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Abstract—One of the key problems in cognitive radio (CR) is the

detection of primary activity in order to determine which parts of

the spectrum are available for opportunistic access. In this work, we
present a new multiantenna detector which fully exploits the spatial and

temporal structure of the signals. In particular, we derive the generalized

likelihood ratio test (GLRT) for the problem of detecting a wideband
rank-one signal under spatially uncorrelated noise with equal or different

power spectral densities. In order to simplify the maximum likelihood

(ML) estimation of the unknown parameters, we use the asymptotic

likelihood in the frequency domain. Interestingly, for noises with different
distributions and under a low SNR approximation, the GLRT is obtained

as a function of the largest eigenvalue of the spectral coherence matrix.

Finally, the performance of the proposed detectors is evaluated by means
of numerical simulations, showing important advantages over previously

proposed approaches.

I. INTRODUCTION

In the last years, the cognitive radio (CR) paradigm has emerged

as a key technology to improve spectrum usage [1]. The basic idea

behind CR is the opportunistic access of some users (secondary

users) to the wireless channel when the licensed (primary) users are

not transmitting. Therefore, any CR system necessarily relies on a

spectrum sensing device for determining which parts of the spectrum

band are available (spectrum holes). Even when a spectrum hole is

found and exploited, secondary users must periodically check whether

it has been reclaimed by the primary network, in which case the

spectrum hole must be quickly vacated.

Detection of primary users in CR is a challenging problem because

fading and shadowing may result in very weak received primary

signals. This means that the spectrum monitor must be able to operate

in very low SNR environments, preventing synchronization to and/or

decoding of these signals, even if the modulation format and parame-

ters of primary transmitters were known. Several detectors have been

proposed for CR applications (see [2] and references therein). Perhaps

the most popular (and computationally cheapest) one is the energy

detector (ED), which does not require any a priori information about

the primary system and does not need synchronization. The main

drawback of the ED resides in its sensitivity to uncertainties in the

background noise power, which may result in undetectable primary

signals if the SNR is below certain level, even as the observation time

goes to infinity [3]. Alternative approaches to the ED exploit some

features of primary signals, such as cyclostationarity or the presence

of pilots. However, these methods are sensitive to synchronization

errors [4], unavoidable in low SNR conditions.

Another way to improve the detection performance of spectrum

monitors consists in using multiple antennas. Intuitively, the presence

of any primary signal should result in spatial correlation in the

observations; a feature that can be exploited for detection since

the noise processes at different antennas can be safely assumed

statistically independent. This idea has been used in [5], [6] to

derive the generalized likelihood ratio test (GLRT) for the problem

of detecting spatially correlated signals without temporal structure. In

[7] this detector was extended to consider time series with (unknown)

temporal structure, showing a great improvement of the detector’s

performance. Nevertheless, in spite of its robustness, the performance

of the detector in [7] could be improved by taking into account that,

for single antenna transmitters,1 the spatial correlation matrix at the

CR node should be a rank-one matrix plus a diagonal term. This fact

has been used in [8], [9] to derive the GLRT for a rank-one source

without temporal structure in spatially uncorrelated white noises with

equal or different variances, respectively.

In this work we propose an extension of the works in [8],

[9] to consider (rank-one) signals and noises with arbitrary and

unknown power spectral densities (psd), i.e., vector-valued time series

with temporal correlation instead of vector-valued random variables.

Concretely, we derive the asymptotic GLRT for spatially uncorrelated

noises with equal or different unknown power spectral densities. The

proposed GLRT is based on the asymptotic likelihood, which can

be seen as an extension for multivariate processes of the Whittle’s

likelihood [10], and converges (in the mean square sense) to the

true likelihood. Finally, numerical results are presented to show the

improvement due to the exploitation of the temporal and spatial

structures.

II. PROBLEM FORMULATION

We consider the problem of detecting the presence of a primary

user in a cognitive radio (CR) node equipped with L antennas,

without any prior knowledge about the primary transmission (beyond

stationarity), the wireless channel, or the noise processes (beyond

spatial independence and stationarity). In particular, we formulate

the problem as a test for the covariance structure of the wide sense

stationary (WSS) vector-valued time series {x[n], n = 0,±1, . . .},

where x[n] = [x1[n], . . . , xL[n]]
T

is a vector of measurements at

time n, or equivalently, {xi[n]} is the time series at the i-th antenna.

