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Abstract—This paper addresses the independent component analysis
(ICA) of quaternion Gaussian vectors. Firstly, we define the properness
profile of a quaternion random variable, which can be seen as the
quaternion analogue of the circularity coefficients of complex vectors. The
properness profile is a three-dimensional pure quaternion vector, which
does not only measure the improperness degree of the quaternion random
variable, but also provides the improperness distribution. Secondly, we
prove that the quaternion ICA model can be identified up to the trivial
scale and permutation ambiguities, and a residual quaternion mixture
among the sources with rotationally equivalent properness profiles, i.e.,
properness profiles related by a quaternion rotation. Finally, the main
results of the paper are illustrated by means of some numerical examples.

I. INTRODUCTION

In the last years, quaternion signal processing has received increas-
ing attention due, among others, to its successful application in image
processing [1], wind modeling [2], and design of space-time block
codes [3], [4]. This has motivated the extension of several signal
processing techniques to the case of quaternionic signals, as well
as a rigorous second-order statistical analysis of quaternion random
vectors [5], [6].

In this paper we consider the independent component analysis
(ICA) [7] of quaternion random vectors, which can find almost-direct
applications in problems such as blind decoding in Alamouti-based
multiuser systems, blind separation of color images, or the intrinsical
analysis of wind profiles. In particular, we focus on the fundamental
case of quaternion Gaussian vectors, and derive the necessary and suf-
ficient conditions for the identifiability of the quaternion ICA model.
Analogously to the complex Gaussian case [8]–[10], quaternion ICA
relies on the independence and improperness of the sources. Thus,
the identifiability analysis is based on a new statistical measure,
the properness profile, which can can be seen as the quaternion
counterpart of the circularity coefficients of complex vectors [10].
However, the properness profile of a quaternion random variable,
which is a three-dimensional pure quaternion vector, does not only
measure the improperness degree, but also indicates the improperness
distribution. As a consequence, the quaternion ICA model can be
unambiguously identified up to the trivial indeterminacies, consisting
in arbitrary quaternion scale factors and permutations, and a residual
quaternion mixture among the sources with rotationally equivalent
properness profiles, i.e., with properness profiles related by a three-
dimensional rotation. Additionally, the theoretical results are illus-
trated by means of some simulation examples, which also pose some
interesting questions for future research.
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Government, Ministerio de Educación, under grant JC2009-00140.

II. PRELIMINARIES

Throughout this paper we will use bold-faced upper case letters to
denote matrices, bold-faced lower case letters for column vectors, and
light-faced lower case letters for scalar quantities. Superscripts (·)T
and (·)H denote transpose and Hermitian (i.e., transpose and quater-
nion conjugate), respectively. The notation A ∈ Rm×n (respectively
A ∈ Hm×n) means that A is a real (respectively quaternion) m×n
matrix. In is the identity matrix of dimension n, 0m×n is the m×n
zero matrix, and diag(a) denotes the diagonal matrix with vector
a along its diagonal. Finally, E is the expectation operator, and in
general Ra,b is the cross-correlation matrix for vectors a and b, i.e.,
Ra,b = EabH .

A. Quaternion Algebra

Quaternions are hypercomplex numbers defined by

x = r1 + ηrη + η′rη′ + η′′rη′′ ,

where r1, rη, rη′ , rη′′ ∈ R are four real numbers, and the three
imaginary units1 (η, η′, η′′) satisfy

η2 = η′
2

= η′′
2

= ηη′η′′ = −1,

which also implies

ηη′ = η′′, η′η′′ = η, η′′η = η′.

Quaternions form a skew field H [11], which means that they sat-
isfy the axioms of a field except the commutative law of the product,
i.e., for x, y ∈ H, xy 6= yx in general. The conjugate of a quaternion
x is x∗ = r1 − ηrη − η′rη′ − η′′rη′′ , and the inner product of two
quaternions x, y is defined as the real part of xy∗. Two quaternions
are orthogonal if and only if (iff) their inner product is zero, and the
norm of a quaternion x is |x| =

√
xx∗ =

√
r2
1 + r2

η + r2
η′ + r2

η′′ .

