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ABSTRACT

In this paper the conditions for blind identifiability of multiple-input
multiple-output (MIMO) channels under orthogonal space-time block
coded (OSTBC) transmissions are studied. Specifically we prove
that, regardless of the number of receive antennas, any real or com-
plex OSTBC transmitting an odd number of real symbols permits
the blind identification of the MIMO channel by only exploiting the
second order statistics (SOS) of the received signal. This result ex-
tends to complex OSTBCs and provides an alternative proof of an
identifiability theorem previously proved only for real OSTBCs in
[1]. Furthermore, this sufficient condition suggests that any non-
identifiable OSTBC can be made identifiable simply by not trans-
mitting one real symbol of each block (either the real or imaginary
part of a symbol in the case of complex OSTBCs). In order to mini-
mize the reduction in the transmission rate, several OSTBC blocks
are grouped before erasing one real symbol. It is shown in the paper
that the proposed rate-reduction technique outperforms the differen-
tial OSTBC scheme in terms of capacity for a wide range of SNRs.

1. INTRODUCTION

In recent years, orthogonal space-time block coding (OSTBC) [2, 3]
has emerged as one of the most promising techniques to exploit spa-
tial diversity and to combat fading in multiple-input multiple-output
(MIMO) systems. The special structure of OSTBCs implies that, as-
suming that the MIMO channel is known at the receiver, the optimal
maximum likelihood (ML) decoder is a simple linear receiver, which
can be seen as a matched filter followed by a symbol-by-symbol de-
tector.

Training approaches are typically used to obtain an estimate of
the channel at the receiver. However, the use of a training sequence
implies a reduction on the bandwidth efficiency, which is avoided
by other approaches like differential space-time codes [4] or blind
channel estimation techniques [5, 6, 7]. Specifically, the blind chan-
nel estimation method proposed in [7] is based only on second order
statistics (SOS) and it has a reduced computational complexity. Ho-
wever, there exist some OSTBCs (including the popular Alamouti
code) that cannot be unambiguously identified using the SOS-based
method proposed in [7]. The sufficient and necessary conditions (re-
lated to the underlying structure of the ST code) for the blind iden-
tifiability of the MIMO channel remain unclear. This problem has
recently been studied in [1, 8], where some sufficient conditions en-
suring the blind identifiability of OSTBCs have been found. Speci-
fically, in [1] it is proved that, for real OSTBCs transmitting an odd
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number of real symbols, the channel can be unambiguously identi-
fied up to a scalar.

In this work we consider the blind identifiability of OSTBCs
and provide several new results. First, we prove that if the channel
is identifiable using only the SOS of the received signal, then the
channel can be unambiguously estimated by the method proposed in
[7]. This result shows that those OSTBCs for which the multiplicity
order of the principal eigenvalue of the correlation matrix is larger
than one are non-identifiable due to the underlying structure of the
code and not to the applied estimation method. Second, we genera-
lize the result in [1] to complex OSTBCs and provide an alternative
proof. Finally, the new sufficient condition for blind identifiability
suggests how a non-identifiable OSTBC can be transformed into an
identifiable one. The proposed technique does not transmit one real
symbol out of every B OSTBC blocks. Since the number of blocks
B can be made arbitrarily large, this symbol erasure procedure only
provokes a slight reduction in the transmission rate. The proposed
technique is analyzed in terms of capacity, proving that, if the recei-
ved signal to noise ratio (SNR) is under a specified threshold, the
rate-reduction technique outperforms the differential scheme.

2. SOME BACKGROUND ON OSTBCS

Throughout this paper we will use bold-faced upper case letters to
denote matrices, e.g., X, with elements x;;; bold-faced lower case
letters for column vector, e.g., x, and light-face lower case letters for
scalar quantities. The superscripts ()7 and (-)* denote transpose
and Hermitian, respectively. The real and imaginary parts will be
denoted as R(-) and (-), and superscript (-) will denote estimated
matrices, vectors or scalars. The trace, range (or column space) and
Frobenius norm of matrix A will be denoted as Tr(A), range(A)
and ||A|| respectively. Finally, the identity matrix of the required
dimensions will be denoted as I, and E/[-] will denote the expectation
operator.

