
MULTI-SENSOR BEAMSTEERING BASED
ON THE ASYMPTOTIC LIKELIHOOD FOR COLORED SIGNALS

David Ramı́rez1 , Javier Vı́a1, Ignacio Santamaria1 and Louis Scharf2

1 Communications Engineering Dept., University of Cantabria, Santander, Spain.
e-mail: {ramirezgd,jvia,nacho}@gtas.dicom.unican.es

2 Departments of Electrical and Computer Eng. and Statistics, Colorado State University, Ft. Collins, USA.
e-mail: scharf@engr.colostate.edu

ABSTRACT

In this work, we derive a maximum likelihood formula for
beamsteering in a multi-sensor array. The novelty of the work
is that the impinging signal and noises are wide sense station-
ary (WSS) time series with unknown power spectral densities,
unlike in previous work that typically considers white signals.
Our approach naturally provides a way of fusing frequency-
dependent information to obtain a broadband beamformer. In
order to obtain the compressed likelihood, it is necessary to
find the maximum likelihood estimates of the unknown pa-
rameters. However, this problem turns out to be an ML es-
timation of a block-Toeplitz matrix, which does not have a
closed-form solution. To overcome this problem, we derive
the asymptotic likelihood, which is given in the frequency
domain. Finally, some simulation results are presented to il-
lustrate the performance of the proposed technique. In these
simulations, it is shown that our approach presents the best
results.

Index Terms— Array processing, maximum likelihood
(ML) estimation, compressed likelihood, bearing response
pattern.

1. INTRODUCTION

In many applications of broadband array processing such as
radar, sonar, biomedical imaging and wireless communica-
tions, it is important to obtain an array’s bearing response pat-
tern from a set of measurements [1]. In this work, we propose
to use the compressed likelihood, that is, the likelihood after
maximum likelihood (ML) estimation of all nuisance parame-
ters, to steer a beam. The idea of using the compressed likeli-
hood is not new [2, 3], however, we generalized the approach
by considering broadband signals and noises with unknown
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spectral shape. Several techniques exist that consider signals
with temporal correlation, see [4] and references therein. In
particular, in [4], a narrowband Capon beamformer is ob-
tained at each frequency and this frequency-dependent in-
formation is fused using heuristic approaches such as, arith-
metic, geometric and harmonic means.

One technical problem of our approach is that it is neces-
sary to obtain the ML estimate of a block-Toeplitz covariance
matrix, which is known to be a problem with no closed-form
solution [5–7]. To overcome this, and similar to our previ-
ous works in detection [8–10], we propose to use the asymp-
totic (frequency domain) likelihood, which naturally provides
a way to fuse frequency-dependent information.

Finally, the performance of the proposed approach is il-
lustrated by means of numerical simulations. The bearing re-
sponse pattern for the ML beamsteering is compared to that of
the estimator which ignores the information about the tempo-
ral structure [2, 3], showing the advantages of exploiting the
temporal correlation in the estimation process. Additionally,
we use the bearing response patterns to estimate the angle
of arrival (AOA), and it is shown that the proposed approach
outperforms well known techniques, such as MUSIC [11],
by roughly 6 dB in input signal-to-noise ratio (SNR) for the
broadband example we consider. This difference is reduced to
roughly 2 dB when our approach is compared to one of those
presented in [4].

2. PROBLEM STATEMENT

In this paper, we derive a beamsteering algorithm based on
compressed likelihood for the model1

x[n] = h (φ) d[n] + v[n], n = 0, . . . , N − 1, (1)

where x[n] ∈ CL are array measurements and

h (φ) =
1√
L

[
1 ejφ · · · ej(L−1)φ

]T
,

1This model is valid for a sequence d[n] which satisfies that BW/f is
small enough (compared to the array length), where BW is the bandwidth
of the signal d[n] and f is the carrier frequency.
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is the array’s steering vector; d[n] is the zero-mean wide sense
stationary (WSS) transmitted or radiated signal with covari-
ance function rd[n] = E [d[m]d∗[m− n]], and v[n] ∈ CL
is the independent and identically distributed (iid) noise vec-
tor whose matrix-valued covariance function is Rv[n] =
E
[
v[m]vH [m− n]

]
= rv[n]I. We model v[n] and d[n] as

circular complex Gaussian stochastic processes. In (1), the
transmitted signal and noise are colored, whereas in previous
work which uses the compressed likelihood for beamsteering,
it is assumed that they are frequency-flat [2, 3].

Let us start by constructing the data matrix

X =
[
x[0] x[1] . . . x[N − 1]

]
∈ CL×N ,

where the i-th row is anN -samples window of the time series
{xi[n]} at the i-th sensor, and the n-th column is the n-th
time sample of the vector-valued time series observed on the
L−element array. Let us define the vector z = vec (X) ∈
CLN , which stacks the columns of X. Hence, taking into
account the WSS assumption, z is normally distributed
with block-Toeplitz covariance matrix Rx (φ), i.e. z ∼
CN (0,Rx (φ)), where

Rx (φ) =
Rx[0, φ) Rx[−1, φ) · · · Rx[−N + 1, φ)
Rx[1, φ) Rx[0, φ) · · · Rx[−N + 2, φ)

...
...

