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Abstract

In this paper, we present a computationally efficient algorithm which provides a general
solution to blind inverse problems for sparse input signals. The method takes advantage of the
clustering typical of sparse input signals to identify the channel matrix, solving four problems
sequentially: detecting the number of input signals (i.e. clusters), estimating the directions of
the clusters, estimating their amplitudes, and ordering them. Once the channel matrix is
known, the pseudoinverse can be used as the canonical solution to obtain the input signals.
When the input signals are not sparse enough, the algorithm can be applied after a linear
transformation of the signals into a domain where they show a good degree of sparsity. The
performance of the algorithm for the different types of problems considered is evaluated using
Monte Carlo simulations.
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1. Introduction

Blind deconvolution (BDE), blind equalization (BEQ), and blind source
separation (BSS) are three closely related problems where the ultimate goal is to
estimate the input signals using only the noisy output signals and some statistical
assumptions about the inputs, but without explicit knowledge of the channel. In
BDE, the aim is to obtain the input signal of an unknown linear time-invariant (LTT)
system when the noisy output signals are available [16]. In BEQ, the input signals are
drawn from a known finite alphabet, and the objective is to obtain the sequence of
input symbols that minimizes the probability of error [8]. Finally, in BSS the input
signals are usually considered to be independent, and the goal is to recover a replica
of them (possibly subject to a global scale and rotation factor) imposing the
restriction of maximum independence of the reconstructed signals [7].

In any of these applications, prior to the estimation of the input signals, the
system’s transfer function must be identified, either explicitly or implicitly. This
problem is known as blind channel identification (BCI) [8]. We consider systems
which can have multiple inputs and outputs, with linear relations between the input
and the output signals (i.e. a linear mixture), and finite impulse response (FIR)
subchannels between all inputs and outputs. Hence, the solution of the BCI problem
in general amounts to estimating a matrix: the channel’s or mixing matrix. The
method presented in this paper solves the BCI problem, and then uses
Moore-Penrose’s pseudoinverse [10] as the canonical solution to invert the channel’s
matrix and obtain the input signals.

The algorithm presented in the sequel can be applied to SIMO and MIMO
systems, as well as SISO and MISO systems with oversampling. When the system has
memory the output is often named a convolutive mixture, whereas for memoryless
systems it is usually called an instantaneous mixture. Depending on the number of
inputs and outputs, we can distinguish three cases: overdetermined (more outputs
than inputs), determined (the same number), and underdetermined (less outputs than
inputs). Our method deals in a unified way with SIMO and MIMO systems,
instantaneous and convolutive mixtures, and the overdetermined, determined and
underdetermined cases.

In order to do so we impose a condition on the input signals: sparsity. In the
overdetermined and determined cases the requirement of sparsity is not essential to
be able to identify the mixture. For example, in BSS it is well-known that in the
determined case the input signals can be separated (up to a permutation and a global
scale indeterminacy) as long as at most one of them is Gaussian and the mixing
matrix is nonsingular [6]. In the underdetermined case, sparsity is necessary to obtain
good estimates of the input signals, even if the mixing matrix is known [5]. However,
many interesting signals satisfy this requisite (e.g. some biomedical signals, or signals
from seismic deconvolution and nondestructive evaluation), and for many other
ones which are not sparse enough (e.g. audio, speech or images) linear
transformations such as the Fourier transform or expansions using an overcomplete
basis can be used to increase their sparsity [5,31]. In this paper we assume that the
input signals already satisfy the requirement of sparsity. The main idea of the
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algorithm is to exploit the clustering of the output signals, which occurs typically
when the input signals are sparse, to solve any blind signal processing problem
sequentially in five stages:

(1) Detecting the number of input signals.

(2) Identifying the directions of the cluster related to each input signal.
(3) Estimating the norm of the basis vector associated to each cluster.
(4) Sorting appropriately the clusters.

(5) Inverting the channel matrix to obtain the input signals.