Furthermore, we say that ν is a pure unit quaternion iff ν2 = −1
(i.e., iff |ν| = 1 and its real part is zero). Quaternions also admit the
Euler representation

x = |x|eνθ = |x| (cos θ + ν sin θ) ,

where ν is a pure unit quaternion and θ ∈ R is the angle (or argument)
of the quaternion.

Definition 1 (Quaternion Rotation and Involution [11]):
Consider a non-zero quaternion a = |a|eνθ = |a| (cos θ + ν sin θ),
then2

x(a) = axa−1,

1A particular choice of the imaginary axes is the canonical basis {i, j, k}.
However, in this paper we use the more general representation {η, η′, η′′}.

2From now on, we will use the notation A(a) to denote the element-wise
rotation of matrix A.
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represents a three-dimensional rotation of the imaginary part of x.
Specifically, the vector [rη, rη′ , rη′′ ]

T is rotated clockwise an angle
2θ in the pure imaginary plane orthogonal to ν. In the particular case
of pure quaternions ν, x(ν) represents a rotation of angle π, which
is an involution.

B. Second Order Statistics of Quaternion Random Vectors

Analogously to the case of complex vectors, the statistical analysis
of a quaternion random vector x ∈ Hn×1 can be directly based
on its real representation rx =

[
rT1 , r

T
η , r

T
η′ , r

T
η′′
]T

. However, we
can get more insight on its statistical properties by introducing the

augmented quaternion vector x̄ =
[
xT ,x(η)T ,x(η′)T ,x(η′′)T

]T
.

Thus, the second-order statistics (SOS) of a quaternion random vector
are given by the augmented covariance matrix

Rx̄,x̄ = Ex̄x̄H =


Rx,x Rx,x(η) R

x,x(η′) R
x,x(η′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η′′) R
(η)

x,x(η′)

R
(η′)

x,x(η′) R
(η′)

x,x(η′′) R
(η′)
x,x R

(η′)

x,x(η)

R
(η′′)

x,x(η′′) R
(η′′)

x,x(η′) R
(η′′)

x,x(η) R
(η′′)
x,x

 ,
where we can readily identify the covariance matrix Rx,x = ExxH

and three complementary covariance matrices Rx,x(η) = Exx(η)H ,

R
x,x(η′) = Exx(η′)H and R

x,x(η′′) = Exx(η′′)H . From these four
matrices, we can define three different kinds of quaternion properness
[5]. In particular, in this paper we consider the strongest kind of
quaternion properness, which is defined as follows.3

Definition 2 (Quaternion Q-Properness [5], [6]): A quaternion
random vector x is Q-proper iff the three complementary covariance
matrices Rx,x(η) , R

x,x(η′) and R
x,x(η′′) vanish.

The main practical implication of Q-properness consists in the fact
that, for a Q-proper random vector x ∈ Hn×1, the optimal linear
processing is quaternion linear, i.e., it takes the form u = FH1 x
instead of the more general widely-linear transformation u = FH1 x+
FHη x(η) + FHη′x

(η′) + FHη′′x
(η′′) [5], [6].

III. QUATERNION INDEPENDENT COMPONENT ANALYSIS

In this section we introduce the independent component analysis
(ICA) model for quaternion vectors, and derive the necessary and
sufficient conditions for the identifiability of the ICA model.

A. ICA Model

Consider a quaternion random vector s ∈ Hm×1 representing m
independent source signals, which are mixed by a full-column rank
mixing matrix A ∈ Hn×m (n ≥ m). That is, we have the model x =
As, where x ∈ Hn×1 is a quaternion random vector representing the
available observations.

Analogously to the case of real or complex vectors [7], [10], the
quaternion ICA model is affected by two trivial indeterminacies,
which consist in a quaternion scale factor and a permutation of the
sources s and columns of the mixing matrix A. Therefore, we can
assume without loss of generality that the sources are unit-variance
quaternion random variables with diagonal complementary covari-
ance matrices Λη = Ess(η)H , Λη′ = Ess(η′)H , Λη′′ = Ess(η′′)H .

