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ABSTRACT
This paper considers the problem of adaptive modulation and power
in wireless systems with a strict delay constraint. Assuming perfect
causal channel state information at the transmitter and the receiver,
the modulation and power are dynamically adapted to minimize the
outage probability for a fixed data rate. A slow frequency-flat chan-
nel is assumed and a discrete-time stationary Markov chain is used
to model the time-varying channel. The problem is formulated as a
finite-horizon discrete dynamic programming problem. The solution
is a set of power/modulation allocation policies to be used during the
transmission, as a function of the channel and system state. Numer-
ical results show the gain of such adaptation policies in terms of
average outage probability.

Index Terms— Adaptive modulation, adaptive power, fading
channels, outage probability, dynamic programming.

1. INTRODUCTION

Adaptive power and modulation have revealed as efficient strategies
to mitigate the channel-quality fluctuations in wireless communi-
cations. Most of the adaptive power and/or modulation schemes
in the technical literature are designed for systems without delay
constraints. In these works the aim was to maximize the average
throughput, to minimize the long-term transmit power or to mini-
mize the probability of error by adapting the transmission resources
(power, modulation or coding) to the channel conditions. Unfortu-
nately, these schemes are not valid for applications with hard delay
constrains. In these cases the resources adaptation has to be opti-
mized to minimize the outage probability for a fixed data rate [1],
where outage probability is defined as the probability of making a
transmission error or not being able to meet the delay constraint.
Much less work have be done in this field. In [2] two schemes
have been proposed to minimize the outage probability by means of
an adaptive quadrature amplitude (QAM) modulation scheme. The
modulation is adapted for each symbol which is hard for practical
systems where the receiver has to inform the transmitter about the
channel state. In [3] the authors presented a power adaptation al-
gorithm, based on dynamic programming [4], in order to obtain the
delay-constrained outage capacity. They assume Gaussian codebook
and block-fading channels with independent channel power gains of
the blocks, which is not a realistic assumption in most practical cases
where the channels exhibit time correlation.

In this work we adapt both the power and modulation to mini-
mize the outage probability, taking into account the time-correlation
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of the channel. Unlike [2], the adaptation is made for each frame, so
power and modulation remain constant during the transmission of a
frame. We assume slow frequency-flat time-varying channels where
the channel remains constant during the transmission of a frame and
can vary for consecutive frames. To derive the adaptation algorithm,
a finite-state first-order stationary Markov chain is used to model
the time variations of the channel. Finite-state first-order stationary
Markov chains have been widely used to model flat-fading slow-
varying channels (see for example [5] and references therein). Then,
the power/modulation adaptation problem is formulated as a finite-
horizon discrete dynamic programming (DP) problem [4]. The solu-
tion is a set of power/modulation adaptation policies to be used for
each frame during the transmission. These policies are functions of
the the channel state and of the system state: the available power and
the number of frames still pending for transmission. By using the
Markov model, the resulting policies take into account the channel
correlation, improving the adaptation to the time-varying channel.
Some numerical results are presented to illustrate the advantages of
the power and rate adaptation in terms of average outage probability.

The paper is organized as follows. The system and channel mod-
els are presented in Section II. In section III we present the algorithm
to obtain the optimal power and modulation adaptation policies. Nu-
merical results are presented in section IV. Finally section V shows
the main conclusions of the work.