The first step can be considered a “preprocessing’ stage, necessary to estimate the
dimension of the problem. Steps (2)—(4) solve the BCI problem, providing
the channel matrix required to estimate the input signals. Finally, the last step
inverts the mixture, achieving the desired identification of the input signals. Note
that for certain problems one or more steps may not be required. For example, in
some applications the number of input signals may be known. Moreover, for systems
without memory any permutation and global scale factor in the input signals is
usually acceptable [6], so steps (3) and (4) can be omitted.

The paper is organized as follows. In Section 2 the mathematical model is
presented, including a parameterization of the mixing matrix which allows the
partition of the BCI problem into three sequential subproblems. Next, in Section 3,
the probabilistic model for the sources and the output signals is introduced. In
Section 4 the five stages of the algorithm are shown, and its performance is
evaluated. Then, Section 5 presents a brief discussion of potential applications, and
finally the conclusions are shown in Section 6.

2. Mathematical model of the mixture
2.1. Linear mixture

We consider a system with g sources and m observations or measurements. The
observations are obtained from the sources as the output of a linear system plus
additive white Gaussian noise (AWGN). Hence, we have a system of m linear
equations (output signals) with [ unknowns (input signals). The number of input
signals (/> ¢) depends on the type of problem: / = ¢ for a memoryless system, and
/> ¢ for a system with memory. In any case, m>1 and /> 1, and, regardless of the
type of problem studied, we can always construct a MIMO system. Hence, the
information available for each sample can be expressed as

J(n) = H3(n) + w(n). (1)

Assuming a data set composed of N samples, {f(n)}fl\:ol, all the information at our
disposal can be grouped together in a single equation as

Y=HS+W=X+W, )
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where ¥ = [(0),..., (N — 1)] is the m x N output matrix, constructed stacking N
consecutive output vectors, y(n) = [y,(n), ..., ym(n)]T; H is the m x [ mixing matrix,
which provides the channel’s transfer function, and has a structure that depends on
the type of problem considered; S = [5(0), ...,5(N — )] is the I x N input matrix,
which contains the input signals, and which has also a problem-dependent structure;
W = [#(0),...,w(N —1)] is the m x N AWGN matrix, with w(n) = [wi(n),...,

wm(m)]T, and where w;(n)~.4(0, aﬁ,i), meaning that each component is Gaussian with
zero mean and variance aﬁ,i; and, finally, X = HS = [X(0),...,X(N — 1)] is the m x
N output matrix in the absence of noise, with X(n) = [x(n), ..., Xu(m)] .

2.2. Parameterization of the mixing matrix

In the previous subsection we have shown the mathematical model for a linear
mixture. The mixing matrix, H, and the input vector, 5(n), have a structure which is
problem dependent. However, regardless of the application and the structure of H
and §, we can consider a columnwise representation of the mixing matrix as

H=1[h,....h) 3)

where ﬁ, denotes the ith column of H, and %;(k) its kth element. Similarly, the ith
element of the input vector for a given sample will be denoted as s;(n), regardless of
the memory of the problem and the number of sources.

It is well-known that the output vector at the nth sample can be expressed as a
linear combination of the columns of H [5,9,10]:

si(n)h; + w(n). @)
1

i) =

!
=
Hence the columns of the mixing matrix, /Z, can be seen as basis vectors in an m-
dimensional space, and s;(n) as the portion of each basis vector contained in a given
output vector. Thus, identifying H is equivalent to estimating the optimum set of
basis vectors. R

Instead of tackling this problem directly (i.e. estimating each element of /;) we are
going to solve the equivalent problem of estimating the direction and magnitude of
each basis vector, which amounts to solving a clustering problem. Although
clustering techniques are not new in BSS problems (e.g. see [29] for an algorithm
which uses a clustering technique, the E-M algorithm and ICA to solve a biomedical
problem), usually the methods proposed do not exploit explicitly the sparsity
inherent in many applications.