With the above assumptions and considering the case of Gaussian
data (or equivalently, limiting our analysis to SOS-based techniques),
the ICA problem amounts to finding the mixing matrix A and the
complementary covariance matrices of the sources satisfying

AAH = Rx,x, AΛνA
(ν)H = Rx,x(ν) , (1)

3See [12], [13] for closely related, but different, Q-properness definitions.

for all pure unit quaternions ν. Equivalently, taking into account
that the complementary covariance matrix Rx,x(ν) (for all pure unit
quaternions ν) can be written as a quaternion linear combination of
Rx,x(η) , R

x,x(η′) and R
x,x(η′′) (for an orthogonal basis {η, η′, η′′})

[5], [6], eq. (1) can be rewritten as

AAH = Rx,x, AΛηA
(η)H = Rx,x(η) ,

AΛη′A
(η′)H = R

x,x(η′) , AΛη′′A
(η′′)H = R

x,x(η′′) .

B. Identifiability Conditions

Analogously to the case of complex vectors [10], the identifiability
of the quaternion ICA model from SOS relies on the improperness of
the sources. Here, we start by introducing the following definitions.

Definition 3 (Properness Profile): The properness profile of a
quaternion random variable s is defined as

ψs =

 ψs,ηψs,η′

ψs,η′′

 =

 λs,ηη
λs,η′η

′

λs,η′′η
′′

 ,
where, for a pure unit quaternion ν, λs,ν = Ess∗(ν)/E|s|2 is the
(normalized) complementary variance.

Definition 4 (Rotationally Equivalent Properness Profiles): The
properness profiles of two quaternion random variables s1, s2 are
rotationally equivalent iff they are related by a quaternion rotation,
i.e., iff there exists a quaternion a such that

ψs2 = ψ(a)
s1 .

Interestingly, the properness profile is a pure quaternion vector,
and therefore each of its entries can be seen as one point in a three-
dimensional space. Furthermore, it is easy to prove that the rotational
equivalence between two properness profiles does not depend on
the particular quaternion basis, i.e., if ψs1 and ψs2 are rotationally
equivalent in a basis {η, η′, η′′}, then they are rotationally equivalent
for all the orthogonal bases {ν, ν′, ν′′}. On the other hand, it is also
important to note that a quaternion scale factor s2 = as1, which is
one of the trivial ambiguities in the quaternion ICA model, results
in a rotation of the properness profile ψs2 = ψ

(a)
s1 . Finally, we can

introduce the following theorem, which states the quaternion ICA
identifiability conditions.

Theorem 1 (ICA Identifiability): Given the ICA model x = As,
with independent entries in s and full-column rank A, the sources
s and the mixing matrix A can be recovered from the SOS of the
observations up to the following ambiguities:
• A permutation and quaternion scale factor.
• A residual quaternion linear mixture affecting the sources with

rotationally equivalent properness profiles.
Proof: Let us start by noting that, as a consequence of (1), all the

solutions Â ∈ Hn×m of the quaternion ICA model can be written as
Â = AQ, where A is the actual mixing matrix and Q ∈ Hm×m is a
unitary quaternion matrix. Furthermore, using the trivial ambiguities,
we can introduce a permutation and a quaternion scale factor in the
columns of Â to ensure that the elements in the diagonal of Q are
positive real numbers. Thus, from (1) we can see that a mixing matrix
Â = AQ, and a set of complementary covariance matrices Λ̂ν , are
solutions of the quaternion ICA model iff, for all ν, QHΛνQ

(ν) =
Λ̂ν , or equivalently

QHΨνQ = Ψ̂ν , ∀ν, (2)

where Ψν = Λνν = diag([ψs1,ν , . . . , ψsm,ν ]) contains one of the
elements of the properness profiles of all the sources, and Ψ̂ν is
defined analogously.
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Let us now focus on the first row and column of the ambiguity
matrix Q. In particular, we will write

