Available online at www.sciencedirect.com

science oinzers

NEUROCOMPUTING

ELSEVIER Neurocomputing 69 (2005) 4261 _
www.elsevier.com/locate/neucom

Support Vector Regression for the simultaneous
learning of a multivariate function and
its derivatives ™

Marcelino Lazaro®*, Ignacio Santamaria®,
Fernando Pérez-Cruz™“', Antonio Artés-Rodriguez®

@Departamento de Teoria de la Serial y Comunicaciones, Universidad Carlos III, Leganés 28911,
Madrid, Spain
®Departamento de Ingenieria de Comunicaciones, Universidad de Cantabria, 39005 Santander, Spain
“Gatsby Computational Neuroscience Unit, UCL, Alexandra House, 17 Queen Square,
London WCIN 3AR, UK

Received 21 April 2004; received in revised form 30 November 2004; accepted 9 February 2005
Available online 22 August 2005

Abstract

In this paper, the problem of simultaneously approximating a function and its derivatives is
formulated within the Support Vector Machine (SVM) framework. First, the problem is
solved for a one-dimensional input space by using the e-insensitive loss function and
introducing additional constraints in the approximation of the derivative. Then, we extend the
method to multi-dimensional input spaces by a multidimensional regression algorithm. In
both cases, to optimize the regression estimation problem, we have derived an iterative re-
weighted least squares (IRWLS) procedure that works fast for moderate-size problems. The

*This work was partially supported by Grants CAM 07T/0016/2003, CYCIT TIC2003-2602, and
TIC2001-0751-C04-03.
*Corresponding author. Tel.: +34916248769; fax: +34916248749.
E-mail addresses: marce@ieee.org (M. Lazaro), nacho@gtas.dicom.unican.es (I. Santamaria),
fernandop@ieee.com (F. Pérez-Cruz), antonio@ieee.org (A. Artés-Rodriguez).
"Fernando Pérez Cruz is supported by Spanish Ministry of Education Postdoctoral fellowship EX2004-
0698.

0925-2312/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
d0i:10.1016/j.neucom.2005.02.013

www.elsevier.com/locate/neucom

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 43

proposed method shows that using the information about derivatives significantly improves
the reconstruction of the function.
© 2005 Elsevier B.V. All rights reserved.

Keywords: SVM; IRWLS

1. Introduction

Regression approximation of a given data set is a very common problem in a
number of applications. In some of these applications, like economy, device
modeling, telemetry, etc., it is necessary to fit not only the underlying characteristic
function but also its derivatives, which are often available. The problem of learning a
function and its derivatives has been addressed, for instance, in the neural networks
literature, to analyze the capability of several kinds of networks [2,3], or in some
applications [6,7]. Some other methods have been employed to simultaneously
approximate a set of samples of a function and its derivative: splines, or filter bank-
based methods are some examples (see [4] and references therein).

On the other hand, Support Vector Machines (SVMs) are state-of-the-art tools for
linear and nonlinear input—output knowledge discovery [13,15]. The SVMs, given a
labeled data set (x;,y;), where x; € R? for i=1,...,N, and a function ¢(-) that
nonlinearly transforms the input vector x; to a higher-dimensional space, solve either
classification (y; € {£1}) or regression (y; € R) problems.

In this paper, we will deal with the regression approximation problem and we will
extend the SVM framework when prior knowledge regarding the derivatives of the
functional relationship between x and y is known.

First, we will solve the issue in a one-dimensional problem (d = 1) by using the &-
insensitive loss function and introducing a linear constraint for the derivatives. Then,
we will extend the method to multidimensional input spaces. In both cases, the
corresponding method will lead to a solution similar to the SVM in which we have
support vectors related to the function value and support vectors related to the
derivatives values. Together, both kinds of support vectors form the complete SVM
expansion for regression approximation with information about the derivatives of
the function. The solution to the proposed algorithms is obtained using an iterative
re-weighted least squares (IRWLS) procedure, which has been successfully applied to
the regular SVM for classification [12] and for regression [11]. This algorithm has
been recently proven to converge to the SVM solution [9].