In this paper we present the case m = 2, and indicate how to extend the algorithm to
the case m> 2. In order to do so, we express each basis vector in polar coordinates as

hi = ri[cos(0;) sin(0)]", (5)

where r; is the magnitude of the ith basis vector, given by

ri =\ hi(1)’ + h(2)%, (6)
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and 6; is the angle:

hi(2)
hi(1)’

This parameterization allows us to solve the BCI problem in four sequential stages.
First of all, the number of basis vectors has to be estimated, i.e. we have to establish the
dimension of the problem (number of clusters). Then, we have to estimate the direction
of each basis vector (i.e. the orientation of the clusters). If we are considering an
instantaneous mixture the other two steps are not required, since any permutation and
global scale factor in the basis vectors is generally admissible. When we have a
convolutional mixture, two additional stages must be performed: estimating the
magnitude of each basis vector, and ordering the vectors to avoid permutations in the
columns of H.

0; = arctan

™)

3. Statistical model of the input and output signals
3.1. Model of the sources

The algorithms proposed to solve each stage of the BCI problem make use of an
important feature of many input signals: their sparsity. A source is said to be sparse
if it is inactive at least 50% of the time (although typical inactivity periods in many
applications can range from 75% to 95% of the time). We are going to characterize
the sources statistically using their probability density function (PDF). Although
some authors consider a Laplacian PDF to model sparse input signals [5,31], we are
going to consider the model for the PDF used in [9,26], which allows a greater
flexibility in the selection of different PDFs depending on the type of problem.
According to it, the PDF for each individual input signal is

s (si) = p;o(s) + (1 — p)f5,(s0), ®)

where p; is the sparsity factor for the ith input signal, which indicates the probability
of the source being inactive, f's (s;) is the PDF of the ith source when it is active, and
i=1,...,1. When the PDF of each source is Gaussian, (8) becomes the well-known
Bernouilli-Gaussian (BG) model, widely used in nondestructive evaluation or
seismic deconvolution [16]:

1 —np. 52
Ps,(51) = pid(s) + ——Llexp | — = | ©)
\ /27[0'32.’_ 20&-

Although the BG model is the one used throughout the article, (8) allows the use of
any PDF of interest for the sources, such as Laplacian or uniform PDFs. Note that,
since we are going to consider that the / input signals are independent, the PDF of
the input vector is the product of (8) for all the input signals.

Now, we notice that, when the sparsity factor is high, there are many samples for
which only one input signal is different from zero (i.e. active). Hence, if the kth
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source is the only active one, the output signal can be written as

F(n) = sp(n)y + W(n). (10)

Thus, in the absence of noise the output vector is aligned with the kth column of H
(i.e. the direction of y(n) is given by the kth basis vector, Ek). When the output signals
are corrupted by noise, the direction of 3(n) will be spread around the true direction
given by I In moderate/high signal to noise ratio (SNR) situations, this results in a
clustering of the output vectors around the basis vectors, which can be exploited to
identify them [5,9]. Fig. 1 shows a typical scatter plot of the components of the
output vector, which displays the clustering characteristic of sparse input signals.
The data, generated synthetically using the BG model and a mixing matrix given by

_, 0.3500 —-0.3696 0.8600 0.1732 —0.1854

= 11
0.6062 0.1531 —0.5000 0.1000 —0.5706 (b

closely resemble the time series typical of applications such as seismic deconvolution
(see Fig. 5 for a time-domain representation using a different H).

3.2. Model of the output signals

In order to develop the different stages of the algorithm we require a statistical
model of the output signals. Since the algorithm is based on the clustering of the
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Fig. 1. Scatter plot of the output signals mixed with (11) using the BG model for the sources with ¢2 = 1,
p=0.75, N = 10000, and SNR = 30dB.
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outputs around the basis vectors when there is only one nonzero input, we just need
a model for this case. Considering an equal variance for all the sources, ¢2, and for
all the samples of the noise vector, o2, the PDF of J(n) can be easily obtained for
m = 2. In the absence of noise, and assuming that only the kth input signal is active,
the PDF of each of the components of the output vector is simply a scaled version of
the PDF of s;. Since both outputs follow a deterministic relation, the PDF of the

output vector is

FoGm) = ——r (’“(”)) 5 (Xz(") _ 2 x1<n))

|7 (1)] hi(1) hi(1)
1 x2(n) hy(1)
= o s (F(z)) 0 (x‘(”) T @) xZ(”))' (12

Since the noise is white and independent of the sources, the PDF of the noisy output
vector is simply (12) convolved with the PDF of the noise. Considering AWGN and
the BG model, we obtain a zero-mean bivariate Gaussian PDF for the output vector
characterized by an autocorrelation matrix [15]

