
ARTICLE IN PRESS

/neucom
Neurocomputing 69 (2005) 198–215

www.elsevier.com/locate
Ab

092

doi

$

und
�

luis
s

,

005
A general solution to blind inverse problem
for sparse input signals$

David Luengoa,�, Ignacio Santamarı́ab, Luis Vielvab
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In this paper, we present a computationally efficient algorithm which provides a

solution to blind inverse problems for sparse input signals. The method takes advantag

clustering typical of sparse input signals to identify the channel matrix, solving four p

sequentially: detecting the number of input signals (i.e. clusters), estimating the direc

the clusters, estimating their amplitudes, and ordering them. Once the channel m

known, the pseudoinverse can be used as the canonical solution to obtain the input

When the input signals are not sparse enough, the algorithm can be applied after

transformation of the signals into a domain where they show a good degree of spars

performance of the algorithm for the different types of problems considered is evaluate

Monte Carlo simulations.
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Blind deconvolution (BDE), blind equalization (BEQ), and blind
separation (BSS) are three closely related problems where the ultimate goa
estimate the input signals using only the noisy output signals and some sta
assumptions about the inputs, but without explicit knowledge of the chan
BDE, the aim is to obtain the input signal of an unknown linear time-invarian
system when the noisy output signals are available [16]. In BEQ, the input sign
drawn from a known finite alphabet, and the objective is to obtain the sequ
input symbols that minimizes the probability of error [8]. Finally, in BSS th
signals are usually considered to be independent, and the goal is to recover a
of them (possibly subject to a global scale and rotation factor) imposi
restriction of maximum independence of the reconstructed signals [7].
In any of these applications, prior to the estimation of the input signa

system’s transfer function must be identified, either explicitly or implicitly
problem is known as blind channel identification (BCI) [8]. We consider s
which can have multiple inputs and outputs, with linear relations between th
and the output signals (i.e. a linear mixture), and finite impulse response
subchannels between all inputs and outputs. Hence, the solution of the BCI p
in general amounts to estimating a matrix: the channel’s or mixing matri

method presented in this paper solves the BCI problem, and then
Moore–Penrose’s pseudoinverse [10] as the canonical solution to invert the ch
matrix and obtain the input signals.
The algorithm presented in the sequel can be applied to SIMO and M

systems, as well as SISO and MISO systems with oversampling. When the syst
memory the output is often named a convolutive mixture, whereas for mem
systems it is usually called an instantaneous mixture. Depending on the num
inputs and outputs, we can distinguish three cases: overdetermined (more o
than inputs), determined (the same number), and underdetermined (less outpu
inputs). Our method deals in a unified way with SIMO and MIMO sy
instantaneous and convolutive mixtures, and the overdetermined, determin
underdetermined cases.
In order to do so we impose a condition on the input signals: sparsity.

overdetermined and determined cases the requirement of sparsity is not essen
be able to identify the mixture. For example, in BSS it is well-known that
determined case the input signals can be separated (up to a permutation and a
scale indeterminacy) as long as at most one of them is Gaussian and the
matrix is nonsingular [6]. In the underdetermined case, sparsity is necessary to
good estimates of the input signals, even if the mixing matrix is known [5]. Ho
many interesting signals satisfy this requisite (e.g. some biomedical signals, or
from seismic deconvolution and nondestructive evaluation), and for many
ones which are not sparse enough (e.g. audio, speech or images)
transformations such as the Fourier transform or expansions using an overco
basis can be used to increase their sparsity [5,31]. In this paper we assume t
input signals already satisfy the requirement of sparsity. The main idea



algorithm is to exploit the clustering of the output signals, which occurs typically
roblem
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when the input signals are sparse, to solve any blind signal processing p
sequentially in five stages:

(1) Detecting the number of input signals.

signal.
uster.
(2) Identifying the directions of the cluster related to each input
(3) Estimating the norm of the basis vector associated to each cl

(4) Sorting appropriately the clusters.