A flat fading MIMO system with n transmit and nr receive
antennas is assumed. The nr X nr complex channel matrix is

H=[h; h,,],

where h; = [h1j,...,hny;]7 contains the channel responses as-
sociated with the j-th receive antenna. The complex noise at the
receive antennas is considered both spatially and temporally white
with variance o

2.1. Data Model for OSTBCs

Let us consider a space-time block code (STBC) transmitting M
symbols during L slots and using n antennas at the transmitter side.
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The transmission rate is defined as R = M /L, and the number of
real symbols transmitted in each block is

M o= M  for real constellations,
“ | 2M for complex constellations.

For a STBC, the n-th block of data can be expressed as

M’

S[n] = Z Crskln],

where Cj, are the STBC code matrices,

_{ R,
swlnl = { S(riae ),

and r[n] denotes the k-th complex symbol of the n-th STBC block.
The combined effect of the STBC code and the j-th channel can
be represented by means of the vectors

k<M,
k> M,

Wk;(hj):Ckhj7 k:l,...,M’,

and taking into account the isomorphism between complex vectors
wi (h;) and real vectors W (h;) = [R(w(h;))", S(we(h;))7] T
we can define the extended code matrices

~ P%(Ck)

_ —S(Cx)
Di=|s(cy)

R(Ck) |’

which satisfy Wy, (h;) = Dyhy, with by = [R(h;)7, S(hy)7]".
The signal at the j-th receive antenna is

yiln] = wi(hy)si[n] + nyn,

where n;[n] is the white complex noise with variance 0.

Defining now the real vectors ¥;[n] = [R(y;[n])7, S(y;[n])T]"
and i [n] = [R(n;[n])7, (n,[n])T]", the above equation can be
rewritten as

M’

yiln] = Wi(hy)sk[n] + 0;n] = W (hy)s[n] + f,[n],

where s[n] = [s1[n], ..., sy [n]]” contains the M’ transmitted real
symbols and W (h;) = [w1(h;)--- Wy (h;)]. Finally, stacking
all the received signals into §[n] = [§1 [n],...,¥n,[n]] . we can
write

y[n] = W(H)s[n] + a[n],

~ ~ ~ T
where W (H) = [WT(hl) - WT(hnR)] , and fi[n] is defined
analogously to y[n].
In the case of orthogonal STBCs (OSTBCs), the matrix W (H)

satisfies _ _
W (H)W(H) = [H|T, (1

which, considering H known and a Gaussian distribution for the
noise, reduces the complexity of the ML receiver to find the closest
symbols to the estimated signal [4]

sy~ W)l
[EE

The necessary and sufficient conditions on the code matrices
Cp e CIXnr (k1 =1,..., M"), to satisfy (1) are [4]

Hero o 1 k=1,
C’vcl*{ —cflc, k41,
which also imply S¥ [n]S[n] = ||s[»]|*I and
S I k=1,
Di.Di = { DDy k#L

3. PREVIOUS WORK ON BLIND IDENTIFIABILITY OF
OSTBCS

Recently, a new method for blind channel estimation of OSTBC
MIMO channels, which is only based on SOS, has been proposed
[7]. It has been shown that this method is able to blindly identify
the channel up to a real scalar ambiguity in most of the analyzed
OSTBCs when the number of receive antennas is ng > 1. Ho-
wever, some OSTBCs (including the Alamouti code [2]) can not be
identified by this method without assuming a certain structure on the
correlation matrix of the information symbols R = F[s[n]s” [n]]
[7,9].

In this section, the method proposed in [7] is summarized, and
the conditions that result in non-identifiable channels are pointed out.
Additionally, we prove that these ambiguities are due to the OSTBC
and channel H, and not to the particular blind identification method
proposed in [7].

3.1. General formulation

Let us start by writing the correlation matrix of ¥[n| as

2
71

Ry = Ely[n]y” [n]] = WH)RW' (H) + 3

The method proposed in [7] is based on the following optimization
problem

argmax Tr (VVT(PI)RyVV(ﬂ)> . os.t WIE)W(H) =1,
B e

whose solution is given by any estimated channel matrix H with
||H|| = 1 satisfying

range(W (H)) = range(W (H)). 3)

The solution of (2) can be obtained by means of an eigenvalue
(EV) problem [7]. Alternatively, we have shown in [9] that (2) can
be reformulated as a principal component analysis (PCA) problem,
which permits a straightforward derivation of adaptive algorithms.