2. Proposed one-dimensional SVYM-based approach

The one-dimensional problem can be stated as follows: to find the functional
relation between x and y giving a labeled data set, (x;,y;, »}), where y; € Rand y} € R
is the derivative of the function to be approximated at x;. The proposed method is an

44 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

extension of the SVM for Regression (SVR) employing Vapnik’s e-insensitive loss
function [15]. The SVR obtains a linear regressor in the transformed space (feature
space)

f(x) =w'(x) + b, ()

where w and b define the linear regression,”> which is nonlinear in the input space
(unless ¢(x) = x). Roughly speaking, the SVR minimizes the squared norm of the
weight vector w, while it linearly penalizes deviations greater than e.

With respect to the conventional SVR cost function, the proposed method adds a
new penalty term: the errors in the derivative that are out of its associated insensitive
region. In the general case, a different parameter is employed to define the insensitive
region size for the function (¢) and for the derivative (¢). Taking this extension into
account, the proposed approach minimizes

* 1 a * a
Lo(w.b.&,& 0.7 = SIWIP + C1) (G+E) +Cr Y (1i+7) ()

i=1 i=1

subject to

wio(x) +b—y<e+¢&, A3)
yi— W (x) —b<e+ &, 4)
wie'(x) —yi<é + 1, Q)
Vi—w ' (x)<d + 1, (6)
éia 6?51[5 TT>0 (7)
for i=1,2,...,N. The positive slack variables ¢;, &/, 1; and 1} are responsible for

penalizing errors greater than ¢ and &, respectively, in the function and derivative,
and ¢'(x) denotes the derivative of ¢(x). To solve this problem, a Lagrangian
functional is used to introduce the previous linear constraints, as usual in the
classical SVM framework [13].

The Lagrangian has to be minimized with respect to w, b, &, &, t and t*, and
maximized with respect to the Lagrange multipliers. The solution to this problem
can be obtained considering the Karush—-Kuhn-Tucker (KKT) complementary
conditions, which lead to a weight vector w taking the form (see [5] for details)

N N
w=> (of —o)p(x)+ Y (4 —)¢ (x), ®)
i=1 i=1

where o;, of, A; and A are, respectively, the Lagrange multipliers associated with
constraints (3)—(6). Therefore, the regression estimation for a new sample x can be

2All vectors will be column-vectors. We will denote the scalar product as a matrix multiplication of a
row-vector by a column-vector, and T denotes transpose.

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 45

computed as follows:

N N
S =) (@ —a)d () + Y (i —)¢ (x)p(x) + b. ©)
i=1 i=1

In the SVM framework, the nonlinear transformation ¢(x) is not needed to be
explicitly known and it can be replaced by the kernel of the nonlinear
transformation. In this case, ¢T(x,»)¢(xj) is substituted by K(x;,x;), a kernel
satisfying the Mercer theorem [13]. From this definition for the kernel, it is easy to
demonstrate that

aK(x,, x])

¢ (x)P(x) = 2 K'(x;, X)), (10)
6 12 N

#1000 () = o) 2 G, (1)

'
and

O’K(x;, X;)

/T / _ A . .

" (x)) (xj)——axiax/f 2 J(x;, X)) (12)

Although K(-,-) must be a Mercer Kernel, its derivatives do not necessarily have to
be so. Therefore, using a valid kernel K(-, -), once the Lagrange multipliers have been
obtained, the regression estimate takes the form

N N
f) = (0 = a)K(xiX) + > (A — K (x1,x) + b, (13)
i=1 i=1

where we have only used the kernel of the transformation without explicitly
computing the nonlinear transformation. We will show, in the following subsection,
that the resolution of the minimization problem can also be done using kernels, so
one does not need to know the nonlinear transformation, as in the regular SVM
framework.