(5) Inverting the channel matrix to obtain the input signals.
The first step can be considered a ‘‘preprocessing’’ stage, necessary to estimate the
viding
st step
. Note
ple, in
ystems
nals is

odel is
ws the
tion 3,
ed. In
nce is
s, and
dimension of the problem. Steps (2)–(4) solve the BCI problem, pro
the channel matrix required to estimate the input signals. Finally, the la
inverts the mixture, achieving the desired identification of the input signals
that for certain problems one or more steps may not be required. For exam
some applications the number of input signals may be known. Moreover, for s
without memory any permutation and global scale factor in the input sig
usually acceptable [6], so steps (3) and (4) can be omitted.
The paper is organized as follows. In Section 2 the mathematical m

presented, including a parameterization of the mixing matrix which allo
partition of the BCI problem into three sequential subproblems. Next, in Sec
the probabilistic model for the sources and the output signals is introduc
Section 4 the five stages of the algorithm are shown, and its performa
evaluated. Then, Section 5 presents a brief discussion of potential application
finally the conclusions are shown in Section 6.
2. Mathematical model of the mixture

ts. The
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of the
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(1)

at our

(2)
2.1. Linear mixture

We consider a system with q sources and m observations or measuremen

observations are obtained from the sources as the output of a linear syste
additive white Gaussian noise (AWGN). Hence, we have a system of m

equations (output signals) with l unknowns (input signals). The number o
signals (lXq) depends on the type of problem: l ¼ q for a memoryless syste
l4q for a system with memory. In any case, m41 and l41, and, regardless
type of problem studied, we can always construct a MIMO system. Hen
information available for each sample can be expressed as

~yðnÞ ¼ ~H~sðnÞ þ ~wðnÞ.

Assuming a data set composed of N samples, f~yðnÞgN�1
n¼0 , all the information

disposal can be grouped together in a single equation as

~Y ¼ ~H~S þ ~W ¼ ~X þ ~W ,



where ~Y ¼ ½~yð0Þ; . . . ;~yðN � 1Þ	 is the m 
 N output matrix, constructed stacking N
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consecutive output vectors, ~yðnÞ ¼ ½y1ðnÞ; . . . ; ymðnÞ	
T; ~H is the m 
 l mixing

which provides the channel’s transfer function, and has a structure that depe
the type of problem considered; ~S ¼ ½~sð0Þ; . . . ;~sðN � 1Þ	T is the l 
 N input

which contains the input signals, and which has also a problem-dependent str
~W ¼ ½~wð0Þ; . . . ; ~wðN � 1Þ	 is the m 
 N AWGN matrix, with ~wðnÞ ¼ ½w1ð

wmðnÞ	
T, and where wiðnÞ�Nð0; s2wi

Þ, meaning that each component is Gaussia
zero mean and variance s2wi

; and, finally, ~X ¼ ~H~S ¼ ½~xð0Þ; . . . ; ~xðN � 1Þ	 is th
N output matrix in the absence of noise, with ~xðnÞ ¼ ½x1ðnÞ; . . . ; xmðnÞ	

T.

2.2. Parameterization of the mixing matrix

In the previous subsection we have shown the mathematical model for a
mixture. The mixing matrix, ~H, and the input vector, ~sðnÞ, have a structure w
problem dependent. However, regardless of the application and the structur
and ~s, we can consider a columnwise representation of the mixing matrix as

~H ¼ ½~h1; . . . ; ~hl 	,

where ~hi denotes the ith column of ~H, and hiðkÞ its kth element. Similarly,
element of the input vector for a given sample will be denoted as siðnÞ, regard
the memory of the problem and the number of sources.
It is well-known that the output vector at the nth sample can be expresse

linear combination of the columns of ~H [5,9,10]:

~yðnÞ ¼
Xl

i¼1

siðnÞ~hi þ ~wðnÞ.

Hence the columns of the mixing matrix, ~hi, can be seen as basis vectors in
dimensional space, and siðnÞ as the portion of each basis vector contained in
output vector. Thus, identifying ~H is equivalent to estimating the optimum
basis vectors.
Instead of tackling this problem directly (i.e. estimating each element of ~hi)

going to solve the equivalent problem of estimating the direction and magni
each basis vector, which amounts to solving a clustering problem. Al
clustering techniques are not new in BSS problems (e.g. see [29] for an alg
which uses a clustering technique, the E-M algorithm and ICA to solve a biom
problem), usually the methods proposed do not exploit explicitly the s
inherent in many applications.
In this paper we present the case m ¼ 2, and indicate how to extend the algor

the case m42. In order to do so, we express each basis vector in polar coordin

~hi ¼ ri½cosðyiÞ sinðyiÞ	
T,

where ri is the magnitude of the ith basis vector, given by

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hið1Þ

2
þ hið2Þ

2

q
,



and yi is the angle:

(7)
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yi ¼ arctan
hið2Þ

hið1Þ
.