Q =

[
q1 vH

w Q−1

]
,

where q1 is a real and positive number, v,w ∈ H(m−1)×1, and
Q−1 ∈ H(m−1)×(m−1). Here, it is clear that the unitarity of Q
implies

vq1 + QH
−1w = 0(m−1)×1, (3)

q2
1 + ‖w‖2 = 1, (4)

wwH + Q−1Q
H
−1 = Im−1. (5)

Analogously, the diagonal matrix Ψν can be written as Ψν =
diag([ψs1,ν ,ψ

T
s−1,ν ]T ), where ψs−1,ν = [ψs2,ν , . . . , ψsm,ν ]. Thus,

considering the first column of Ψ̂ν , we can see that (2) yields

vψs1,νq1 + QH
−1diag(ψs−1,ν)w = 0(m−1)×1, ∀ν.

Moreover, taking into account the property ab = ba(b∗), and noting
that q1 is a real scalar, the above equation can be rewritten as

vq1ψs1,ν + QH
−1diag(w)ψ(w∗)

s−1,ν = 0(m−1)×1, ∀ν,

where, with a slight abuse of notation, ψ(w∗)
s−1,ν denotes the element-

wise rotation of the entries in ψs−1,ν . Now, defining 1 ∈ R(m−1)×1

as the vector of ones, and using (3) we have

QH
−1diag(w)

(
ψ(w∗)
s−1,ν − 1ψs1,ν

)
= 0(m−1)×1, ∀ν.

Additionally, noting that q1 > 0, the combination of (4) and (5)
ensures that Q−1 is invertible, which yields

diag(w)
(
ψ(w∗)
s−1,ν − 1ψs1,ν

)
= 0(m−1)×1, ∀ν,

or equivalently, for k = 2, . . . ,m

qk,1(ψ
(q∗k,1)
sk,ν − ψs1,ν) = 0, ∀ν,

where qk,1 is the k-th element in the first column of Q. Therefore,
since the above equation holds for all ν, we can conclude that if the
properness profiles ψs1 and ψsk are not rotationally equivalent, then
qk,1 = 0.

Finally, following the same reasoning for the remaining rows and
columns of Q we can see that, excluding the trivial ambiguities,
the only possible indeterminacies are given by a unitary quaternion
matrix affecting the sources with rotationally equivalent properness
profiles. In fact, assuming a set of K sources s = [s1, . . . , sK ]T with
rotationally equivalent properness profiles

ψs1 = ψ(a2)
s2 = · · · = ψ(aK)

sK ,

we can easily see that the associated matrix Ψν =
diag([ψs1,ν , . . . , ψsK ,ν ]) can be written as

Ψν = diag(a)ψs1,νdiag(a)H , ∀ν,

where a = [1, a2/|a2|, . . . , aK/|aK |]. Therefore, any linear trans-
formation of the form

ŝ = Q̃diag(a)Hs,

with Q̃ ∈ RK×K a real unitary matrix, will satisfy the ambiguity
condition in eq. (2), i.e., the indeterminacy affecting the sources
with rotationally equivalent properness profiles can not be avoided
without exploiting some additional property of the sources or the
mixing matrix.

Theorem 1 shows that the properness profiles play a crucial role
in the identifiability of the quaternion ICA model. That is, the
properness profiles can be seen as the quaternion counterpart of the
circularity coefficients of complex vectors [10]. However, we must
point out two key differences with the complex case:
• In the complex case, the ICA identifiability conditions can be

reformulated in terms of the improperness degree of the sources.
That is, we can say that the complex ICA model is identifiable
up to the trivial ambiguities and a complex linear mixture
affecting those sources with identical improperness degrees [8]–
[10]. However, as a direct consequence of Theorem 1, two
quaternion sources with the same improperness degree [5] can
be unambiguously recovered if their properness profiles are
not rotationally equivalent. In other words, the quaternion ICA
identifiability conditions do not only consider the improperness
degree of the sources, but also the improperness distribution,
which is measured by the properness profile. As an example,
consider two sources s1, s2 ∈ H with properness profiles
Ψs1 = [0.5i, 0, 0]T and Ψs2 = [0, 0.5j, 0]T , which are not
rotationally equivalent. Then, it is clear that s1 and s2 can
be unambiguously recovered, even though they have identical
improperness degrees [5].