— - =T -
R, = a’hyhy + o> 1. (13)

If we have Ny samples for which this happens (i.e. for which X(#n) is aligned with Ek),
the global PDF is their product. Hence, the log-likelihood function in terms of the
magnitude and angle of the kth column is [15]

. N
Inf () = — Tkln(rio-f +32)

o272 |
" mz (1 () cos O + y(mi) sin O, ), (14)
w\ ks

w Ny

where the constant terms that do not depend on the angle or magnitude of the kth
basis vector have been omitted, and n; = {n : arctan(x,(n)/x;(n)) = 0x}.

4. Description of the algorithm

In this section we describe in detail the five stages of the algorithm: detecting the
number of input signals, estimating the direction of each basis vector of the mixing
matrix, estimating their magnitudes, ordering them, and inverting the mixture to
obtain the input signals. As discussed previously, in the case of a memoryless system
the third and fourth steps are not required, since a global scale factor and a
permutation in the input signals are admissible. If the system has memory the five
steps are essential.

4.1. Detection of the number of input signals

The standard way of detecting the number of narrowband input signals embedded
in a set of observations contaminated by noise is using information theoretic criteria
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such as Akaike’s information criterion (AIC) or Schwartz and Rissanen’s minimum
description length (MDL) principle [30]. Both of them select the number of signals
which minimizes a cost function composed of the log-likelihood function plus an
additional term which penalizes the complexity of the model. However, the approach
presented in [30], based on the eigenvalues of the sample covariance matrix, requires
more outputs than inputs, and consequently cannot be applied directly to the
underdetermined case. Several modifications and improvements of this method have
been presented, and some other algorithms are also available, but all of them require
I<m.

Nevertheless, in [15] the algorithm of [30] has been extended to the case m = 2.
Noting the similarities between a power spectral density (PSD) and a PDF [12], an
autocorrelation matrix can be constructed from the PDF of the angle, and used as
the sample covariance matrix for the algorithm presented in [30]. The steps required
to detect the number of sources are the following:

(1) Obtain an N x 1 vector of angles from the output signals:

ya(n)

yi(n)’
where —n<5(n)<n, andn=0,...,N—1.

(2) Noting the similarity between a PDF and a PSD, we may obtain an
“autocorrelation function” (ACF) for the angles as the inverse Fourier transform
(IFT) of the estimated PDF of 0 [12]. Using a train of impulses at the angles of
the output signals as the estimated PDF,

E(n) = arctan

(15)

| Nl _
Po0) =D 60 — 0(n) (16)
n=0
and taking its IFT, the ACF of the angles becomes
. | M=l _
Rolk] = m;expokem)), (17)
i.e. samples of the characteristic function for k =0,...,N — 1.

(3) Construct the global autocorrelation matrix (ACM) using (17), so that its (i, j)th
element is given by Ro = R@[i —Jjl= R;U — 1.

(4) Now, for increasing model orders (i = 1,..., M), apply an information theoretic
criterion (ITC) using the first i columns and rows of the ACM:

ITCG) = — Inf 331") + CN (i), (18)

where the first term is the log-likelihood function conditioned by the parameter
set of the ith hypothesis, (35 I , and the second term penalizes the complexity of the
model. It is composed of C(N), which is a function that takes into account the
size of the data set, and v(i), which is the number of free parameters of the ith
hypothesis. The two most commonly used ITCs are the AIC [2], for which
C(N)=1, and the MDL [19,20], for which C(N)=1InN. In this case, the
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Fig. 2. Probability of detection for an instantaneous mixture given by (20), and a convolutive mixture
given by (11), with p = 0.75, and N = 10000.

number of free parameters for both of them is v(i) = i(2M — i) [30]. Since the
AIC has been shown to yield estimators which are not consistent [30], we use the
MDL, which can be expressed as a function of the eigenvalues of the ACM [30]:

L, 2= NN o g
ji=i+17%j -

ﬂ =
/(M —ipy2 ,u,-) 2

where A} > Ay, > - -+ >, are the eigenvalues of the ACM.
(5) The number of input signals is selected as the model order which minimizes (19).

