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Abstract—Chaotic signals generated by iterating piece- generated by iterating an unknown initial conditigf] € [0, 1]
wise-linear (PWL) maps on the unit interval are highly atractive according to
in a wide range of signal processing applications. In this letter,
optimal estimation algorithms for signals generated by iterating
PWL maps and observed in white noise are derived based on the z[n] = F(z[n — 1]). (2)
method of maximum likelihood (ML). It is shown how the phase
space of the map may be decomposed into a number of regionsThe index seL is an alphabet consisting of a set of symbols. We

Iggaﬂ'pimﬁoiss“mate Is obtained as the best performing of these 5o ciated to a chaotic signal of lendth+ 1 as a lengthV se-

quence of symbols = s[0], s[1], ---, s[V — 1], wheres[k] =
Index Terms—Chaos, maximum likelihood estimation. i if F*(z[0]) € E;. We will define Sy as the map that maps
an initial condition in D, 1] to its corresponding symbolic se-
. INTRODUCTION quence of lengthv.

We can define another partition of the phase space in a collec-

( : HAQTIC signals, signals generated by a nonlinear dyio of pintervalsi,; composed of the points i0] 1] that share

namical systems in a chaotic state, have received mugh,mmon lengttV symbolic sequence;, which is given a cer-
attention in the past few years. Several authors have propoged itinerarys;. We defineR; = {z € [0, 1]: Sy (z) = s;}
. i =1 ,1]: Sa =s;}.

signal estimation algorithms [1]—[4], but most methods are SuEVery point in the phase space belongs to one and only one
optimal, and maximum likelihood (ML) estimators have onlys ihace sets. and. if thE’s are convex sets. thE'.s are also
) 1 7 1 J

been developed for the tent map dynamics [3]. In this letter, W8 ex [5]. This partition is also known as natural partition [6].
develop ML estimators for the general class of piecewise-linepgese regions can be obtained by iterating backward from the
(PWL) maps on the unit interval. We apply the symbolic dyghole phase space with each symbolic sequence and the regions
namics theory to finite-length chaotic sequences and show hf'??‘r_‘fits can be obtained by iterating backward from the break-

the error surface has a finite number of minima, each one assofiinis of (1) [6]. If all the linear components are onto, all the
ated to each admissible symbolic sequence. Suitable estimat)$nolic sequences are admissible, and ther@aseM N re-

are derived for each of these minima. The final ML estimate &ions R;, where M denotes the length of the alphabet et
given by the best performing of the previous “local” .

estimatest oy of the linear components is not onto, some symbolic se-
quences will not be admissible afti< A,
Il. SymBoLIC DYNAMICS OF PIECEWISELINEAR MAPS We will denoteF‘é(x[O]) as the k-fold Composition of for

In this letter, we consider piecewise-linear mdpdo, 1] —  an initial conditionz[0] with Sy (z[0]) = s. Given a known

[0, 1]. The interval[0, 1] is partitioned into disjoint convex in- itinerary, we can write a closed form expression #g(z[0]).
tervalsE;, i € L, whereL is an index set. TheR is defined as If we define

- k—1
Fl)=ax+b If z€E; Q) Aﬁ _ H 0y 3)
where all the:; andb; are known constants. This formulation in- g=h=n
cludes all piecewise linear maps on the unit interval, continuous .,
or not, including, for example, Markov maps. The extension f"ondAO = 1, then we have
maps in higher dimensions is quite straightforward [5]. We will
denoteF™* the k-fold composition of”. Chaotic signals may be k-1
Fg(a[0]) = Afx[0] + > Albape 1) 4
n=0
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case, given an itinerary;, (4) is a closed form expression for TABLE |
Fk (x) in the domainRj. MSE IN dB FOR THEML ESTIMATOR AND THE SUBOPTIMAL HC-ML
a=095,N=7
[ll. ML E STIMATION OF PWL MAPS
SNR | ML HC-ML
The data model for the problem we are considering is 10dB | 250 240
yln] = aln] +wln], n=0,1,---, N (5) 15dB | 307 288
20dB | 36.7 334
whgrezu[n] isa statioqary, zero-mean \{vhite .Gaussian noise with 25dB | 427 38.0
varianceo?, andx[n] is generated by iterating some unknown 30dB | 487 433

x[0] € [0, 1] according to (2) using (1).