• In the general quaternion case there does not exist a strong
uncorrelating transform [10]. From a practical point of view, this
implies that the solutions of the quaternion ICA model can not
be obtained in closed form, and we have to resort to numerical
algorithms. Thus, quaternion ICA can be reformulated as an
approximate joint diagonalization problem [14], [15], which
amounts to find the separation matrix W ' A−1 diagonalizing
the covariance and complementary covariance matrices of the
observations x, i.e.,

WRx,xWH ' In, WRx,x(η)W
(η)H ' Λη,

WR
x,x(η′)W

(η′)H ' Λη′ , WR
x,x(η′′)W

(η′′)H ' Λη′′ .

IV. SIMULATION RESULTS

In this section, the main result of the paper is illustrated by means
of a simulation example. We have considered m = 3 independent
quaternion sources, and the entries of the square mixing matrix A ∈
H3×3 have been generated as i.i.d. quaternion Q-proper Gaussian
random variables with zero mean and unit variance. The parameters
of the ICA model have been estimated by means of an approximate
joint-diagonalization algorithm, whose details can be found in the
journal version of this paper [16]. The accuracy of the obtained results
is measured by the residual mixture matrix E = WA, where W ∈
H3×3 is the estimated separation matrix and A is the actual mixing
matrix. In particular, after solving the possible permutation ambiguity,
the residual mixture measure for the k-th source is defined as

Mk =
1

|ek,k|2
m∑
l=1
l6=k

|ek,l|2,

where ek,l is the entry in the k-th row and l-th column of E.
The properness profiles of the three independent sources

s1, s2, s3 ∈ H are

ψs1 = [0.1η′′, 0.5η, 0.1η′]T ,

ψs2 = [0.1η′′, 0.1η, 0.5η′]T ,

ψs3 = (1− α)ψs1 + αψs2 ,

where 0 ≤ α ≤ 1 is a real parameter controlling the distances
between ψs3 and the other properness profiles. In particular, for
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Fig. 1. Identifiability example. Three sources and 100 observations.

α = 0 the properness profiles ψs1 and ψs3 are rotationally equiva-
lent, whereas ψs2 and ψs3 are rotationally equivalent for α = 1. Fur-
thermore, although the two first sources have the same improperness
degree [5], their properness profiles are not rotationally equivalent,
and therefore these sources can be unambiguously extracted.

Figs. 1 and 2 show the residual mixture measure for the three
sources as a function of the parameter α. The results have been
obtained by averaging 1000 independent experiments for 100 and
1000 vector observations. As stated by Theorem 1, the only non-
trivial identifiability problems appear for the values of α resulting
in rotationally equivalent properness profiles. Thus, there is a linear
mixture of sources s1 and s3 for α = 0, and a mixture of s2 and
s3 for α = 1. Finally, it is also interesting to note that, from a
practical point of view, the accuracy of the quaternion ICA method
is controlled by a tradeoff between the number of observations T and
the distances among the different properness profiles.

V. CONCLUSION

In this paper we have addressed the independent component
analysis (ICA) of quaternion random vectors. Specifically, we have
considered the case of Gaussian data, which reduces the analysis
to methods exclusively based on second-order statistics (SOS). The
main result in the paper consists in the derivation of the necessary
and sufficient conditions for the identifiability of the quaternion ICA
model. The key role in the identifiability analysis is played by the
properness profile, which is a new statistical measure for quaternion
random variables, and can be seen as the quaternion counterpart
of the circularity coefficients of complex vectors. Interestingly, the
properness profile does not only measure the improperness degree
of the sources, but also its distribution. Thus, it has been proved
that the quaternion ICA model can be unambiguously recovered
up to the trivial indeterminacies (permutations and quaternion scale
factors) and a residual quaternion mixture involving the sources with
rotationally equivalent properness profiles, i.e., properness profiles
related by a three-dimensional rotation. Finally, quaternion ICA is
expected to find applications in problems such as blind channel
estimation in multiuser systems based on Alamouti coding.
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Fig. 2. Identifiability example. Three sources and 1000 observations.
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