2. CHANNEL MODEL

We consider a point-to-point frequency-flat block-fading channel,
where the channel remains constant during the transmission of a
block, and can change for consecutive blocks. Therefore, we as-
sume that the duration of each block (TB) is less than the coherence
time of the channel. The channel power gain at the kth block is de-
noted by γk. In general, channel responses at different blocks are
time correlated. To model this correlation we use a discrete-time
first-order Markov chain with time discretized to TB . The fading
range 0 ≤ γ < ∞ is discretized into Nγ regions so that the jth
region is defined as Rj = {γ : Aj ≤ γ < Aj+1}, where A1 = 0
and ANγ+1 = ∞. The channel for the kth block is in state j if
γk ∈ Rj . Let us denote the integer set of the possible channel states
by Sγ = {1, 2, ..., Nγ}. We define the integer variables γ̄k ∈ Sγ so
γ̄k = j ⇔ γk ∈ Rj . Given Nγ and {Aj}, the Markov model is de-
fined by its transition probability matrix T of size Nγ ×Nγ , where
[T]i,j = Ti,j = Prob{γ̄k = j/γ̄k−1 = i}. The transition prob-
abilities also depend on the normalized Doppler frequency fdTB ,
which determines the rate of variation of the channel with respect
the duration of the blocks. Although the physical wireless chan-
nel is inherently non-Markovian, it has been shown that a stationary
first-order Markov chain can capture the essence of the channel dy-
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namics when the number of regions/states is low and the channel
fades slow enough (see for example [5] and references therein). The
noise power at the receiver is absorbed into the channel gain so the
received SNR for block kth is γkpk, where pk is the power em-
ployed to transmit the block kth.

3. SYSTEM AND APPLICATION MODEL

We consider a block coded communication system where the trans-
mitter is able to change the transmit power and the modulation from
block to block. The transmit power and the modulation employed for
the kth block are denoted by pk and mk, respectively. We assume
that the transmitter knows the channel gain (γk) at the beginning of
each block, so it is able to set pk and mk accordingly. In general
mk ∈ SM , where SM is a finite set with the available modulations.

In practical systems, the transmitter cannot transmit with arbi-
trary power so only a finite set SP of transmission power levels uses
to be available: pk ∈ SP . We also consider the possibility to post-
pone the transmission during a block period (or an integer number
of block periods) if the channel and/or system state are not suitable
for transmission. In those cases pk = 0 and we say that a non-data
block has been transmitted.

We assume that the blocks are of identical length, so all blocks
comprise the same number of coded symbols regardless the mod-
ulation employed. We also assume that there is not channel cod-
ing adaptation so a single AWGN channel code is used all the
time. Since the time required for a codeword transmission de-
pends on the modulation, blocks with different modulations com-
prise different number of codewords. We denote the number of
codewords in the kth block by nc(mk). In fact, the number of
codewords in a block is proportional to the number of bits per
symbol of the modulation. Figure 1 shows an example where
nc(4QAM) = 1, nc(16QAM) = 2 and nc(64QAM) = 3. When
a non-data block is transmitted we assume that nc = 0.

In a delay constrained application a given number of information
bits has to be transmitted in a given number of block periods N
subject to a power constraint PT ≥

∑N
k=1 pk, where PT is the total

available power. We denote the average transmit power by P̄ =
PT /NSince a single channel code is used, all codewords have the
same number of information bits so the number of information bits
of the kth block will be proportional to nc(mk). Therefore, the
delay constraint requirement can be formulated as follows: A given
number of codewords (Nc) has to be transmitted in the N block
periods, being Nc ≤

∑N
k=1 nc(mk).

Fig. 1. Types of blocks for different modulations.

The outage probability is defined as the probability of making
one or more transmission errors after decoding, subject to the de-
lay constraint. Let us denote the probability of a codeword error
by Pe(γ,m, p), which, for a specific channel coding, is a func-
tion of the channel gain, the modulation employed and the transmit
power. The specific form of Pe(γ,m, p) depends on the channel
code used. If the decision errors on codewords are independent,
the probability of the kth block is decoded without errors will be

(1− Pe(γk,mk, pk))nc(mk). Then, the outage probability

Pout = 1−
N∏
k=1

(1− Pe(γk,mk, pk))nc(mk). (1)

It depends on the channel gains for theN blocks γ = [γ1γ2...γN ]T ,
on the transmit powers p = [p1p2...pN ]T and on the modulations
m = [m1m2...mN ]T assigned to each block, where mk ∈ SM and
pk ∈ SP .

