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Optimal Estimation of Chaotic Signals Generated by
Piecewise-Linear Maps
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Abstract—Chaotic signals generated by iterating piece-
wise-linear (PWL) maps on the unit interval are highly atractive
in a wide range of signal processing applications. In this letter,
optimal estimation algorithms for signals generated by iterating
PWL maps and observed in white noise are derived based on the
method of maximum likelihood (ML). It is shown how the phase
space of the map may be decomposed into a number of regions
and how the estimation problem is linear in each of these regions.
The final ML estimate is obtained as the best performing of these
“local” solutions.

Index Terms—Chaos, maximum likelihood estimation.

I. INTRODUCTION

CHAOTIC signals, signals generated by a nonlinear dy-
namical systems in a chaotic state, have received much

attention in the past few years. Several authors have proposed
signal estimation algorithms [1]–[4], but most methods are sub-
optimal, and maximum likelihood (ML) estimators have only
been developed for the tent map dynamics [3]. In this letter, we
develop ML estimators for the general class of piecewise-linear
(PWL) maps on the unit interval. We apply the symbolic dy-
namics theory to finite-length chaotic sequences and show how
the error surface has a finite number of minima, each one associ-
ated to each admissible symbolic sequence. Suitable estimators
are derived for each of these minima. The final ML estimate is
given by the best performing of the previous “local” estimates.

II. SYMBOLIC DYNAMICS OF PIECEWISE-LINEAR MAPS

In this letter, we consider piecewise-linear maps
. The interval is partitioned into disjoint convex in-

tervals , where is an index set. Then is defined as

if (1)

where all the and are known constants. This formulation in-
cludes all piecewise linear maps on the unit interval, continuous
or not, including, for example, Markov maps. The extension to
maps in higher dimensions is quite straightforward [5]. We will
denote the k-fold composition of . Chaotic signals may be
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generated by iterating an unknown initial condition
according to

(2)

The index set is an alphabet consisting of a set of symbols. We
will denote the symbolic sequence (sometimes called itinerary)
associated to a chaotic signal of length as a length se-
quence of symbols , where

if . We will define as the map that maps
an initial condition in [ ] to its corresponding symbolic se-
quence of length .

We can define another partition of the phase space in a collec-
tion of intervals composed of the points in [ ] that share
a common length symbolic sequence , which is given a cer-
tain itinerary . We define .
Every point in the phase space belongs to one and only one
of these sets, and, if the are convex sets, the are also
convex [5]. This partition is also known as natural partition [6].
These regions can be obtained by iterating backward from the
whole phase space with each symbolic sequence and the regions
limits can be obtained by iterating backward from the break-
points of [6]. If all the linear components are onto, all the
symbolic sequences are admissible, and there are re-
gions , where denotes the length of the alphabet set.
If any of the linear components is not onto, some symbolic se-
quences will not be admissible and .

We will denote as the k-fold composition of for
an initial condition with . Given a known
itinerary, we can write a closed form expression for .
If we define

(3)

and , then we have

(4)

Note the linear dependence on the initial condition in (4). The
index stresses the fact that (4) is only equivalent to
if the itinerary of is given by .

As a conclusion, given any PWL map, we can define a parti-
tion of the phase space in convex intervalsin which all the
points share the same symbolic sequence of length. In this
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case, given an itinerary , (4) is a closed form expression for
in the domain .

III. ML E STIMATION OF PWL MAPS

The data model for the problem we are considering is

(5)

where is a stationary, zero-mean white Gaussian noise with
variance , and is generated by iterating some unknown

according to (2) using (1).
Since the observation vector is a collection of Gaussian inde-

pendent random variables, ML signal estimation produces the
initial condition that minimizes

(6)

Due to the invariance property of ML estimators, the whole
signal may be estimated from the ML estimate of , so we
will consider only the ML estimation of the initial condition. Let
us define an indicator (sometimes called characteristic) function

if
if (7)

and using (4), we can express (6) in a certain region

(8)

So we can write (6) as

(9)

It is easy to realize, due to the linear dependence on the initial
condition of (4), that is a quadratic function in each .
Differentiating and solving for the unique minimum, we obtain

(10)

where is given by (3) with itinerary , and is the th
component of .

This is the ML estimate of with a known itinerary if
. Otherwise, the minimum of the quadratic error

surface is outside the admissible range, that is, does not
have an itinerary given by . The minimum of in the

interval is produced by the closest value to in . If
we denote , the minimum and maximum of , the
ML estimate associated with itinerary is

(11)

TABLE I
MSE IN dB FOR THEML ESTIMATOR AND THE SUBOPTIMAL HC-ML

Fig. 1. Mean square error (MSE) for the ML estimator and the suboptimal
HC-ML.

and finally, the ML estimate of is given by the that
minimizes (6). If we define

(12)

then .
In the general case, ML estimation demands the computation

of a maximum of estimates (each one associated with an
admissible itinerary) and the selection of the one that minimizes
(6). In some cases, it is possible to develop more efficient ap-
proaches. That is the case with tent maps, where an efficient
recursive ML estimation algorithm has been proposed [3].

IV. SIMULATION RESULTS

In this section, we analyze the performance of the ML esti-
mator for the following PWL mapping:

(13)

which is called a skew-tent map with parameterin the range
[ ] [7]. When 0.5, becomes the tent map. We com-
pare the ML estimate with a suboptimal approach we call hard
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censoring ML (HC-ML). The HC-ML estimates the itinerary di-
rectly by hard censoring the noisy sequence and then applying
(10) and (11) to obtain the estimate. This approach reduces the
computational cost. It is in the direction of those proposed in [1],
[2], [4], and it can be considered of similar performance. We
simulate a skew-tent map with 0.95 and generate length

1 registers with 7. We select 999 initial conditions
equally spaced in the range [0.01, 0.999]. Table I shows the
mean square error (MSE) obtained by Monte Carlo simulations,
averaging 1000 trials for each initial condition and SNR. Fig. 1
shows the results for an initial condition of 0.82. The
ML estimate attains the Cramer–Rao lower bound (CRLB) for
SNR’s over 45 dB, while the HC-ML needs 55 dB.

V. CONCLUSIONS

In this letter, we have developed the ML estimator for the
initial condition of chaotic signals generated by any piecewise-
linear map on the unit interval. We have shown that the problem
may be decomposed in the computation of a maximum of
(where is the number of linear components in the map and

1 the number of data samples) estimates, one for each ad-
missible itinerary. For each fixed itinerary, the error surface is

quadratic, with a unique minimum. If the minimum falls in-
side the region associated with the given itinerary, then it is
the local ML estimate. If the minimum does not belong to,
then the closest value to that minimum in the domainis the
local ML estimate. The final ML estimate is the best performing
among these previous local estimates.
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