InN, (19)

MDL(i)) = — In <

The probability of detection achieved is shown in Fig. 2 for the BG model and two
mixing matrices. The performance for an instantaneous mixture is tested using the
following 2 x 3 mixing matrix [14,15]:

I i —TIn 2n
cos (Z) 0.3cos (7) 0.7 cos (;)
. (T . (—T=n . (2n

sin (Z) 0.3 sin (ﬁ) 0.7 sin (;)

[0.707 —0.077 0.536
10.707 —0.289 0450 |

H=

(20)
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The performance for a convolutive mixture is tested using the 2 x 5 mixing matrix
given by (11).

Although this method provides good results for moderate/high SNRs and m = 2,
it cannot be directly extended to the case m>2. In these cases, a simple approach
based on setting a threshold in the multidimensional PDF of the angles can
be considered. This approach shows a satisfactory performance for moderate/
high SNRs, but requires the setting of a subjective threshold. A better alternative,
if a clustering method such as the competitive one presented in [13] is used
for the next step, is to start with a high number of basis vectors and consider
some merging strategy (e.g. two vectors merge when they differ in less than a
given angle). The final number of basis vectors equals the number of estimated
input signals. This method presents the advantage of providing a joint solution
to the first two problems: detecting the number of signals and estimating
the directions of the basis vectors. However, the issue of convergence of
any clustering algorithm should be carefully considered to ensure consistent
solutions.

4.2. Estimation of the direction of the basis vectors

There are several ways to estimate the directions of the basis vectors (i.e.
the columns of the mixing matrix), but they are all based on the alignment
between the output vectors and the basis vectors when only one input signal
is different from zero. In [5] a potential function based clustering approach is
used. In [9] an approach based on Parzen windowing is shown to provide very
good results. The competitive clustering approach presented in [13] can also
be used. However, in this paper we consider two alternatives: the estimation
from the PSD considered in the previous section, and an histogram-based
estimator.

In the previous section we noted the close relation between a PDF and a PSD, and
constructed an ACF (17). Taking the Fourier transform of (17) we obtain a PSD
function, and can apply any of the rich variety of spectral estimation techniques
available [22]. This approach has already been considered in [28], where the ESPRIT
method was used to estimate the peaks corresponding to each basis vector. However,
although this method provides very good results, it also requires a high
computational cost. Thus, as a cost-efficient alternative, we are going to use a
histogram-based estimator. This approach was considered in [9] and discarded
because of its poor results. Nevertheless, it can be greatly improved if we consider the
ML estimator of the angles inside each bin, instead of the center of the selected bin.
The method proceeds as follows:

(1) Construct a histogram of angles in the range [0,n] from the set of angles
estimated previously for each output signal, 6(n). An example of a typical
estimated PDF for the mixture given by (11) is shown in Fig. 3.

(2) Select the m highest peaks of the histogram, establishing a strategy to avoid the
detection of false peaks due to noise.
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Fig. 3. Example of the estimated PDF (histogram) of the angle for a convolutive mixture given by (11)
with p = 0.9, and SNR = 30dB.

(3) Apply the ML estimator for the angles inside each of the selected bins. If we
consider a BG model, it can be easily seen from (14) that the ML estimator for
the angle of the kth basis vector is [15]

. 1 2375
0 = = arctan % , 21
2 P4 )

where ¥, and ¥, are the vectors with the first and second components of the Ny
output signals whose angle falls inside the kth selected bin.