The detection problem is given by

H1 : x[n] = (h ∗ s) [n] + v[n], n = 0, . . . , N − 1,
H0 : x[n] = v[n], n = 0, . . . , N − 1,

where s[n] is the primary signal, h[n] = [h1[n], . . . , hL[n]]
T

is

the frequency-selective single-input multiple-output (SIMO) channel

between the primary user and the CR node, ∗ denotes the convolution

operator; and v[n] = [v1[n], . . . , vL[n]]
T

is the additive noise vector,

which is assumed to be zero-mean circular complex Gaussian and

spatially uncorrelated, i.e., E{vi[n]v
∗
k [m]} = 0 for i 6= k and ∀n,m.

Finally, we must point out that no assumptions are made neither

on the temporal correlation of the primary signal nor on the noise

processes.

1The case of multiantenna primary users is an interesting research line and
will be considered in future work.
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Let us start by defining the data matrix

X =
[

x[0] x[1] . . . x[N − 1]
]

,

where the i-th row contains N -samples of the i-th time series {xi[n]},

and the n-th column is the n-th sample of the vector-valued time

series. The vector z = vec (X) stacks the columns of X, and taking

into account the stationarity assumption, its block-Toeplitz covariance

matrix is

R = E
[

zz
H
]

=











R[0] R[−1] · · · R[−N + 1]
R[1] R[0] · · · R[−N + 2]

.

..
.
..

. . .
.
..

R[N − 1] R[N − 2] · · · R[0]











,

where R[m] = E
[

x[n]xH [n−m]
]

is a matrix-valued correlation

function.

To proceed, we need the distribution of {x[n]} under H1. We

take it to be zero-mean, circular complex Gaussian. In addition to

resulting in tractable models and useful detectors, this assumption

is reasonable if the primary network employs orthogonal frequency

division multiplexing (OFDM) as modulation format. Thus, the

hypothesis testing problem becomes

H1 : z ∼ CN (0,R1) ,

H0 : z ∼ CN (0,R0) ,

where CN (0,Ri) denotes the circular complex Gaussian distribution

with zero mean and covariance matrix Ri.

III. THE ASYMPTOTIC LIKELIHOOD

Unlike our past work presented in [7], R1 is now a structured

matrix due to the presence of a rank-one primary source, which

complicates the ML estimation of R1 in closed-form. To overcome

this limitation, in this section, we introduce2 Theorem 1, which states

a convergence (in the mean square sense) between the log-likelihood

and its asymptotic version, and allows us to work with the log-

likelihood in the frequency domain. Contrary to the log-likelihood,

which is a function of the theoretical and estimated covariance

matrices, the asymptotic log-likelihood is a function of the theoretical

and estimated power spectral density (psd) matrices, and it can be

seen as an extension of the Whittle’s likelihood [10] for multivariate

processes.

Before presenting Theorem 1, let us introduce some definitions.

Consider an experiment producing M (M ≥ L) independent reali-

zations of the data vector z. Then, its log-likelihood is given by

log p (z0, . . . , zM−1;R) =− LNM log π −M log det (R)

−M tr
(

R̂R
−1

)

,

and the asymptotic log-likelihood is

log p
(

z0, . . . , zM−1;S
(

ejθ
))

= −LNM log π

−NM

∫ π

−π

log det
(

S

(

ejθ
)) dθ

2π

−NM

∫ π

−π

tr
(

Ŝ

(

ejθ
)

S
−1

(

ejθ
)) dθ

2π
, (1)

where R is the theoretical block-Toeplitz covariance ma-

trix, S
(

ejθ
)

= F (R[m]) is the theoretical psd matrix

and their sample estimates are R̂ = 1

M

∑M−1

i=0
ziz

H
i and

2For the sake of space, the proof of the theorem will be presented in a
forthcoming journal version of this paper.

Ŝ
(

ejθ
)

= 1

M

∑M−1

i=0
xi

(

ejθ
)

x
H
i

(

ejθ
)

, where xi

(

ejθ
)

=
1√
N

∑N−1

n=0
xi [n] e

−jθn.