3.2. Indeterminacy problems

The constraint W7 (H)W (H) = I in (2), which implies ||H|| = 1,
introduces a real scalar ambiguity in the estimation process. This is a
common indeterminacy for all the blind estimation techniques, then
in the sequel we will assume ||H|| = |[H|| = 1. A more important
indeterminacy results from (3). Here, we prove that this ambiguity
is not due to the particular optimization criterion given by (2), but
to the code and channel properties. Let us start by rewriting (3) as
W(H) = W(H)Q, where Q is an orthogonal matrix (i.c., real
and unitary) of dimensions M’ x M’, and introducing the following
Lemma:



Lemma 1 In OSTBC systems, the MIMO channel H can be identi-
fied up to a real scalar based only on second order statistics iff the
equality o ~

W(H) = W(H)Q, @

where Q is an orthogonal matrix, holds only for H = +H and
Q==L

Proof: From (2) and (3) it is clear that, if the equality (4) is only
satisfied by H = +H and Q = =+I, the channel can be estimated
up to a scalar ambiguity by means of the criterion (2). To prove
the converse, we proceed by contradiction: let us assume that there
exists an estimate FI # +H and an orthogonal matrix Q # +1I such
that (4) holds. Then, we can define 8[n] = Q”'s[n] such that

yIn] = W(H)s[n] + fi[n] = W(H)QQ"s[n] + @i[n] =
= W(H)$[n] + @[],

which implies that the observation vector y[n] could be the result of
a channel H and a signal §[n] instead of the true channel and signal.
|

The above Lemma implies that the ambiguities appearing in the
method proposed in [7] are due to properties of the code and the
channel and not to the specific criterion (2). According to the work
by Shahbazpanabhi et. al. [7] it is known that the indeterminacy in (3)
is traduced in the fact that the largest eigenvalue of the associated EV
problem has multiplicity larger than one. This identifiability problem
has also been pointed out in [6], where the authors propose a method
similar to the relaxed blind ML estimator.

Recently, some works have studied the identifiability conditions
of OSTBC:s. In [5] the authors have pointed out that it is impossible
to achieve blind equalization for the Alamouti code [2] without using
some precoding or assuming a correlation matrix R s with non-equal
eigenvalues. In [8] the authors study the identifiability conditions un-
der the assumptions of real OSTBCs and BPSK signals, introducing
the definition of non-rotatable and strictly non-rotatable codes. Real
OSTBCs have also been studied in [1], where it has been proved
that, if the symbol dimension M is odd, or if it is even and the chan-
nel matrix H is full row rank (which implies ng > nr), then the
channel is identifiable up to a scalar ambiguity based solely on SOS.
In the following sections we extend the first result in [1] to com-
plex OSTBCs and present a straightforward technique for designing
identifiable complex OSTBCs.

4. SUFFICIENT IDENTIFIABILITY CONDITION

In this section we show that for any OSTBC (real or complex) trans-
mitting an odd number of real symbols, the MIMO channel can be
identified up to a real scalar. Let us start by introducing some pro-
perties of skew-symmetric matrices

4.1. Properties of Skew-Symmetric Matrices

A skew-symmetric matrix A is defined as a square matrix with real
entries satisfying AT = — A. Some well-known properties of skew-
symmetric matrices are the following:

Property 1 All eigenvalues of skew-symmetric matrices are purely
imaginary or zero.

Property 2 If A is skew-symmetric the elements along its main dia-
gonal are zero: a;; = 0, Vi. Consequently, Tr(A) = 0.

A proof of Properties 1 and 2 can be found in [10]. For orthogo-
nal matrices is easy to prove the following properties

Property 3 An orthogonal skew-symmetric matrix A has the same
number of +j and —j eigenvalues. Therefore, there do not exist
orthogonal and skew-symmetric matrices of odd order.

Proof: Since A is orthogonal, the absolute value of all its eigenva-
lues is 1. Combining this fact with properties 1 and 2, and taking into
account that the trace of a matrix is equal to the sum of its eigenva-
lues, it is clear than an orthogonal skew-symmetric matrix must have
the same number of 45 and —j eigenvalues, and hence its order must
be even. |

4.2. Sufficient OSTBC Channel Identifiability Condition

We first extend Lemma 1 by showing that the orthogonal matrix Q
in (4) must also be skew-symmetric, i.e., Q7 = —Q.

Lemma 2 In OSTBC systems, the MIMO channel H cannot be iden-
tified up to a real scalar based only on second order statistics iff
there exists an orthogonal skew-symmetric matrix Q of dimensions
M’ x M’ such that

W(H) = W(H)Q. ©)

Conversely, if such a matrix does not exist, the MIMO channel is
identifiable.