Note that, when the exact PDF of the input signals is unknown or the ML
estimator cannot be obtained, we can estimate the angles simply averaging the
estimates which fall inside each selected bin, making this stage PDF-independent.
This approach provides good results for m = 2, but presents an increasing difficulty
and computational cost as m increases (searches in (m — 1)-dimensional histograms
are required). The same happens for the potential function and Parzen windowing
approaches, and the approach based on the PSD (although an estimator for m = 3
has been proposed in [27]). The only viable alternative for high m seems to be a
clustering approach such as the one presented in [13]. However, the adequate
initialization of the basis vectors for this algorithm is a delicate task and remains an
open problem.
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4.3. Estimation of the amplitude of the basis vectors

So far we have identified the mixing matrix up to a scale and a permutation
indeterminacy. In the case of an instantaneous mixture the BCI problem is solved,
and the only remaining step is inverting the mixture to obtain the input signals.
However, for convolutive mixtures we need to estimate the relative amplitudes of the
columns and their order. From the previous section we have a set of samples
approximately aligned with each of the / basis vectors. Hence, we can easily apply
the ML estimator of their magnitudes for each bin, which is readily obtained from
(14) [15]:

(1 cos O + 7, sin 04) (¥, cos Oy + ¥, sin 0;) — Nya?
ry =

(22)

where y, and ¥, are the vectors obtained in the previous stage. This approach can be
easily extended for m>2. Its main restriction is that it is dependent on the PDF of
the input signals, which may not be precisely known for some applications. In those
cases, when the noise is zero mean and independent of the input signals, we note that

E{¥(m) ¥(m)} = o?ri + o2, (23)

where E{-} denotes the mathematical expectation, taken over the set of outputs
aligned with the kth basis vector. Hence, in these cases the sample mean can be used
to estimate the magnitude of each column of H:

; \/ > F) ) — Niea?,
k= .

2
Nios

24)

4.4. Ordering the basis vectors

The permutation indeterminacy can be removed by exploiting the temporal
correlation between consecutive input vectors. The ordering method is based on the
fact that, in the absence of noise, a nonzero sample of the ith source (1<i<gq)
surrounded by /; — 1 zeros is sequentially aligned with the /; consecutive columns of
the mixing matrix related to its impulse response. Obviously, the other sources must
also be inactive during those samples. Hence, we can estimate the order of the basis
vectors considering the set of output samples which are sequentially aligned with /;
different basis vectors, and setting the most likely column order as the one which
appears most often. In a certain sense this is the ML estimator of the column order,
since we are estimating the most likely order of the basis vectors based on the
empirical PDF of their order, and works very well under moderate/high SNR
conditions.

At this point the BCI problem has been solved, both for the instantaneous and the
convolutive mixtures. As an example of the performance of the whole BCI
algorithm, Fig. 4 shows the MSE obtained for the outputs for the instantancous
mixture using (20) and the convolutive mixture using (11). The results for the
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Fig. 4. Normalized MSE (dB) as a function of the SNR for p = 0.8 and H given by (20) for the
instantaneous mixture (dashed line) and (11) for the convolutive mixture (continuous line).

convolutive mixture are 2—5dB worse than for the instantaneous mixture due to the
increased number of sources, and the additional variance introduced by the
magnitude estimation step.

4.5. Inverting the mixture

In the determined case the input signals are completely characterized by the
mixing matrix. In the overdetermined case, the pseudoinverse provides the solution
with minimun L, norm of the error, and hence it is commonly used. In the
underdetermined case, the pseudoinverse is the solution with minimum L, norm [10],
and thus can be considered the canonical inversion strategy. However, it has been
shown in [26] that much better inversion strategies can be developed. For example, in
[26] a Bayesian inversion strategy, which has a high computational cost, has been
developed, altogether with several heuristic criteria. In this paper we use one such
simple heuristic criterion for the inversion: the output signals which are aligned with
some basis vector are inverted using only the corresponding column of H, whereas
the rest of the outputs are inverted using the pseudoinverse. An example of the
inversion of the mixture is shown in Fig. 5 for the instantaneous case, where the close
resemblance of both signals, in spite of a scale factor and the appearance of noise
peaks, can be appreciated.
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Fig. 5. Example of an original input signal and the recovered signal for an instantaneous mixture given by
(20) with p = 0.9 and SNR = 30dB.