2.1. IRWLS algorithm

The problem can be solved following the classical SVM method [13]: to arrive at
Wolfe’s dual problem, which gives a quadratic functional depending only on the
Lagrange multipliers that can be solved by Quadratic Programming (QP) techniques.
However, the QP solution of the system can be computationally expensive, especially
when a large number of samples are employed, which can make the problem
unaffordable. In order to reduce the computational burden, an IRWLS procedure
has been developed. This IRWLS algorithm follows the same basic idea proposed in
[11], but we are going to develop it following [9], which is much more comprehensible
and from which the convergence naturally follows. We will first state it as an

46 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

unconstrained optimization problem

Lo(w,h) = 3 IwlP + € i (Lie) + L(e}) + C2 i (L) + L), (14)
where

e =W o(x)+b—y —e (15)

ef =y, —wo(x)—b—e, (16)

di=w'e'(x)—y —¢, (17)

df =y;—w''(x)—¢ (18)

and L(u) = max(u,0). The proof of convergence in [9] uses a differentiable
approximation to this nondifferentiable function

0, u<0,
L) = { Ki*)2, 0<u<l/K,

to ensure the converge of the algorithm, which tends to max(u,0) as K tends to
infinity. But it also shows that K can be made arbitrarily large.

Optimization problems are solved using iterative procedures that rely on each
iteration in the previous solution (w* and b*, in our case) to obtain the following one,
until the optimal solution has been reached. To construct the IRWLS procedure, we
modify (14) using a first-order Taylor expansion of L(u) over the previous solution,

leading to
lei — eﬁ‘(])
&

N
dL(u
+Ci (; L(ef) + di) e - e}"k]>

e:

dL(u)
du

/ 1 N
Lip(w,b) = E||w||2 +C, <§ L(e}) +
i=1

N dL(u)
k k
-l—Cz(; L) + =4 df[d,»—d[]>
. ky | dL(u) «
+C2<izl L") + = ?k[d,»—d,k]) (19)

where ef = W p(x)) + b5 —y, —¢ (the others follow the same definition),

Li(wWK, b%) = Lp(wK,b") and VL, (WK, b*) = VLp(WF,b"). Now, we construct a
quadratic ~ approximation imposing that Lp(wk, bk) = Lp(w, bk) and

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 47

VLj(wK, b¥) = VLp(w*, b¥), leading to

du

i=1 ek

N
Li(w,b) = 51wl + € <Z ey + 50

(&) — (eff)z)

2ek

N 2 k2
dL@)| ()" — (")
C L >?<k i i
+ 1(; R
N 2 k2
dL@)| (di)” —(d;)
L(d¥ l
N *12 xk\2
dL@)| (d))” —(d;")
L »fk ! !
+C (; @)+ PV
1 2 1 X 2 * %2 2 * %2
= 5||w|| +§ Z aie; +a:e;” + s;d; +s7d;” + CT, (20)
i=1
where
v = Ci dL(w) «_ CidL(w) G dL(w) « CydLw)
o du e "t du erk df du & T dy* du ar

and CT are constant terms that depend neither on w nor b.
The value of @; can be computed as follows:

0, ef‘<0,
a=S dﬁ(“) _) kc,, 0<éd<l/K,
G Sl Ci/ek, e=1/K.

This definition can be readily extended to a, s; and s;.

From the definition of ¢; and e}, we can infer that either one of them is positive or
both are negative, but they cannot both be positive at the same time. This property
means that either a; or af are nonzero or both are zero, but they cannot both be
nonzero at the same time. The samples that present ¢; = af = 0 do not need to be
considered in the resolution of the functional in (20), as they will not be support
vectors and will not contribute to the value of w. Therefore, the sum in (20) should
only run for those samples in which either a; or a} are nonzero. In the derivation of
the algorithm, we will suppose that all of the samples present either a nonzero a; or
a’. So, we can work with a simple notation and we do not need to introduce a new
index indicating which samples present either a nonzero a; or af. But when
implementing the procedure, we will only consider those samples that can be support
vectors; basically in each iteration we can assume that the training samples are
limited to those samples with a nonzero g; or 4, leaving aside the rest of the samples.
After each iteration we will compute e; or e} for all the samples, so if any of the
previous samples with a; = a’ =0 now presents a positive e; or e}, it can be
recovered for the following iteration. This discussion on the values of @; or aj is very

48 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

relevant as it will allow us to solve the problem with a reduced set of samples in each
iteration, but we will obtain the SVM solution, when the algorithm stops, as we can
recover samples that at some stage presented a; = a = 0. Finally, this argument can
be made for d; and d; and s; and s}, as well.