Proof: Rewriting (4) as W (h;) = W(h;)Q, forj = 1,...,ng,
and multiplying from the right by W7 (h;) we obtain ||h;||?Q =
W7 (h;)W (h,). Taking into account that W (h;) = Dyh; and
W (h;) = [W1(hy)--- Wy (h;)], we can write the element g ; in
the k-th row and [-th column of Q as

Wi (h;)Wi(h;) _ hfD{Dih;

gk, = 9 j:17~"7nR7
by} (|2
and considering that, for k& # [, ]3{]31 = flle]jk, the above
equation implies
BT h,
5 B — )
Qk,l_{ h;12 k=1, ji=1...,ng.
—qk kF#L

Hence, matrix Q can be written as Q = oI + v/1 — a2Q , where

a = fleflJ /|Ih;]|? and Q. is an orthogonal skew-symmetric ma-
trix. Using this decomposition, (5) becomes

W(H) = aW(H) + /1 - a?W(H)Q_,

which implies that, if the channel cannot be identified (and, there-
fore, according to Lemma 1 H # +H and o # +1), we can find a
H-—aoH

—a2

channel H 1=

satisfying

W(H,)=WH)Q..

To summarize, if the channel is non-identifiable then there exists an
orthogonal and skew-symmetric matrix Q such that (5) holds. W

The combination of Lemma 2 and Property 3 yields the follo-
wing Theorem, which generalizes the first theorem in [1]:

Theorem 1 [fan OSTBC code transmits an odd number of real sym-
bols (M’ odd), then the channel can be identified regardless of the

number of receiving antennas.



Proof: The proof proceeds by contradiction. Let us assume that an
OSTBC transmitting an odd number of real symbols (M’ odd) is not
identifiable, then from Lemma 2 there must exist an orthogonal and
skew-symmetric matrix Q of dimensions M’ x M’ relating W (H)
and W (H). From Property 3 it is clear that an orthogonal skew-
symmetric matrix of odd order can not exist and therefore the MIMO
channel can be identified up to a real scalar. |

5. DESIGN OF IDENTIFIABLE OSTBCS

Theorem 1 establishes that any OSTBC transmitting an odd number
of real symbols permits the blind identification of the MIMO chan-
nel. For real OSTBCs, this result is only of limited value from a
practical standpoint since most of the useful codes transmit an even
number of real symbols (see [4, 7]). On the other hand, for complex
OSTBCs we obviously have M’ = 2M, where M is the number
of complex symbols. Therefore M is always even and the theorem
does not apply. However, an interesting idea derived from this theo-
rem is that a non-identifiable complex OSTBC can be made iden-
tifiable simply by not transmitting one real symbol (either the real
or imaginary part of a symbol in the case of complex OSTBCs).
Obviously, the price we pay is a reduction in the code rate: for a
complex OSTBC transmitting M = 4 symbols the original code
rate would be reduced by a factor = 7/8. However, by grouping
B consecutive OSTBC blocks the resulting matrix can be viewed as
a new OSTBC with nr antennas transmitting BM symbols in BL
time slots. Applying the proposed technique to this new OSTBC, the
rate-reduction factor is

BM' -1
B=—F

which increases with B, and tends to one for BM’ > 1.

5.1. A comparison in terms of capacity

Here we compare the proposed rate-reduction technique with the
well known differential OSTBC technique [4] in terms of capacity.
Considering i.i.d Gaussian noise with variance o2, and assuming
without loss of generality that the average transmitted energy per an-
tenna and time interval is 1/nr, the capacity of the OSTBC-MIMO
channel H for unity bandwidth is [4]

SNR
Costec(R,SNR) = Rlog, (1 + T> 7

2
where SNR = % is the received signal to noise ratio. In the case
of the proposed technique, the capacity reduces to

Crea = Costac (SR, SNR),

and considering the 3-dB penalty incurred by differential schemes,
the capacity of a differential OSTBC is given by [4]

Critt = Costsc (R, SNR/2).
Thus, considering SNR > 1, it can be readily proved that

{ CRrea > Cpir if SNR < SNRy,

CRred < Cpig if SNR > SNRy,,

where SNRy, is a threshold given by

3+ 81010 ()

101log,,(SNRw) = 10log,(R) + 15

Q)
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Fig. 1. Theoretical SNR threshold and capacity versus transmission
rate R and rate-reduction parameter (.