4. OPTIMUM POLICY FOR MINIMUM AVERAGE
OUTAGE PROBABILITY

Because the randomness of the channel, Pout is a random variable
and cannot meaningfully optimized. Therefore, we formulate the
problem as a minimization of the expected probability of outage,
where the expectation is with respect the joint distribution of the
block channel states, and where the minimization is over the modu-
lation and power assigned to each block

min
m,p

E
γ̄

{
1−

N∏
k=1

(1− Pe(γ̄k,mk, pk))nc(mk)

}
,

s.t. Nc ≤
N∑
k=1

nc(mk), PT ≥
N∑
k=1

pk, (2)

where γ̄ = [γ̄1γ̄2...γ̄N ]T contains the sequence of channel
states of the blocks. Note that, according to the channel Markov
model, we consider the channel states instead of the channel values,
where the probability of codeword error for the jth channel state is

Pe(γ̄j ,m, p) =

∫ γj+1

γj
Pe(γ,m, p)fγ(γ)dγ

Prob{γj ≤ γ < γj+1}
, (3)

being fγ(γ) the probability density function (pdf) of the channel
power gain.

An important remark is needed here: modulation and power for
each block have to be assigned as a function of the channel state
of the past and current blocks (causal channel knowledge). In other
words, power and modulation have to be adapted sequentially with-
out knowledge of future channel states.

To formulate (2) as a stochastic finite-horizon DP problem we
consider the function F = ln(1 − Pout) ⇔ Pout = 1 − eF . Since
F is a monotonically decreasing function of Pout, minimization of
Pout is equivalent to maximization of F

max
m,p

E
γ̄

{
N∑
k=1

nc(mk) ln(1− Pe(γ̄k,mk, pk))

}
+gN+1(lN+1, hN+1),

(4)

where we have included an additional term gN+1 which is equiv-
alent to the constraints in (2)

gN+1(lN+1, hN+1) =

{
−∞, lN+1 < Nc or hN+1 > PT

0, otherwise,
(5)

where lN+1 and hN+1 denote the number of codewords and the
amount of power transmitted after the last block, respectively.
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Now, (4) has the structure of a finite-horizon stochastic DP
problem where the optimization stages are the blocks. At stage
kth, the control vector is uk = [mk pk]T , and the state vector is
xk = [γ̄k lk hk]T , where lk and hk denotes the number of code-
words and the power transmitted until the kth block

lk+1 = lk + nc(mk), hk+1 = hk + pk, l1 = h1 = 0. (6)

The transition probabilities among the states are determined by
the channel transition probability matrix T

Prob{xk+1 = [j a b]T /xk = [i c d]T } = δa,bδc,dTi,j , (7)

where δ is the Kronecker delta.
Using the DP algorithm we can compute recursively the opti-

mum policy functions for modulation and power adaptations at each
block, as a function of the state: Mk(xk) = mk and Pk(xk) = pk.
The algorithm proceeds backward from the last block to the first as
follows

JN+1(γ̄N+1, lN+1, hN+1) = gN+1(lN+1, hN+1), (8)

Jk(γ̄k, lk, hk) = max
mk∈Sm
pk∈Sp

nc(mk) ln(1− Pe(γ̄k,mk, pk)) +

Nγ∑
j=1

Tγ̄k,j Jk+1(j, lk + nc(mk), hk + pk)

 , k = N, . . . , 1.

The optimum policies are the solutions of the maximization
problems of (8). Note that these can be easily solved by direct
search over the finite sets of the possible modulations Sm and
transmit powers Sp.

Note that the adaptation policiesMk(xk) = Mk() andPk(xk) =
Pk() are obtained offline from the channel statistics and from the
system parameters. Once the adaptation policies are obtained, they
are used to assign power and modulation to each block online as a
function of the current channel state and the total amount of power
and number of codewords transmitted in previous blocks.