The IRWLS procedure consists in minimizing (20), then recomputing a;, a}, s; and
sT with the obtained solution, and continuing until the solution is reached. Each
iteration can be seen as being similar to least squares SVM [14], but the IRWLS
preserves the sparseness property of the SVM because of the insensitivity region. To
solve (20), we take a derivative with respect to w and b, and equate to zero, thus

O'D, P+ DD D +1 D'(a+ a*)

giving the following result:
w
(a+a*) (a+a)"1 b

(DT[DaJra*y +(a—a%)e] + (D,T[Ders* Y + (s —s%)¢]
(a+a)y+@—a)1e |

@1

where a, a*, s and s* are the column vectors containing the N corresponding weights
in (20), D, denotes a diagonal matrix (D,; = @;6(i — j)), and

D = [p(x1), P(x2), ..., plx)]',
O = [¢'(x1), ' (x2),..., ¢ (xn)]' (22)

2.2. IRWLS with kernels

System (21) can be solved, as well, using kernels, when ¢(-) is unknown or infinite
dimensional. We can make use of the Representer theorem [13] that, under fairly
general conditions, states that the best solution can be expressed as a linear
combination of the training samples in the feature space

B
w=[D" @7 [y . (23)
From (8), we can notice that once the solution has been reached f = a* — « and
y = A* — A. We will use (23) to replace w in (21). But, first, we have rewritten the first
set of equations, moving b to the second term, so it will be simpler to obtain the
kernel representation

Dayjar O @
[T @7 +1|w
0 Ds+s* (D/
Dajas(y — 1b) + (a — a%)e
=[@" @7 / / (24)
Ds+s*y + (S - S*)g

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 49

Now we pre-multiply both sides by the pseudo-inverse [®T @®T]T and using the
definition of w in (23), we obtain

*

1+ 22
Dasa 0 10 (I[8] _ [Paw 0 y ata 25
0 Dy a 0 | D Je , S—s" ’
y + €
s 4 s*

where (a — a*)/(a+ a*) and (s —s*)/(s + s*) denote, respectively, a column-vector
containing (a; — af)/(a; + af) and (s; — s7)/(s; + sF) in the ith row, and

_[K G 26
_|:K/ J:|’ ()

0T o7
H =
0T oo”

where (K); = K(x;,x)), (K); = K'(x;,x)), (G); = G(x;,x;) and (J); = J(x;,x)).
Multiplying by the inverse of the diagonal matrix and moving b back to the first
term, the equation can be simplified to

*

K+D,/,. G 17178 Ytarat
K J+DJL 0|y = y’—l—s_s*s’ . (27)
17 o' 0] L0 s+s*
0

Finally, instead of using the last equation in (21), we have made use of a simpler
constraint: Zf\i 1 (o; — af) = 0, which is obtained equating 0Lp/0b to zero, and using
the relationship between f and a and «* introduced at the beginning of this
subsection. We show an algorithmic implementation of the IRWLS procedure in
Table 1.

We have completed the definition of the algorithm and we can now recover our
argument that the procedure only needs to work with the samples that present a
nonzero a; or a;. In this case the matrix D,y,- will be full-rank and very easily
inverted as it is a diagonal matrix. The vector (a —a*)/(a+ a*) can be easily
computed as it will contain either a 1 in the ith position, if @; is nonzero, or a — 1 in

Table 1
IRWLS algorithm pseudo-code for a one-dimensional input space

(1) Initialization:
e Compute H (from K, K’, G and J)
e a; = Cy, s5;=C, forodd i; ai = Cy, sf = C, for even i.
(2) Solve (27)
(3) Evaluate
e=K'p+KTy+1h—-y—1e, e=y—-K'p—KTy—1b—1¢
d=G"p+JTy -y —1¢, &=y -GIp-JTy—1¢

(4) Recalculateq;, af, s7 and s7.
(5) Go to Step 2 until convergence is achieved.