Since the observation vector is a collection of Gaussian inde- 35dB | 546 50.0

pendent random variables, ML signal estimation produces the 40dB | 615  57.0
initial condition that minimizes 45dB | 69.1 653
N 50dB | 752 725
s 2
J(@[0]) = > (y[k] = F* (o))" (6)

k=0 N =7, a =0.95, x[0] =0.82
120 T T T T T T

Due to the invariance property of ML estimators, the whole
signal may be estimated from the ML estimatez{fi], so we

will consider only the ML estimation of the initial condition. Let
us define anindicator (sometimes called characteristic) function

if ;
W@ ={5 frew ™

7

-10"0g10(MSE)

and using (4), we can express (6) in a certain redgtgn

N

2

J(alo]) = > (ulk] - Fh (=[0])) (®) -
. o H ; i ; i i i ; i
So we can write (6) as o mos w w
r
J(x[()]) _ Z X (x[O])J(x[O]) (9) Fig. 1. Mean square error (MSE) for the ML estimator and the suboptimal
B J J ) HC-ML.
Jj=1

It is easy to realize, due to the linear dependence on the initéaid finally, the ML estimate af[0] is given by thet;,, [0] that
condition of (4), that/; (x[0]) is a quadratic function in ead®;. minimizes (6). If we define
Differentiating and solving for the unique minimum, we obtain '

k = argmin (J (a%f\m[()])) , =12 ....P (12

J

.

k—1
Z <U[k] - ZAﬁbsj[kq_n}) A¥
n=0

thenzy, [0] = ‘%KIL [0] .

~ _ k=0

(0] = N (10) In the general case, ML estimation demands the computation
Z (Aﬁ)2 of a maximum ofM? estimates (each one associated with an
k=0 admissible itinerary) and the selection of the one that minimizes

(6). In some cases, it is possible to develop more efficient ap-
proaches. That is the case with tent maps, where an efficient
recursive ML estimation algorithm has been proposed [3].

where A¥ is given by (3) with itinerarys;, ands;[n] is thenth
component ofs;.

This is the ML estimate of[0] with a known itinerary if
Z;[0] € R;. Otherwise, the minimum of the quadratic error
surface is outside the admissible range, thatj§)] does not
have an itinerary given by;. The minimum of.J(x[0]) in the In this section, we analyze the performance of the ML esti-
R; interval is produced by the closest valueitd0] in R;. If ~mator for the following PWL mapping:
we denoter’ . .z the minimum and maximum ak;, the /a 0<z<a

Fz) = { 7 -

ol
mun? max’?
(1-2)/1—-a), a<z<1

IV. SIMULATION RESULTS

ML estimate associated with itinerasy is (13)
z;[0], ;0] € R, L . .

N j,[ ] AJ[ ] j which is called a skew-tent map with parametdn the range

i[Ol = § i 25[0] < 2340 (11) [0, 1] [7]- Whena = 0.5, I’ becomes the tent map. We com-

) 25[0] > 4. pare the ML estimate with a suboptimal approach we call hard

max?
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censoring ML (HC-ML). The HC-ML estimates the itinerary di-quadratic, with a uniqgue minimum. If the minimum falls in-

rectly by hard censoring the noisy sequence and then applyside the regior?; associated with the given itinerary, then it is

(10) and (11) to obtain the estimate. This approach reduces the local ML estimate. If the minimum does not belongig,

computational cost. Itis in the direction of those proposed in [1then the closest value to that minimum in the dom&jnis the

[2], [4], and it can be considered of similar performance. Wecal ML estimate. The final ML estimate is the best performing

simulate a skew-tent map withh = 0.95 and generate lengthamong these previous local estimates.

N+ 1 registers withV = 7. We select 999 initial conditions

equally spaced in the range [0.01, 0.999]. Table | shows the REFERENCES
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