5. RESULTS AND CONCLUSIONS

In this section we show some numerical simulation results to illus-
trate the performance gain of the adaptation policies derived from
the proposed algorithm. In the following results we consider Reed-
Solomom (63, 47) coding and three possible modulations: Sm =
{4 −QAM, 16 −QAM, 64 −QAM}. Figure 2 shows the corre-
sponding codeword error probability Pe curves as a function of the
SNR (= p γ). Any other channel coding and set of modulations
could be used.

As example, we use the Markov channel model proposed in [6]
for Rayleigh fading channels. To obtain realizations of the Rayleigh
channel process γ we use the algorithm proposed in [7]. The pdf of
a Rayleigh fading channel is fγ(γ) = e−γ , where we assume, with-
out loss of generality, that the channel is normalized so E{γ} = 1.
Then, the average SNR at the receiver is always P̄ . Any other chan-
nel model could be used e.g. Rice, Nakagami; for which channel
Markov models are also available [5].

Unless otherwise indicated, other parameters of the simulations
are: fdTB = 0.02, Nγ = 8, N = Nc = 50, SNR = 15dB. In
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Fig. 2. Codeword error probability.

the case of fixed modulation we always use 4-QAM, and in the case
of adaptive power we always consider the following set of possible
transmit powers: Sp = {0, P̄ , 2P̄}.

The adaptive scheme is useful if the channel exhibits enough
variations during the transmission of the blocks. This can be ob-
served in figure 3 where a fixed scheme is compared with the adap-
tive power and modulation, as a function of the normalized Doppler
frequency (fd TB). Note that the higher the channel variability, the
higher the gap between the adaptive and the fixed scheme.
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Fig. 3. Outage probability as a function of the normalized Doppler
frequency fdTB for fixed and adaptive modulation and power

Figure 4 shows the outage probability as a function of the av-
erage SNR for several cases: fixed transmit power and modulation,
adaptive modulation with fixed power and adaptive power and modu-
lation. There are curves for two Markov channel models with Nγ =
8 and Nγ = 16 states. The graph shows that the gain of the adap-
tive schemes increases with the average SNR. Also, the number of
states of the Markov chain does not have significant influence on the
outage probability, except in the case of adaptive power in the high
SNR regime.

In general, the gain of the adaptation increases with the num-
ber of block periods N . As example, figure 5 compares the outage
probability of adaptive and fixed modulation for several values ofN ,
and two values of average SNR: 15 dB and 20 dB. As it is expected,
for fixed modulation the probability of outage increases linearly with
the number of blocks. In the case of adaptive modulation, there are

75



10 15 20 25

10 3

10 2

10 1

100

Average SNR (dB)

O
ut

ag
e 

pr
ob

ab
ilit

y

 

 

Adaptive modulation, 16 states
Fixed power and modulation
Adaptive modulation, 8 states
Adaptive power and modulation, 16 states
Adaptive power and modulation, 8 states

Fig. 4. Outage probability of fixed 4-QAM modulation and adaptive
modulation using Markov models with Nγ = 8 and 16 states.

two opposite trends. The higher the number of blocks, the higher
the outage probability. But, on the other hand, when the number of
blocks (N ) is high, the channel exhibits more variability during the
transmission, so there is more room to transmit high data-rate blocks
(16-QAM and 64-QAM) and, consequently, more chance to transmit
non-data blocks when the channel is in fading. This explains the fact
that the outage probability does not increase with N , even it slightly
decreases asymptotically toward the solution of the corresponding
infinite-horizon DP problem (N →∞). When the number of block
periods is less than N = 10, the adaptive modulation does not pro-
vide any gain because during the transmission the channel remains
mainly constant, so the adaptive scheme does not have any chance
to adapt. In these cases the outage probability is mainly determined
by the initial channel value γ1. Similar behavior is observed in 6
where we compare the fixed scheme with the adaptive power and
modulation scheme.
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Fig. 5. Outage probability of fixed 4-QAM modulation and adaptive
modulation as a function of the number of block periods.
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