Theorem 1: As N → ∞, the asymptotic log-likelihood converges

in the mean square sense to the true log-likelihood, i.e.,

lim
N→∞

E

[∣

∣

∣

∣

1

N
[log p (z0, . . . , zM−1;R)

− log p
(

z0, . . . , zM−1;S
(

ejθ
))

]∣

∣

∣

∣

2
]

= 0.

As a direct consequence of Theorem 1, the hypothesis test asym-

ptotically becomes

H1 : x
(

ejθ
)

∼ CN
(

0,S1

(

ejθ
))

,

H0 : x
(

ejθ
)

∼ CN
(

0,S0

(

ejθ
))

,

where S1

(

ejθ
)

= h
(

ejθ
)

h
H
(

ejθ
)

+Σ
(

ejθ
)

, S0

(

ejθ
)

= Σ
(

ejθ
)

,

h
(

ejθ
)

is the Fourier transform of the SIMO channel and Σ
(

ejθ
)

is a diagonal matrix which contains the psd of the noises. Therefore,

under H1 the psd matrix is a rank-one matrix plus a diagonal term

and under H0 it is only a diagonal matrix.

IV. GLRT FOR IID. NOISES

In this section, we derive the asymptotic GLRT for equally

distributed noises, i.e., Σ
(

ejθ
)

= Sv

(

ejθ
)

I, where Sv

(

ejθ
)

is the

unknown psd of the noise and I is the L × L identity matrix. The

log-GLRT is given by

l = max
Sv(ejθ)

log p0
(

z0, . . . , zM−1;Sv

(

ejθ
))

− max
h(ejθ),Sv(ejθ)

log p1
(

z0, . . . , zM−1;h
(

ejθ
)

, Sv

(

ejθ
))

,

(2)

and we need to find the ML estimates of the unknown parameters

under each hypothesis. Under H0, only Sv

(

ejθ
)

is unknown, and it

is easy to show that its ML estimate is Ŝv

(

ejθ
)

= 1

L
tr
(

Ŝ
(

ejθ
)

)

.

Now, under H1, we should find the ML estimates of Sv

(

ejθ
)

and

h
(

ejθ
)

. Before proceeding, we shall apply the determinant and the

matrix inversion lemmas to S1

(

ejθ
)

, which, for this particular case,

read as follows

det
(

S1

(

ejθ
))

=

(

1 +
h
H
(

ejθ
)

h
(

ejθ
)

Sv (ejθ)

)

SL
v

(

ejθ
)

, (3)

S
−1

1

(

ejθ
)

=
1

Sv (ejθ)
I−

h
(

ejθ
)

h
H
(

ejθ
)

S2
v (ejθ) + Sv (ejθ) ‖h (ejθ)‖2

. (4)

Substituting (3) and (4) in the asymptotic log-likelihood (1), and after

some tedious but straightforward algebra, the ML estimates are given

by

Ŝv

(

ejθ
)

=
1

L− 1

L
∑

i=2

λi

(

Ŝ

(

ejθ
))

,

ĥ

(

ejθ
)

=

√

λ1

(

Ŝ (ejθ)
)

− Ŝv (ejθ) · ev1

(

Ŝ

(

ejθ
))

,

where evi

(

Ŝ
(

ejθ
)

)

denotes the unit-norm eigenvector associated

to the i-th largest eigenvalue of Ŝ
(

ejθ
)

, which is denoted by

λi

(

Ŝ
(

ejθ
)

)

. Substituting in (2) the ML estimates under both
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hypotheses and omitting some constant terms, the log-GLRT is finally

given by

l = (L− 1)

∫ π

−π

log



1−
λMAX

(

ejθ
)

tr
(

Ŝ (ejθ)
)





dθ

2π

+

∫ π

−π

log
λMAX

(

ejθ
)

tr
(

Ŝ (ejθ)
)

dθ

2π
, (5)

where λMAX

(

ejθ
)

= λ1

(

Ŝ
(

ejθ
)

)

is the largest eigenvalue of

Ŝ
(

ejθ
)

and tr
(

Ŝ
(

ejθ
)

)

denotes the trace of Ŝ
(

ejθ
)

. Interestingly,

the GLRT in (5) nicely extends the result of [8] to time series with

temporal structure. For time series without temporal structure, [8]

shows that the GLRT is

l =
λ1

(

R̂[0]
)

tr
(

R̂[0]
) , (6)

where

R̂[0] =
1

NM

M−1
∑

i=0

XiX
H
i .