. . .
...

Rx[N − 1, φ) Rx[N − 2, φ) · · · Rx[0, φ)

 ,
with the matrix-valued covariance function given by

Rx[n, φ) = h (φ) rd[n]h
H (φ) + rv[n]I. (2)

Then, considering M independent and identically
distributed (iid) realizations of vector z, i.e.
zm = [xTm[0], . . . ,xTm[N − 1]]T ,m = 0, . . . ,M − 1, the
log-likelihood is given by

log p (z0, . . . , zM−1;Rx (φ)) = −LNM log π

−M log det [Rx (φ)]−M tr
[
R̂xR−1

x (φ)
]
, (3)

where

R̂x =
1

M

M−1∑
m=0

zmzHm.

Hence, to obtain a beamsteering algorithm based on com-
pressed likelihood, we must obtain the maximum likelihood
(ML) estimates of rd[n] and rv[n] for n = 0, . . . , N −1, plug
them into (3) and sweep out the compressed likelihood for
beamsteering vector h (φ) ,−π < φ ≤ π, which is the last
remaining parameter of log p (z0, . . . , zM−1;Rx (φ)). This
is the essence of our approach to broadband fusing.

3. BEARING RESPONSE PATTERN BASED ON THE
ASYMPTOTIC LIKELIHOOD

In order to obtain the compressed likelihood, we need to find
the ML estimate of a block-Toeplitz matrix, which is a prob-
lem with no closed-form solution [5–7]. This limitation may
be overcome by applying the asymptotic likelihood [8–10],
which is given by

log p
(
z0, . . . , zM−1;Sx

(
ejθ, φ

))
= −LNM log π

−NM
∫ π

−π
log det Sx

(
ejθ, φ

) dθ
2π

−NM
∫ π

−π
tr
[
Ŝx

(
ejθ
)
S−1
x

(
ejθ, φ

)] dθ
2π
, (4)

where Sx

(
ejθ, φ

)
= F (Rx[n, φ)) is the theoretical power

spectral density (PSD) matrix,F (·) denotes the Fourier trans-
form and the sample PSD matrix is given by

Ŝx

(
ejθ
)
=

1

M

M−1∑
m=0

xm
(
ejθ
)
xHm
(
ejθ
)

with xm
(
ejθ
)
= 1/

√
N
∑N−1
n=0 xm [n] e−jθn. In [8], it is

proven that the asymptotic likelihood converges in the mean-
square sense to the conventional (time-domain) likelihood.
Now, taking into account (2), the PSD matrix is given by

Sx

(
ejθ, φ

)
= h (φ)Sd

(
ejθ
)
hH (φ) + Sv

(
ejθ
)
I, (5)

where Sd
(
ejθ
)
= F (rd[n]) and Sv

(
ejθ
)
= F (rv[n]), and

substituting it into (4), the log-likelihood becomes2

log p
(
z0, . . . , zM−1;h(φ), Sd

(
ejθ
)
, Sv

(
ejθ
))

=

−
∫ π

−π
log det

[
h(φ)Sd

(
ejθ
)
hH(φ) + Sv

(
ejθ
)
I
] dθ
2π

−
∫ π

−π
tr
{
Ŝx

(
ejθ
) [

h(φ)Sd
(
ejθ
)
hH(φ) + Sv

(
ejθ
)
I
]−1
} dθ
2π
.

Defining α
(
ejθ, φ

)
= hH(φ)Ŝx

(
ejθ
)
h(φ), which may be

seen as a frequency-dependent energy estimate in direction φ,
and applying the matrix inversion and determinant lemmas,
we get

log p
(
z0, . . . , zM−1;h (φ) , Sd

(
ejθ
)
, Sv

(
ejθ
))

=

−
∫ π

−π
log

(
1 +

Sd
(
ejθ
)

Sv (ejθ)

)
dθ

2π
− L

∫ π

−π
logSv

(
ejθ
) dθ
2π

−
∫ π

−π

1

Sv (ejθ)
tr
[
Ŝx

(
ejθ
)] dθ

2π

+

∫ π

−π

Sd
(
ejθ
)
α
(
ejθ, φ

)
S2
v (e

jθ) + Sv (ejθ)Sd (ejθ)

dθ

2π
.

2For notational simplicity, constant and factor terms will be dropped.
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Fig. 1. Bearing response patterns based on the asymptotic
likelihood.

To obtain the ML estimate of the PSD of the signal, assuming
for the moment Sv

(
ejθ
)

known, we shall solve the following
optimization problem

maximize
Sd(ejθ)

log p
(
z0, . . . , zM−1;h(φ), Sd

(
ejθ
)
, Sv

(
ejθ
))
,

subject to Sd
(
ejθ
)
≥ 0.