This parameterization allows us to solve the BCI problem in four sequential
First of all, the number of basis vectors has to be estimated, i.e. we have to estab
dimension of the problem (number of clusters). Then, we have to estimate the di
of each basis vector (i.e. the orientation of the clusters). If we are consider
instantaneous mixture the other two steps are not required, since any permutati
global scale factor in the basis vectors is generally admissible. When we
convolutional mixture, two additional stages must be performed: estimati
magnitude of each basis vector, and ordering the vectors to avoid permutation
columns of ~H.
3. Statistical model of the input and output signals
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3.1. Model of the sources

The algorithms proposed to solve each stage of the BCI problem make us
important feature of many input signals: their sparsity. A source is said to be
if it is inactive at least 50% of the time (although typical inactivity periods in
applications can range from 75% to 95% of the time). We are going to chara
the sources statistically using their probability density function (PDF). Al
some authors consider a Laplacian PDF to model sparse input signals [5,31],
going to consider the model for the PDF used in [9,26], which allows a
flexibility in the selection of different PDFs depending on the type of pr
According to it, the PDF for each individual input signal is

pSi
ðsiÞ ¼ pidðsiÞ þ ð1� piÞf Si

ðsiÞ,

where pi is the sparsity factor for the ith input signal, which indicates the prob
of the source being inactive, f Si

ðsiÞ is the PDF of the ith source when it is acti
i ¼ 1; . . . ; l. When the PDF of each source is Gaussian, (8) becomes the well-
Bernouilli–Gaussian (BG) model, widely used in nondestructive evaluat
seismic deconvolution [16]:

pSi
ðsiÞ ¼ pidðsiÞ þ

1� piffiffiffiffiffiffiffiffiffiffiffi
2ps2si

q exp �
s2i
2s2si

 !
.

Although the BG model is the one used throughout the article, (8) allows the
any PDF of interest for the sources, such as Laplacian or uniform PDFs. No
since we are going to consider that the l input signals are independent, the P
the input vector is the product of (8) for all the input signals.
Now, we notice that, when the sparsity factor is high, there are many samp

which only one input signal is different from zero (i.e. active). Hence, if t



source is the only active one, the output signal can be written as

(10)
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~yðnÞ ¼ skðnÞ~hk þ ~wðnÞ.

Thus, in the absence of noise the output vector is aligned with the kth colum
(i.e. the direction of ~yðnÞ is given by the kth basis vector, ~hk). When the output
are corrupted by noise, the direction of ~yðnÞ will be spread around the true di
given by ~hk. In moderate/high signal to noise ratio (SNR) situations, this resu
clustering of the output vectors around the basis vectors, which can be explo
identify them [5,9]. Fig. 1 shows a typical scatter plot of the components
output vector, which displays the clustering characteristic of sparse input s
The data, generated synthetically using the BG model and a mixing matrix gi

~H ¼
0:3500 �0:3696 0:8600 0:1732 �0:1854

0:6062 0:1531 �0:5000 0:1000 �0:5706

� �
closely resemble the time series typical of applications such as seismic deconvo
(see Fig. 5 for a time-domain representation using a different ~H).

3.2. Model of the output signals

In order to develop the different stages of the algorithm we require a sta
model of the output signals. Since the algorithm is based on the clustering
Fig. 1. Scatter plot of the output signals mixed with (11) using the BG model for the sources with s2s ¼ 1,

p ¼ 0:75, N ¼ 10000, and SNR ¼ 30 dB.
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a model for this case. Considering an equal variance for all the sources, s2s , a
all the samples of the noise vector, s2w, the PDF of ~yðnÞ can be easily obtain
m ¼ 2. In the absence of noise, and assuming that only the kth input signal is
the PDF of each of the components of the output vector is simply a scaled ver
the PDF of sk. Since both outputs follow a deterministic relation, the PDF
output vector is

f ~X ð~xðnÞÞ ¼
1

jhkð1Þj
f Sk

x1ðnÞ

hkð1Þ

� 	
d x2ðnÞ �

hkð2Þ

hkð1Þ
x1ðnÞ

� 	
¼

1

jhkð2Þj
f Sk

x2ðnÞ

hkð2Þ

� 	
d x1ðnÞ �

hkð1Þ

hkð2Þ
x2ðnÞ

� 	
.