Therefore, the derived GLRT shows how the frequency-dependent

GLRTs obtained in [8] must be merged into a single test statistic when

the vector-valued random variable is replaced by a vector-valued time

series with temporal correlation.

V. GLRT FOR NON-IID NOISES IN THE LOW SNR REGIME

Let us now consider noises with different power spectral densities.

That is, the psd matrix Σ
(

ejθ
)

is still diagonal, but not necessarily

proportional to the identity matrix. The log-GLRT is now given by

l = max
Σ(ejθ)

log p0
(

z0, . . . , zM−1;Σ
(

ejθ
))

− max
h(ejθ),Σ(ejθ)

log p1
(

z0, . . . , zM−1;h
(

ejθ
)

,Σ
(

ejθ
))

.

Under H0, only Σ
(

ejθ
)

is unknown and its ML estimate is given

by Σ̂
(

ejθ
)

= D̂
(

ejθ
)

= diag
(

Ŝ
(

ejθ
)

)

, where diag
(

Ŝ
(

ejθ
)

)

denotes a diagonal matrix formed from the main diagonal of Ŝ
(

ejθ
)

.

The ML estimation of the unknown parameters under H1 does not

have, in general, a closed-form solution. However, as we will show, it

is possible to find a closed-form solution for the ML estimates in the

low signal-to-noise (SNR) regime. Although this could seem quite

restrictive, the low SNR region is of particular interest in cognitive

radio, which makes the detector useful.

Let us consider first that the psd of the noise processes are known

and define3

h̃

(

ejθ
)

=
Σ

−1
(

ejθ
)

h
(

ejθ
)

√

hH (ejθ)Σ−1 (ejθ)h (ejθ)
, (7)

α
(

ejθ
)

= h
H
(

ejθ
)

Σ
−1

(

ejθ
)

h

(

ejθ
)

, (8)

where h̃
H
(

ejθ
)

Σ
(

ejθ
)

h̃
(

ejθ
)

= 1. Substituting (7) and (8) in the

log-likelihood and taking into account the determinant and the matrix

inversion lemmas, it is straightforward to show that the ML estimate

of h̃
(

ejθ
)

is the (properly) normalized eigenvector associated to

λ1

(

Σ
−1
(

ejθ
)

Ŝ
(

ejθ
)

)

, and the ML estimate of α
(

ejθ
)

is given by

3We can easily obtain h
(

ejθ
)

from h̃
(

ejθ
)

and α
(

ejθ
)

.

α̂
(

ejθ
)

= λ1

(

Σ
−1
(

ejθ
)

Ŝ
(

ejθ
)

)

−1. Now, we should find the ML

estimate of Σ
(

ejθ
)

, and as previously pointed out, we shall consider

the low SNR region. In this situation, it is easy to see that S1

(

ejθ
)

is dominated by Σ
(

ejθ
)

, and therefore, the ML estimate of Σ
(

ejθ
)

is approximately given by Σ̂
(

ejθ
)

≈ D̂
(

ejθ
)

. Finally, taking into

account the ML estimates under both hypotheses and omitting some

constant terms, the GLRT is approximately given by

l ≈

∫ π

−π

log λMAX

(

ejθ
) dθ

2π
−

∫ π

−π

λMAX

(

ejθ
) dθ

2π
. (9)

where λMAX

(

ejθ
)

is the largest eigenvalue of D̂
−1
(

ejθ
)

Ŝ
(

ejθ
)

.

Similar to the GLRT derived in Section IV, the GLRT given by (9)

extends the results of [9] to vector-valued time series with temporal

structure. Specifically, the detector proposed in [9] is

l = λ1

(

D̂
−1[0]R̂[0]

)

, (10)

where D̂[0] = diag
(

R̂[0]
)

.

A. Relationship with the GCS-MAX

In this subsection, we show the relationship between the GLRT

in (9) and a recently proposed generalization of coherence spectrum

(GCS) for more than two signals [11]. We shall start by defining the

matrix

Ĉ

(

ejθ
)

= D̂
−1/2

(

ejθ
)

Ŝ

(

ejθ
)

D̂
−1/2

(

ejθ
)

,

which contains all the estimated pairwise complex coherence spectra.

