from the signal itself. In recent years, sev-
eral authors were concerned with the relations between WT and sto-
chastic processes. Bassevilleet al. [1] introduce a notion of multires-
olution stochastic processes on n-ary trees and their stationarity. The
work in [1] was extended in [2], and later in [3]. WT of stochastic pro-
cesses (fractional Brownian motion) has also been discussed in [4] and
[5]. Another brief by Dijkerman and Mazumdar [6] proposes multires-
olution stochastic models based on the WT coefficients. The present
work (similarly to [6]) discusses the AR/ARMA models of WT coeffi-
cients of a wide sense stationary stochastic time process. In contrast to
[6], the present brief concentrates on stochastic models defined on the
WT coefficients (of a stochastic process) on the same scale of the WT.
The brief derives the models of WT coefficients from the estimated
model of the original stochastic process rather than attempting to esti-
mate these models from the WT coefficients directly. This allows the
present derivation to overcome the reliability problem associated with
estimation based on very few coefficients. Given a constant number of
samples of the original stochastic process (used in the estimation of the
AR/ARMA model of the process itself and subsequently, models of its
WT coefficients), the number of WT coefficients (potentially used to
estimate a stochastic model of those coefficients) decreases exponen-
tially with scale. In this brief, we are mostly concerned with ARMA
models since they represent a more general case and since models gen-
erated by the algorithm described below are or become ARMA models.
In the case of stable and invertible models, AR and ARMA are fully
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