50 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

the ith position, if @} is nonzero. Finally, the matrix D, ,. can be defined as

D! 1/KCy, 0<éi<1/K,
(a+a*)ii - efF/Cl, e{-{Zl/K

if a; is nonzero (a definition identical to e}, if a’ is nonzero). We can see that as K
tends to infinity (D, la*),-,- =¢f/C, and we will not have any problems with the
nonlinearity in the definition of L(x) when solving the procedure with kernels.
Finally, we can repeat this argument for s; and s7 with identical results.

3. Extension to d-dimensional input spaces

The proposed method can be easily extended to d-dimensional input spaces and to
consider up to kth-order derivatives following the simple idea of the proposed one-
dimensional method. It is only necessary to incorporate the corresponding
constraints. Because of space constraints we have omitted the development, but in
this case the solution takes the form

N k k Gy +-+ia)
VIO d(x;)
w =2 B i) -
i=1 11:0 /d:0 IR
where x; = [x;1,Xp,...,X;]' and ’1;;,--»;,, and ’lijr-h are the Lagrange multipliers

associated to the constraint in the ith sample of

a(/|+~~+.ia)f(x)
ox, ..., Xl
However, the number of constraints grows linearly with the input dimension and
exponentially with the number of derivatives considered, which will make this
formulation very difficult to solve for standard problems. Anyhow, this problem can
be cast as a multidimensional regression estimation in which we will have a single
constraint per sample, as in the regular SVM.

3.1. Multidimensional regression formulation

Without lack of generality, in the following we will formulate the problem of
estimating f(x) from its first-order derivatives, given N data points (Xi,...,Xy) in a
d-dimensional space x; € R?. The extension to include higher-order derivatives or the
function itself is straightforward, as we will show in Section 3.3. In this case, for each
input vector a d-dimensional label vector y;, € R? will be available, where

_ [6f(X) Y| Yk

b b c
6x,~1 X; 6x,»2 aX,'d

= Vx/(x)).

i

Xi X

We define the estimated function f (x) = wl¢(x), where w is a weight vector and ¢(-)
is a nonlinear transformation of the input vector x to a higher-dimensional space

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 51

(the feature space, ¢(x) € #). We need to solve a multidimensional regression
problem for finding w, in which we need to reduce the error between the derivatives
of the estimated function and the y; vector

€ =Yy, — fof(xi) =Dy - WT¢/1(Xi),J/i2 - WT¢/2(Xi)a <5 Via — wT¢’d(x,»)],
where we have defined

0¢(x)
aXij

Pi(x;) =

Xi

A Multidimensional Support Vector Regressor (M-SVR) has been recently
proposed in [10]. This multidimensional problem needs to be modified to solve our
particular function approximation problem. First, instead of having a vector ¢(x)
and a matrix W to construct the error vector, we have a unique weight vector w and a
matrix that contains the derivatives of ¢(x). The second modification slightly
changes the quadratic cost function to make its derivative continuous to avoid
numerical instabilities

w —2ue+ ¢, u>e.

{ 0, u<e,
L(u) = (29)

To summarize, the problem at hand is reduced to find the vector w that minimizes
the following unconstrained functional:

1
Lp(w) =5 IWI* + C > _ L(w,). (30)

n
i=1

where

up = llejll = y/efer, e =y, —Dw, @ =[P|(X),...,Px)]"

3.2. Resolution of the Multidimensional Support Vector Regressor

To optimize the proposed multidimensional regression estimation problem, we are
again going to follow an (IRWLS) procedure.
To construct this procedure, we first obtain a first-order Taylor expansion of L(u)
over the previous step solution u¥, leading to the minimization of
dL@w)]
i - .) 31
G | b= (1)

Ly =) -
Lp(w) = 5 W + C(Z L) +
i=1

52 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

where uf = ||e|| and e =y, — ®;w*. Then, the following quadratic approximation is
constructed:

Lp(w) = % Iwii* + c(ﬁ: W)+ dL(u)) (”i)22;§((”{'()2>
1 &
E Iwi* +§Z ai(e] e;) + CT,)
where
. Uk <e,
_ Ck dl&iu) R ECUET .
! u

and CT comprises constant terms that do not depend on w. This is a regularized
weighted least-squares problem in which the weight @; depends on the previous
solution. This dependence implies to iterate the process until a fixed point solution is
reached.

