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Abstract—We address the blind identification of single-input-
multiple output (SIMO) finite impulse response systems when
the input signal is sparse. The problem is equivalent to under-
determined blind source separation (BSS), but with temporal
correlation among the sources. Exploiting the sparse character of
the input signal, the algorithm solves three different problems:
first, to estimate the directions of the columns of the channel ma-
trix; second, to estimate the 2-norm of the columns; and finally,
to find the correct ordering of the columns of the mixing matrix.
The last step is not required for the blind source separation (BSS)
problem, since any permutation of the columns is admissible for
BSS. The performance and computational cost of the algorithm
in a noiseless situation is compared against subspace-based
techniques.

Index Terms—Blind channel identification, blind source separa-
tion (BSS), sparse deconvolution.

I. INTRODUCTION

B LIND channel identification is an important and widely
studied problem that appears in many signal processing

applications: equalization, seismic data deconvolution, speech
coding, image deblurring, etc. When the channel impulse
response has finite support and the received signal is oversam-
pled, the problem can be formulated as the blind identification
of a single-input multiple-output (SIMO) finite-impulse re-
sponse (FIR) system. In this situation, it is known that, as long
as the FIR channels have no common zeros and the channel is
fully excited, the SIMO system can be identified using only
second-order statistics of the output [1]. Several extensions of
this idea using subspace-based methods [2] or linear prediction
techniques [3] have proven useful to solve this problem. An
iterative algorithm based on second-order statistics is presented
in [4] where the order of the system is also estimated for
channels with rational transfer functions. The main drawback
of all these algorithms, however, is their high computational
cost. Therefore, there is still a need for low-cost, fast algorithms
that can deal with the large datasets typically available in some
applications such as seismic deconvolution or nondestructive
evaluation.

Since, typically, the number of columns of the SIMO channel
matrix is larger than the number of measurements, blind SIMO
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identification can be viewed as a problem of underdetermined
blind source separation (i.e., more sources than sensors), but
with temporal correlation among the sources. On the other hand,
recent advances in BSS have shown that, when the sources are
sparse, it is possible to solve the underdetermined case using
simple algorithms [5]–[7]. The general idea of these techniques
is that, when the sources are sparse, the measurements tend
to cluster along the directions imposed by the columns of the
mixing matrix, which can then be easily identified.

Using similar ideas, in this letter we propose a fast blind
SIMO channel identification algorithm for sparse sources with
application to seismic deconvolution, nondestructive evaluation,
or blurred star image deconvolution. Exploiting the sparsity of
the input signal, a blind technique must solve three different
problems. First, it is necessary to estimate the directions of the
columns of the channel matrix; once the directions have been
identified, the norm of the columns must be estimated. These
two steps solve the blind source separation (BSS) problem, since
any permutation of the columns of the mixing matrix is admis-
sible. However, in a deconvolution problem the ordering of the
columns of the channel matrix is also required. In this letter we
describe a simple algorithm to solve these three steps.

II. PROBLEM STATEMENT

Assuming that the received signal is oversampled by a factor
and that the maximum length of each of the FIR channels

is ; then, in a noiseless situation, the problem can be
formulated as

(1)

where is an matrix,
formed by stacking successive observations

; is a matrix
of input signals, with ; and

is an channel or mixing matrix,
with .

Our problem consists of estimating the channel matrix
using only the observations and some statistical knowledge
of the input signal. Specifically, in this letter, we assume
that the input signal is a sparse spike train, modeled
as a statistically independent zero-mean Bernoulli–Gaussian
(BG) sequence, which is commonly used in nondestructive
evaluation and seismic deconvolution [8]. The BG samples are
generated according to

(2)
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Fig. 1. Scatter plot of the observations form = 2, q = 3,N = 10000 input
samples and a sparsity factorp = 0:75.

where is the sparsity factor, and the variance of the nonzero
samples. Moreover, since in blind system identification there
is always a global scale factor ambiguity, the variance can be
arbitrarily chosen as .

The th output vector in (1) can be expressed as a linear com-
bination of the columns of the channel matrix

(3)

Thus, if only one sample of the BG sequence is nonzero for
, the measurement at timewill be collinear

with the corresponding column of the channel matrix. This fact
has been exploited in several ways to solve the underdetermined
BSS problem when the sources are sparse [5]–[7].

To simplify the derivation of the algorithm, in this letter we
focus on the case . For this particular case, theth column
of the channel matrix can be parameterized as

(4)

where denotes the -norm of a vector, and is the angle
indicating the direction of theth column of the channel matrix.
As an example, Fig. 1 shows a scatter plot of the observations
for the filter in (13) ( , ) with and

.