Taking into account the Karush-Kuhn-Tucker (KKT) condi-
tions, the following ML estimate is obtained

Ŝd
(
ejθ, φ

)
=
[
α
(
ejθ, φ

)
− Sv

(
ejθ
)]+

,

where [a]+ = max (a, 0).
Now, we shall consider two different cases: 1) Ŝd

(
ejθ, φ

)
=

0 and 2) Ŝd
(
ejθ, φ

)
> 0. In the first case it is easy to show

that the ML estimate of Sv
(
ejθ
)

is [9]

Ŝv
(
ejθ, φ

)
=

1

L
tr
[
Ŝx

(
ejθ
)]
,

whereas in the second case, after some tedious algebra, the
ML estimate of Sv

(
ejθ
)

becomes

Ŝv
(
ejθ, φ

)
=

1

L− 1

(
tr
[
Ŝx

(
ejθ
)]
− α

(
ejθ, φ

))
,

which may be interpreted as a frequency-dependent estimate
of the energy per spatial dimension in the noise subspace.
Although we have not imposed the non-negativity constraint
on the ML estimate of Sv

(
ejθ, φ

)
, it is easy to check that both

estimates fulfill such restriction. Thus, in order to obtain the
compressed log-likelihood in both cases (Ŝd

(
ejθ, φ

)
> 0 and

Ŝd
(
ejθ, φ

)
= 0), we define

β
(
ejθ, φ

)
= max

{
α
(
ejθ, φ

)
,
1

L
tr
[
Ŝx

(
ejθ
)]}

,

which is the maximum of the energy in direction φ and the
average energy per dimension, at frequency θ. Finally, taking
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Fig. 2. Bearing response pattern based on the likelihood.

into account the ML estimates, the compressed log-likelihood
becomes

log p (z0, . . . , zM−1;h (φ)) = −
∫ π

−π
log β

(
ejθ, φ

) dθ
2π

−(L−1)
∫ π

−π
log

[
1

L− 1

(
tr
[
Ŝx

(
ejθ
)]
− β

(
ejθ, φ

))] dθ
2π
.

(6)

The broadband bearing response pattern of the ML
beamsteering algorithm is obtained by sweeping out the
compressed log-likelihood given by (6) for steering angles
−π < φ ≤ π. As can be seen in (6), the proposed approach
naturally provides the right way to fuse the array information
at different frequencies.

4. NUMERICAL RESULTS

In this section we present some simulations to illustrate the
performance of the proposed technique (Eq. (6)) and compare
it to a compressed likelihood which does not take into account
the time-domain information [3]. For the simulation we have
used the following parameters: the number of sensors of the
antenna array isL = 3, there areM = 3 realizations of length
N = 128 for the estimation process and the input signal-to-
noise ratio is defined as SNR = 10 log

(
rd[0]
Lσ2

)
= −10 dB,

where Lσ2 is the total variance of the noise vector. Further-
more, we have considered that the signal and noises are mov-
ing average (MA) stochastic processes of order 4. In Fig. 1
we have plotted ten different realizations of the bearing re-
sponse patterns given by (6) and, in Fig. 2, ten realizations
of the bearing response pattern of the algorithm in [3]. Addi-
tionally, in red (vertical) line, the true angle of arrival (AOA)
is plotted. It is important to note that the bearing response
patterns have been normalized between 0 and −1, to better
illustrate the differences of both approaches. As can be seen,
the proposed algorithm presents the best results.
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Fig. 3. MSE in the estimated AOA.

To obtain results with some statistical significance, which
better illustrate the differences between both approaches,
we propose to use the bearing response pattern to estimate
AOA. The estimate is obtained using a line search over a
grid of 1024 points. Fig. 3 shows the mean square error
(MSE) of both approaches, with the MSE defined as follows
MSE (dB) = 20 log

∣∣∣φ̂− φ∣∣∣ , where φ̂ is the estimated AOA
and φ is the true AOA. Additionally, we have also included
the MUSIC [11] approach3 and the wideband Capon beam-
forming based on the geometric mean [4]. It can be seen
that the broadband asymptotic likelihood-based estimator
outperforms the likelihood-based and MUSIC-based estima-
tors, which obtain almost the same MSE. The reason for this
better performance is that the asymptotic likelihood-based
estimator fully exploits the space-time structure of the prob-
lem. Additonally, the proposed algorithm also outperforms
the wideband Capon beamformer. Over a wide range of in-
put SNRs the improvement is on the order of 6 dB in input
SNR compared to the algorithms which ignore the temporal
structure and around 2 dB compared to the wideband Capon
beamformer.

5. CONCLUSIONS

In this paper we have derived a broadband beamsteering al-
gorithm based on compressed likelihood, i.e. the likelihood
after obtaining the maximum likelihood (ML) estimates of all
nuisance parameters. Our particular model is a colored signal
impinging on an array which is distorted with a frequency-
selective but spatially white noise. The problem of obtain-
ing the ML estimates of the unknown parameters amounts to
finding the ML estimate of a block-Toeplitz matrix. This is
a non-convex problem with no closed-form solution, which
is overcome by resorting to the asymptotic likelihood. In-

3For the simulations, only the MUSIC approach which ignores the time
structure is considered.

terestingly, our approach provides a natural way of fusing
the frequency-dependent bearing response patterns, contrary
to previous work, which uses heuristic approaches. Finally,
simulations results illustrate the good performance of the pro-
posed technique.
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