Since the noise is white and independent of the sources, the PDF of the noisy
vector is simply (12) convolved with the PDF of the noise. Considering AWG
the BG model, we obtain a zero-mean bivariate Gaussian PDF for the output
characterized by an autocorrelation matrix [15]

~Ry ¼ s2s~hk
~h
T

k þ s2w~I .

If we have Nk samples for which this happens (i.e. for which ~xðnÞ is aligned w
the global PDF is their product. Hence, the log-likelihood function in terms
magnitude and angle of the kth column is [15]

ln f ~Y ð~yÞ ¼ �
Nk

2
lnðr2ks

2
s þ s2wÞ

þ
s2s r2k

2s2wðr
2
ks

2
s þ s2wÞ

X
nk

ðy1ðnkÞ cos yk þ y2ðnkÞ sin ykÞ
2,

where the constant terms that do not depend on the angle or magnitude of
basis vector have been omitted, and nk ¼ fn : arctanðx2ðnÞ=x1ðnÞÞ ¼ ykg.
4. Description of the algorithm

ing the
mixing
ture to
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and a
he five
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criteria
In this section we describe in detail the five stages of the algorithm: detect
number of input signals, estimating the direction of each basis vector of the
matrix, estimating their magnitudes, ordering them, and inverting the mix
obtain the input signals. As discussed previously, in the case of a memoryless
the third and fourth steps are not required, since a global scale factor
permutation in the input signals are admissible. If the system has memory t
steps are essential.

4.1. Detection of the number of input signals

The standard way of detecting the number of narrowband input signals em
in a set of observations contaminated by noise is using information theoretic



such as Akaike’s information criterion (AIC) or Schwartz and Rissanen’s minimum
signals
lus an
proach
equires
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d have
require

m ¼ 2.
12], an
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description length (MDL) principle [30]. Both of them select the number of
which minimizes a cost function composed of the log-likelihood function p
additional term which penalizes the complexity of the model. However, the ap
presented in [30], based on the eigenvalues of the sample covariance matrix, r
more outputs than inputs, and consequently cannot be applied directly
underdetermined case. Several modifications and improvements of this metho
been presented, and some other algorithms are also available, but all of them
lom.
Nevertheless, in [15] the algorithm of [30] has been extended to the case

Noting the similarities between a power spectral density (PSD) and a PDF [
autocorrelation matrix can be constructed from the PDF of the angle, and u
the sample covariance matrix for the algorithm presented in [30]. The steps re
to detect the number of sources are the following:
(1) Obtain an N 
 1 vector of angles from the output signals:

(15)
in an
nsform
eyðnÞ ¼ arctan
y2ðnÞ

y1ðnÞ
,

where �poeyðnÞpp, and n ¼ 0; . . . ;N � 1.
(2) Noting the similarity between a PDF and a PSD, we may obta

‘‘autocorrelation function’’ (ACF) for the angles as the inverse Fourier tra

gles of
(16)

(17)

ði; jÞth
(IFT) of the estimated PDF of y [12]. Using a train of impulses at the an
the output signals as the estimated PDF,

pYðyÞ ¼
1

N

XN�1

n¼0

dðy� eyðnÞÞ
and taking its IFT, the ACF of the angles becomes

R̂Y½k	 ¼
1

2pN

XN�1

n¼0

expðjkeyðnÞÞ,
i.e. samples of the characteristic function for k ¼ 0; . . . ;N � 1.