The functional Lj(w) is a quadratic approximation to Lp(w) in (30) that presents
the same value Lj(wX) = Lp(wK) and gradient V,Lp(wX) = VyLp(wX) for w = wk.
Therefore, we can define p* = w* — wX as a descending direction for Lp(w), where w’
is the least-squares solution to (32), and we can use it to construct a line search
method [8], i.e. wit! = wk 4 yfp¥. The value of 5* can be computed using a
backtracking line search [8], in which »¥ is initially set to 1 and if Lp(w<+!) > L,(wh),
it is iteratively reduced until a strict decrease in the functional in (30) is observed.

To obtain w’, the solution to Lj(w) in (32), its gradient is equated to zero:

N
VaLpw) =w—) ®ea; =0,
i=1

an equation that can be written down as

N

N
w+) ®D,dw=>) ®D,y, (34)
i=1 i=1

Here, D,, denotes the d x d diagonal matrix with a; as its diagonal elements,
Dy, = a;ié(l — k) (Dy; = a;1). In matrix notation (34) becomes

[®'D,® +Ilw=d'D,Y, (35)

where @ =[®],...,®}]", D, is an Nd x Nd diagonal matrix where each d x d
submatrix is defined as (D,); =D, 8(i—j) and Y=[y{,...,yx]" is an Nd-
dimensional column vector.

The system in (35) can be solved using kernels. The Representer theorem [13]
states that the optimal solution can be constructed as a linear combination of the
training samples in the feature space, i.e. w = @' . By replacing this expression in

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 53

Table 2
IRWLS algorithm pseudocode for multidimensional input spaces

(1) Initialization: set p° = 0, u; = Ily;ll and compute @; from (33).

(2) Compute p* = [H+ D;']7'Y and set n* = 1.

(3) Set B! = B+ n* (B — BT if LB <L(B*) go to Step 5.

(4) Set ¥ = piy* with 0<p<1 and go to Step 3.

(5) Recompute u; and a;, set k = k + 1 and go to Step 2 until convergence.

(35) we obtain

[®'D,® + 10T = ®'D,Y. (36)
Now, pre-multiplying (36) by @, we obtain

[HD,H + H] = HD,Y,

where H = ®®'. Cancelling out H and pre-multiplying by the inverse of D,, we
arrive at:

[H+D;'1p=Y, (37)

The IRWLS procedure for solving the multidimensional regression problem to find a
function from its derivatives is summarized in Table 2.

3.3. Extensions

The extension of the proposed method to include samples from the function and
from higher order derivatives is straightforward. In this case, the vectors y; and e;
will be constructed with all the available information and the procedure in Sections
3.1 and 3.2 can be easily replicated. To illustrate this point, we propose the following
example, where y; and e; are, respectively,

.

™| I)
e =y — WT¢(XI)9yi1 - WT¢/1 (xi), ¥ — WT¢/2(XI)9yi3 - WT¢/1/,2(X1')]-

6x,~1 i’ aX,Q Xl’axnaxiz
It must be noted that the one-dimensional resulting method is different from the one
presented in Section 2.
Finally, when some data are more reliable or less noisy, or the range of the
derivatives is clearly different, a weighted norm is more convenient for u;, i.e.

=

;= [f(xi),

X

u; = ngzlcje?j, where Q is the dimension of y, and ¢; are the corresponding weights

with each dimension of y,. It is straightforward to find out that, in the algorithm, this
just means to include the weights in the diagonal matrix D, as (Dy,);, = a;d[l — k]ck.

54 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61
4. Results

In this section, some experimental results show the advantages of this method in
the reconstruction of the derivative with respect to the conventional SVR approach.