III. A LGORITHM DESCRIPTION

The proposed algorithm consists of three stages: identifying
the angles of the columns of , estimating their norms, and
eliminating the ambiguity in the ordering of the columns.

A. Identifying the Angles

Since the input signals are highly sparse, in many occasions
only one input sample will be nonzero. Assuming that for

, only is nonzero, then
, and the output is collinear with theth

column of . Hence, we may obtain an estimate of theth
angle as

(5)

Hence, as long as the sparsity factor is high, the angles can be
estimated as the directions of maximum data density [6], [7].
Specifically, we use the method developed in [7] for BSS: con-
struct a histogram, select thebins with the greatest number of
elements and estimate the angles as the sample mean of all the
elements inside the selected bins.

B. Estimating the -Norm of the Columns

The second step of the algorithm consists of estimating the
-norm of each column. Specifically, our objective is to ob-

tain maximum-likelihood (ML) estimates of , for
. The estimate for theth column can be obtained

using the set of observations lying along the direction,
which we denote as [ ], for . Once
the angle is estimated, the observations can be expressed as

(6)

where is a sample driven from a zero-mean Gaussian
distribution with unit variance. Therefore, and
are also zero-mean Gaussian distributions with variance

and , respectively.
On the other hand, each observation has a joint probability

density function that can be obtained through

(7)

In a noiseless situation and considering that the angles are
known, and then

(8)

where is Dirac’s delta. Therefore, estimating
amounts to estimating the variance of either
or . By grouping the observations

into vectors and
, the ML estimate of the

-norm of the th column is given by [9]

(9)

or alternatively

(10)

If the angles were known without errors, both estimates would
be identical. However, we must admit some error in the estimate

. Therefore, it is preferable to estimate the norm
as

(11)
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TABLE I
SUMMARY OF THE CHANNEL IDENTIFICATION ALGORITHM

C. Sorting the Columns of the Channel Matrix

Thus far we have solved the first two steps of the blind identi-
fication problem, i.e., we have identified the mixing matrix up to
a global scale factor ambiguity and a permutation in the columns
of . These two steps solve the BSS problem. However, in a
deconvolution problem the columns of the mixing matrix must
be ordered. This permutation may be eliminated by exploiting
the strong temporal correlation that exists between consecutive
input vectors.

The ordering method is based on the observation that a
nonzero sample surrounded by zeros, i.e., a segment of
the BG signal of the form

(12)

will be consecutively collinear with thecolumns of the channel
matrix . Hence, we can estimate the column ordering consid-
ering consecutive output samples that are collinear with some
column of and setting the most likely column ordering as the
one that appears most often. A summary of the overall algorithm
is presented in Table I.

IV. SIMULATION RESULTS

To validate the performance of the algorithm, we have con-
sidered the identification of the following SIMO FIR channel

(13)

We carried out a Monte Carlo analysis for sparsity factors
ranging from 0.5 to 0.95 and registers lengths from 500 to 5000
samples. The mse of the estimated SIMO channel was used as
a figure of merit to evaluate the performance. For each sparsity
factor and each register’s length, the mse was evaluated by
averaging the results of 1000 independent trials. As a compar-
ison, we include the results obtained with the subspace method
(SSM) described in [2]. The results are shown in Fig. 2. The
proposed technique performs well for sparsity factors greater
than 0.5, providing the best results in the range 0.6 to 0.8. For

Fig. 2. MSE as a function of the sparsity factor and the number of samples.

lower sparsity factors, the sources cannot be considered sparse,
and the performance of the algorithm breaks down, whereas
for sparsity factors larger than 0.8, the number of samples used
to estimate the -norm of the columns decreases, therefore
increasing the variance of the final estimate.

Obviously, the SSM algorithm obtains better results, but we
must remark the difference in computational cost between both
procedures: the subspace-based technique requires an eigen-
value decomposition of an autocorrelation matrix,
thus requiring floating-point operations (flops). For
the proposed algorithm, the computational cost is mainly due to
the angle estimation step, which only requires
flops.

V. CONCLUSION

In this letter, we have proposed a fast blind SIMO channel
identification algorithm that exploits the sparsity of the input
signals. The computational cost of the proposed algorithm is
much lower than that of subspace-based methods, but maintains
good performance, at least in the noiseless case. Future work
will include extending the algorithm for higher oversampling
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ratios ( ) and studying its performance under noisy con-
ditions, as well as with real data.
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