The above threshold increases with the rate-reduction factor (5 and,
correspondingly, with the number of OSTBC blocks B. Therefore,
by increasing B, the proposed method outperforms the differential
receiver. However, we must point out that this capacity analysis has
been carried out assuming perfect channel estimation (even for the
blind method), which is only true for noise free scenarios or when an
infinite number of blocks is available at the receiver. Furthermore,
increasing 3 (and B) implies a reduction on the number of available
composed blocks at the receiver (for a fixed number of time slots).
Therefore there exists a trade-off regarding the selection of B: a
large B is required to increase the capacity, but a small B provides
a better channel estimate. This idea will be illustrated by computer
simulations in the next Section.

6. SIMULATION RESULTS

In this section the performance of the proposed method is evaluated
through some simulation examples. In all the simulations, the results
of 1000 independent realizations are averaged. The elements of the
flat fading MIMO channels are zero-mean, circular, complex Gaus-
sian random variables with variance 012{, the averaged transmitted
energy per antenna and time interval is 1/nr, and the SNR at the
transmitter side is defined as 10 log, (o8 /0?).

The i.i.d source signal belongs to a 16-QAM constellation. We
have tested the 3/4 OSTBC code for M = 3 complex symbols, L =
4 time slots and n = 4 transmit antennas, which is presented in Eq.
(7.4.10) of [4]. The number of receive antennas is nr = 1, which
provokes an ambiguity problem in the channel estimation [7].

Figure 1 shows the theoretical SNRy, curves given by (6) for th-
ree different transmission rates (R = 1, R = 3/4 and R = 1/2).
We can see that the curves divide the plane in two regions, in the
upper region (labeled as Differential OSTBC Receiver Region) the
differential scheme has more capacity than the proposed method (re-
ferred to as Rate-Reduction), whereas the converse is true in the
lower region. It must be also noted that for rate-reduction factors
B > 0.9, the threshold SNRy, is above 30dB, which implies that in
practice the proposed technique is a better approach than the diffe-
rential OSTBC scheme in terms of capacity.

In the second example we consider a more realistic scenario
in which the channel estimate is obtained from N = 40 received
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OSTBC blocks (160 time-slots). We compare the performance of
the proposed rate-reduced method, the informed ML (perfect chan-
nel state information), the differential OSTBC receiver proposed in
[4] and the linear precoding technique proposed in [7] (referred to
as Weighted-PCA). For the Weighted-PCA, the first M’ — 1 weights
have been selected to be equal to 1, and the remaining one is se-
lected as 0.1, 0.2 or 0.5 (always normalizing to transmit the same
averaged energy per antenna and time interval). This means that one
of the M’ real source signals is transmitted with less energy than the
rest. Note also that for B = 1 the proposed rate-reduction technique
can be considered as a limiting case of the Weighted-PCA in which
the weight assigned to one of the sources is zero (i.e., the symbol is
not transmitted at all). For the proposed rate-reduction technique we
consider B =1 (8 = 5/6) and B = 4 (8 = 23/24). Fig. 2 shows
the ergodic capacity obtained with the different methods, where we
can see that the proposed technique with B = 4 outperforms the
differential receiver for a large range of SNRs.

The final example illustrates the trade-off between the number of
available OSTBC blocks (IV), the rate-reduction parameter 3 (or B),
the transmitted SNR, and the ergodic capacity. Figure 3 shows the
MSE of the channel estimate (left) and the ergodic capacity (right)
for different values of B, number of available blocks and SNRs. It
can be noted that, for a given NV, the MSE of the channel estimate in-
creases with B, which is due to the reduction of the number of avai-
lable composite blocks (/N/B). On the other hand, the increase of B
yields a higher transmission rate SR, and the combination of these
effects implies the existence of an optimum parameter B, which ma-
ximizes the ergodic capacity, and depends on the SNR and the num-
ber of available OSTBC blocks N.

7. CONCLUSIONS

In this paper, the problem of blind identifiability of MIMO channels
under OSTBC transmissions has been analyzed. We have derived a
sufficient condition for blind identifiability based solely on second
order statistics. Specifically, we have proved that any (real or com-
plex) OSTBC transmitting an odd number of real symbols permits
the blind identification of the MIMO channel up to a real scalar re-
gardless of the number of receiving antennas. This condition is ex-
ploited to obtain identifiable OSTBCs from non-identifiable codes
by means of a slight reduction of the transmission rate. The pro-
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Fig. 3. Effect of the parameter B and number of available blocks /N
on channel estimation and ergodic capacity.

posed method has been analyzed in terms of capacity, and we have
shown by means of some simulation examples that it outperforms
other previously proposed techniques.
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