(3) Construct the global autocorrelation matrix (ACM) using (17), so that its
element is given by ~̂RY ¼ R̂Y½i � j	 ¼ R̂



½j � i	.
eoretic

Y

(4) Now, for increasing model orders (i ¼ 1; . . . ;M), apply an information th
criterion (ITC) using the first i columns and rows of the ACM:
(18)

ameter
of the
nt the
the ith
which
se, the
ITCðiÞ ¼ � ln f ~Y ð~yjf̂
ðiÞ
Þ þ CðNÞvðiÞ,

where the first term is the log-likelihood function conditioned by the par
set of the ith hypothesis, f̂

ðiÞ
, and the second term penalizes the complexity

model. It is composed of CðNÞ, which is a function that takes into accou
size of the data set, and vðiÞ, which is the number of free parameters of
hypothesis. The two most commonly used ITCs are the AIC [2], for
CðNÞ ¼ 1, and the MDL [19,20], for which CðNÞ ¼ 1

2
lnN. In this ca



number of free parameters for both of them is vðiÞ ¼ ið2M � iÞ [30]. Since the
use the
M [30]:

(19)

es (19).
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AIC has been shown to yield estimators which are not consistent [30], we
MDL, which can be expressed as a function of the eigenvalues of the AC

MDLðiÞ ¼ � ln

QM
j¼iþ1l

1=ðM�iÞ
j

ð1=ðM � iÞÞ
PM

j¼iþ1lj

 !ðM�iÞN

þ
ið2M � iÞ

2
lnN,

where l14l24 � � �4lm are the eigenvalues of the ACM.
(5) The number of input signals is selected as the model order which minimiz
nd two
The probability of detection achieved is shown in Fig. 2 for the BG model a

ing the

ð20Þ
mixing matrices. The performance for an instantaneous mixture is tested us
following 2
 3 mixing matrix [14,15]:

~H ¼

cos
p
4


 �
0:3 cos

�7p
12

� 	
0:7 cos

2p
9

� 	
sin

p
4


 �
0:3 sin

�7p
12

� 	
0:7 sin

2p
9

� 	
266664

377775
¼

0:707 �0:077 0:536

0:707 �0:289 0:450

" #
.



The performance for a convolutive mixture is tested using the 2
 5 mixing matrix
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given by (11).
Although this method provides good results for moderate/high SNRs and

it cannot be directly extended to the case m42. In these cases, a simple ap
based on setting a threshold in the multidimensional PDF of the angl
be considered. This approach shows a satisfactory performance for mo
high SNRs, but requires the setting of a subjective threshold. A better alter
if a clustering method such as the competitive one presented in [13] i
for the next step, is to start with a high number of basis vectors and co
some merging strategy (e.g. two vectors merge when they differ in less
given angle). The final number of basis vectors equals the number of est
input signals. This method presents the advantage of providing a joint s
to the first two problems: detecting the number of signals and esti
the directions of the basis vectors. However, the issue of converge
any clustering algorithm should be carefully considered to ensure con
solutions.

4.2. Estimation of the direction of the basis vectors

There are several ways to estimate the directions of the basis vecto
the columns of the mixing matrix), but they are all based on the alig
between the output vectors and the basis vectors when only one input
is different from zero. In [5] a potential function based clustering appro
used. In [9] an approach based on Parzen windowing is shown to provid
good results. The competitive clustering approach presented in [13] ca
be used. However, in this paper we consider two alternatives: the esti
from the PSD considered in the previous section, and an histogram
estimator.
In the previous section we noted the close relation between a PDF and a PS

constructed an ACF (17). Taking the Fourier transform of (17) we obtain
function, and can apply any of the rich variety of spectral estimation tech
available [22]. This approach has already been considered in [28], where the E
method was used to estimate the peaks corresponding to each basis vector. Ho
although this method provides very good results, it also requires a
computational cost. Thus, as a cost-efficient alternative, we are going to
histogram-based estimator. This approach was considered in [9] and dis
because of its poor results. Nevertheless, it can be greatly improved if we consi
ML estimator of the angles inside each bin, instead of the center of the select
The method proceeds as follows:

(1) Construct a histogram of angles in the range ½0; p	 from the set of

typical
oid the
estimated previously for each output signal, eyðnÞ. An example of a
estimated PDF for the mixture given by (11) is shown in Fig. 3.

(2) Select the m highest peaks of the histogram, establishing a strategy to av
detection of false peaks due to noise.