Thus, the GCS-MAX is defined as follows [11]

γ̂
(

ejθ
)

=
1

L

[

λ1

(

Ĉ

(

ejθ
))

− 1
]

.

Taking into account that the eigenvalues of Ĉ
(

ejθ
)

are equal to the

eigenvalues of D̂
−1
(

ejθ
)

Ŝ
(

ejθ
)

, the GLRT given by (9) can be

rewritten as

l ≈

∫ π

−π

log
[

Lγ̂
(

ejθ
)

+ 1
] dθ

2π
− L

∫ π

−π

γ̂
(

ejθ
) dθ

2π
. (11)

The GCS-MAX was previously proposed as an statistic for the

multiple-channel detection problem in [12]. However, in [12], the

GCS-MAX was directly integrated, instead of using (11), which

yields the GLRT.

VI. SIMULATION RESULTS

In this section, the performance of the proposed detectors (eq. (5)

and eq. (9)) is illustrated by means of some simulation results. For

comparison purposes, we have also evaluated the following detectors:

• The GLRT for white time series, with equal (eq. (6)) and

different (eq. (10)) noise distributions.

• The GLRT for time series with temporal structure and an

unknown spatial structure [7], which is given by

l =

∫ π

−π

log det(Ĉ(ejθ))
dθ

2π
.

In the first example, we have used an OFDM-modulated DVB-T

signal4 with a bandwidth of 7.61 MHz. The signal undergoes pro-

pagation through a typical urban area channel: spatially uncorrelated

frequency-selective Rayleigh fading channel with exponential power

delay profile, unit power and delay spread of 0.779 µsec [13]. At

the spectrum monitor, the signals are downconverted and asynch-

ronously sampled at 16 MHz. The additive noises at each antenna

48K mode, 64-QAM, guard interval 1/4 and inner code rate 2/3.
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Fig. 1. ROC for the example with i.i.d. noises.

are independent zero-mean and complex white Gaussian processes

with common variance σ2, and the common SNR for all antennas

is defined as SNR(dB) = 10 log
10
(1/σ2). For the frequency-domain

detectors, the integrals are computed via the trapezoidal method with

K = 256 equispaced points of the estimated psd matrix.

Fig. 1 shows the receiver operational characteristic (ROC) curve

for this example. We have considered L = 5 antennas, M = 10
realizations of length N = 100, and a SNR = −10 dB. As expected,

the best results are obtained by the GLRT given by (5), which exploits

the previous knowledge about the identical distributions of the noise.

Additionally, we can see that the GLRT given by (9) provides only a

slight degradation because it does not exploit the fact that the noises’

psd are equal. Moreover, it is clear that the detectors exploiting

the time structure of the processes outperform their counterparts for

white processes and, obviously, the worst results are obtained by the

detector that does not exploit the rank-one structure. The increased

performance of the frequency domain detectors comes at the expense

of an increased computational complexity, which is approximately K
times bigger than their time domain counterparts.

In the second example, all the parameters remain the same with

the exception of the noise psd. In this case, each noise process has

variance aiσ
2 where ai, i = 1, . . . , L, is a uniform random variable

between 1 and the maximum noise mismatch (we will consider a

maximum mismatch of 3 dB), whereas the SNR is still defined as in

the previous example5 and its value is SNR = −6 dB. Fig. 2 shows

the ROC curve for this example where the most remarkable fact

is that the performance of the GLRT detectors that assume equally

distributed noises degrades noticeable, even for this small value of

noise mismatch.

VII. CONCLUSION

In this work we have presented a new multiantenna detector

for spectrum sensing in cognitive radio based on the asymptotic

likelihood. We have derived the GLRT for detecting a wideband

rank-one signal under spatially uncorrelated noise with equal or

different power spectral densities. Moreover, simulations have shown

the strong impact of incorrectly assuming equally distributed noises.

Thus, taking into account that, due to imperfect analog components

and calibration errors, different noises are commonly found in prac-

tice, we encourage the practical application of the GLRT for noises

5Obviously, the actual value of the SNR will be lower.
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Fig. 2. ROC for the example with different distributed noises.

with different distributions. Finally, it is important to point out that

this detector does not require synchronization at any level with the

primary signal, and no assumptions have been made about the spectra

of the primary signal and/or the noise.
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