5. Applications

In Section 2.1 it was pointed out that the structure of H and s(n) depended on the
problem at hand. In this section we describe briefly the different possible structures
and some associated applications.

5.1. SISO systems with oversampling

In this case there is a single source, s(n), and channel, /(7). Multiple output signals
are obtained using an oversampling ratio m. Now the elements of the input vector
are s;(n) = s(n — i), and the elements of the channel’s matrix are i; = (i — 1 + (j —
Dm) fori,j=1,...,N.

This approach is very common in BEQ, where a SIMO system can be constructed
from a SISO problem by oversampling [8]. Using this technique Tong et al. proposed
an algorithm based on subspace methods for identifying H using only second-order
statistics of the output signals [24,25]. Since then, there have been several extensions
of this idea (see for example [1,17,23]). These methods provide very good results, but
have a high computational cost. The algorithm described in this article could be
applied to obtain a low cost solution of the problem. The main challenge in this case
is finding a domain where the input signals are sparse enough.
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5.2. SIMO systems with convolutive mixtures

In this case, the ith element of the input vector at time » is again s;(n) = s(n — i),
and the elements of the mixing matrix are s; = h;(n — j — 1), where /;(-) denotes the
subchannel from the input to the ith observation.

This situation is typical in many BDE problems, such as seismic deconvolution
[16] and nondestructive evaluation [21], where the output of the system in response
to an input signal is measured using several sensors placed at different locations. The
standard approach to this problem is to perform maximum likelihood (ML)
deconvolution [16], but due to its high computational cost simpler methods may be
preferred in some cases. Besides, in these applications the input signals are often
sparse enough to apply the techniques of the article in the time domain, without
transforming them into any other domain.

5.3. MIMO systems with instantaneous mixtures

The simplest MIMO systems are those in which we have an instantaneous mixture.
In this case, the nth sample of the observation vector is simply a weighted linear
combination of the input signals. Thus, each element of the mixing matrix, Ay,
represents the contribution of the jth source to the ith observation.

This is the most widely used model in blind source separation (BSS), because its
simplicity allows the obtention of good solutions under certain assumptions. The
determined case has been widely studied, and excellent solutions are available based
on statistical principles, independent component analysis, and information theoretic
criteria (see for example [4,6,11]). The underdetermined case is more challenging and
has received little attention until recently, when several methods have been proposed
[5,9,31]. The algorithm presented in this paper follows a similar approach, and can
be considered an extension of the methods presented separately for BSS and BCI in
[9,14,15].

5.4. MIMO systems with convolutive mixtures

The last case is a combination of the two previous problems: a system with ¢>1
sources, and memory. This problem appears typically in BSS with convolutive
mixtures [7], and in BEQ of MIMO communication systems [8,18], and is usually
solved in the frequency domain [3]. The algorithm presented in this article is able to
solve the MIMO problem with convolutive mixtures in the same way as the other
three problems, in the time domain, as long as the input signals are sparse enough.

6. Conclusions
In this paper we have presented a computationally efficient algorithm for solving

inverse problems when the input signals are sparse, which can be applied to blind
deconvolution, blind equalization, and blind source separation. The proposed
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method takes advantage of the sparsity of the input signals and a parameterization
of the columns of the mixing matrix (basis vectors) in polar coordinates to solve the
problem in five sequential stages: detecting the number of input signals, estimating
the directions of the basis vectors, estimating their amplitudes, ordering the basis
vectors, and inverting the mixture. Explicit formulas have been provided for the BG
model and m = 2, and considerations for the extension to different PDFs and m>2
have been done. Future research lines include the extension of the method to an
arbitrary number of output signals, to different PDFs of the sources or even sources
with unknown PDFs, and for nonlinear and post-nonlinear mixtures, possibly using
spectral clustering techniques.
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