(3) Apply the ML estimator for the angles inside each of the selected bins. If we
tor for
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(21)

the Nk
consider a BG model, it can be easily seen from (14) that the ML estima
the angle of the kth basis vector is [15]

ŷk ¼
1

2
arctan

2~yT1~y2
~yT1~y1 �~yT2~y2

 !
,

where ~y1 and ~y2 are the vectors with the first and second components of
output signals whose angle falls inside the kth selected bin.
Note that, when the exact PDF of the input signals is unknown or the ML
ng the
ndent.
fficulty
grams
owing
m ¼ 3
o be a
equate
ains an
estimator cannot be obtained, we can estimate the angles simply averagi
estimates which fall inside each selected bin, making this stage PDF-indepe
This approach provides good results for m ¼ 2, but presents an increasing di
and computational cost as m increases (searches in ðm � 1Þ-dimensional histo
are required). The same happens for the potential function and Parzen wind
approaches, and the approach based on the PSD (although an estimator for
has been proposed in [27]). The only viable alternative for high m seems t
clustering approach such as the one presented in [13]. However, the ad
initialization of the basis vectors for this algorithm is a delicate task and rem
open problem.



4.3. Estimation of the amplitude of the basis vectors
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So far we have identified the mixing matrix up to a scale and a permu
indeterminacy. In the case of an instantaneous mixture the BCI problem is
and the only remaining step is inverting the mixture to obtain the input s
However, for convolutive mixtures we need to estimate the relative amplitudes
columns and their order. From the previous section we have a set of s
approximately aligned with each of the l basis vectors. Hence, we can easily
the ML estimator of their magnitudes for each bin, which is readily obtaine
(14) [15]:

rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~y1 cos yk þ~y2 sin ykÞ

T
ð~y1 cos yk þ~y2 sin ykÞ � Nks2w
Nks2s

s
,

where ~y1 and ~y2 are the vectors obtained in the previous stage. This approach
easily extended for m42. Its main restriction is that it is dependent on the P
the input signals, which may not be precisely known for some applications. In
cases, when the noise is zero mean and independent of the input signals, we no

Ef~yðnkÞ
T~yðnkÞg ¼ s2s r2k þ s2w,

where Ef�g denotes the mathematical expectation, taken over the set of o
aligned with the kth basis vector. Hence, in these cases the sample mean can b
to estimate the magnitude of each column of ~H:

rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nk
~yðnkÞ

T~yðnkÞ � Nks2w
Nks2s

s
.

4.4. Ordering the basis vectors

The permutation indeterminacy can be removed by exploiting the te
correlation between consecutive input vectors. The ordering method is based
fact that, in the absence of noise, a nonzero sample of the ith source (1
surrounded by li � 1 zeros is sequentially aligned with the li consecutive colu
the mixing matrix related to its impulse response. Obviously, the other source
also be inactive during those samples. Hence, we can estimate the order of th
vectors considering the set of output samples which are sequentially aligned
different basis vectors, and setting the most likely column order as the one
appears most often. In a certain sense this is the ML estimator of the column
since we are estimating the most likely order of the basis vectors based
empirical PDF of their order, and works very well under moderate/high
conditions.
At this point the BCI problem has been solved, both for the instantaneous a

convolutive mixtures. As an example of the performance of the whol
algorithm, Fig. 4 shows the MSE obtained for the outputs for the instant
mixture using (20) and the convolutive mixture using (11). The results f
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Fig. 4. Normalized MSE (dB) as a function of the SNR for p ¼ 0:8 and ~H given by (20) for the

instantaneous mixture (dashed line) and (11) for the convolutive mixture (continuous line).
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increased number of sources, and the additional variance introduced
magnitude estimation step.

4.5. Inverting the mixture

In the determined case the input signals are completely characterized
mixing matrix. In the overdetermined case, the pseudoinverse provides the s
with minimun L2 norm of the error, and hence it is commonly used.
underdetermined case, the pseudoinverse is the solution with minimum L2 nor
and thus can be considered the canonical inversion strategy. However, it ha
shown in [26] that much better inversion strategies can be developed. For exam
[26] a Bayesian inversion strategy, which has a high computational cost, ha
developed, altogether with several heuristic criteria. In this paper we use on
simple heuristic criterion for the inversion: the output signals which are aligne
some basis vector are inverted using only the corresponding column of ~H, w
the rest of the outputs are inverted using the pseudoinverse. An example
inversion of the mixture is shown in Fig. 5 for the instantaneous case, where th
resemblance of both signals, in spite of a scale factor and the appearance o
peaks, can be appreciated.



5. Applications
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Fig. 5. Example of an original input signal and the recovered signal for an instantaneous mixture given by

(20) with p ¼ 0:9 and SNR ¼ 30 dB.
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In Section 2.1 it was pointed out that the structure of ~H and~sðnÞ depended
problem at hand. In this section we describe briefly the different possible str
and some associated applications.

5.1. SISO systems with oversampling

In this case there is a single source, sðnÞ, and channel, hðnÞ. Multiple output
are obtained using an oversampling ratio m. Now the elements of the input
are siðnÞ ¼ sðn � iÞ, and the elements of the channel’s matrix are hij ¼ hði � 1
1ÞmÞ for i; j ¼ 1; . . . ;N.
This approach is very common in BEQ, where a SIMO system can be cons

from a SISO problem by oversampling [8]. Using this technique Tong et al. pr
an algorithm based on subspace methods for identifying ~H using only second
statistics of the output signals [24,25]. Since then, there have been several exte
of this idea (see for example [1,17,23]). These methods provide very good resu
have a high computational cost. The algorithm described in this article co
applied to obtain a low cost solution of the problem. The main challenge in th
is finding a domain where the input signals are sparse enough.



5.2. SIMO systems with convolutive mixtures
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In this case, the ith element of the input vector at time n is again siðnÞ ¼ s

and the elements of the mixing matrix are hij ¼ hiðn � j � 1Þ, where hið�Þ deno
subchannel from the input to the ith observation.
This situation is typical in many BDE problems, such as seismic deconvo

[16] and nondestructive evaluation [21], where the output of the system in re
to an input signal is measured using several sensors placed at different location
standard approach to this problem is to perform maximum likelihood
deconvolution [16], but due to its high computational cost simpler methods m
preferred in some cases. Besides, in these applications the input signals ar
sparse enough to apply the techniques of the article in the time domain, w
transforming them into any other domain.

5.3. MIMO systems with instantaneous mixtures

The simplest MIMO systems are those in which we have an instantaneous m
In this case, the nth sample of the observation vector is simply a weighted
combination of the input signals. Thus, each element of the mixing matr
represents the contribution of the jth source to the ith observation.
This is the most widely used model in blind source separation (BSS), beca

simplicity allows the obtention of good solutions under certain assumption
determined case has been widely studied, and excellent solutions are available
on statistical principles, independent component analysis, and information th
criteria (see for example [4,6,11]). The underdetermined case is more challengi
has received little attention until recently, when several methods have been pr
[5,9,31]. The algorithm presented in this paper follows a similar approach, a
be considered an extension of the methods presented separately for BSS and
[9,14,15].

5.4. MIMO systems with convolutive mixtures

The last case is a combination of the two previous problems: a system wit
sources, and memory. This problem appears typically in BSS with conv
mixtures [7], and in BEQ of MIMO communication systems [8,18], and is
solved in the frequency domain [3]. The algorithm presented in this article is
solve the MIMO problem with convolutive mixtures in the same way as th
three problems, in the time domain, as long as the input signals are sparse e
6. Conclusions

solving
blind

oposed
In this paper we have presented a computationally efficient algorithm for
inverse problems when the input signals are sparse, which can be applied to
deconvolution, blind equalization, and blind source separation. The pr



method takes advantage of the sparsity of the input signals and a parameterization
lve the
mating
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of the columns of the mixing matrix (basis vectors) in polar coordinates to so
problem in five sequential stages: detecting the number of input signals, esti
the directions of the basis vectors, estimating their amplitudes, ordering th
vectors, and inverting the mixture. Explicit formulas have been provided for t
model and m ¼ 2, and considerations for the extension to different PDFs and
have been done. Future research lines include the extension of the method
arbitrary number of output signals, to different PDFs of the sources or even s
with unknown PDFs, and for nonlinear and post-nonlinear mixtures, possibl
spectral clustering techniques.
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