4.1. One-dimensional input space

As test functions, we have selected a set of band-limited functions: specifically, in
each experiment a linear combination of 100 sinusoids with random amplitudes,
frequencies (between 0 and 1 Hz) and phases has been generated. In the first example,
100 equally spaced sampling points in the range 0—5 have been employed by the SVR
(100 samples of the function) and by the proposed method, labeled SVM-D (in this
case 200 total samples: 100 samples of the function +100 samples of the derivative).
Moreover, we have tested the proposed method using the same number of total
samples, which means to subsample (we will label this option by SVM-D?®). This
method uses 50 sampling points (50 samples of the function +50 samples of the
derivative). In this way, the number of total available data is the same. One-
thousand independent experiments have been considered, with a signal-to-noise ratio
(SNR) of 20 dB in the samples of both the function and the derivative. Parameters C
and ¢ have been selected by cross-validation. Fig. 1 plots the mean values of signal-
to-error ratio (SER) in the reconstruction of the function (a) and of the derivative (b)
as a function of the insensitivity parameter . In this case, ¢ = ne has been considered
to take into account the different amplitude range of a function and a derivative (the
mean amplitude of the derivative is = times higher than the mean amplitude of the
function).

It can be seen that the proposed method, using twice the data (SVM-D), but more
interestingly, even using the same amount of data (SVM-D¥), provides better results
than the SVR, especially in the reconstruction of the derivative. Obviously, using
twice the data, the improvement is larger.

35 T T T T T

30
x5 Y

20

SER (dB)
SER (dB)

15

10

@ é (b) &

Fig. 1. SER in the reconstruction of (a) a function and (b) a derivative.

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 55

100

80

60

40

Support Vectors

20

30 ; ; . T

251 e 4
— 20} -
jan)
~ 15
S !
w 10t -

| — SVM-D =

SR — SVM-D? o

o L= SVR

0 0.2 04 0.6 0.8 1 0 0.2 0.4 06 0.8 1

(a) o (b) o

Fig. 3. SER as a function of the kernel size: (a) function and (b) derivative.

Moreover, when the same amount of data are used (SVM-D?), a similar number of
support vectors has been observed for both methods in all simulations (in the
proposed method: support vectors related to the function + support vectors related
to the derivative). Therefore, the proposed method, when using the same amount of
data, does not increment the storage requirements of the model. The number of
support vectors, as a function of e, is plotted in Fig. 2.

This method also reduces the sensitivity to the selection of o for the Gaussian
kernels. Fig. 3 shows the SER in the reconstruction of the function as a function of ¢
for ¢ = 0.5. It can be seen that the ¢ range to obtain high SER values is increased by
using the proposed method.

56 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

SER (dB)
SER (dB)

20 14
6 8 10 0 2 1 6 8 10

4
(a) e /n (b) e'/m

Fig. 4. SER as a function of ¢ using 50 sampling points and ¢ = 0.5 and ¢ = 0.4: (a) function and (b)
derivative.

Table 3
Two-dimensional test functions (y = f(x1, x2))
Name Function Domain
Fun 1 y = sin(xx7) [-2,2]
Fun 2 ¥ = exp(x sin(mxy)) [-1,1]
Fun 3 B 40 % exp(8((x1 — 0.5)> + (x2 — 0.5)%)) [0,1]
r= exp(8((x; — 0.2)> 4 (x2 — 0.7)%)) + exp(8((x1 — 0.7)> + (x2 — 0.2)%))

Fun 4 ¥ = (1 4 sin(2x; + 3x2))/(3.5 + sin(x; — x2)) [-2.2]
Fun 5 y = 42.659(0.1 4 x1(0.05 4 x} — 10x3x3 + 5x3)) [-0.5.0.5]
Fun 6 y = 1.3356[exp(3(x2 — 0.5)) sin(4n(x; — 0.9)%)

+1.5(1 — x1) + exp(2x; — 1)sin(3n(x; — 0.6)%)] [0,1]
Fun 7 y = 1.9[1.35 + exp(x;) sin(13(x; — 0.6)%)

+exp(3(xz — 0.5)) sin(4n(x; — 0.9)%)] [0,1]

Fun 8 y = sin (2ﬂm) (-1L1]

Finally, in all the above experiments we have used ¢ = me to consider the
amplitude of the function/amplitude of the derivative ratio (which can easily be
estimated from data samples). Fig. 4 plots the results in the reconstruction of
function and derivative, using ¢ = 0.4 and ¢ = 0.5, as a function of &, using 50
sampling points. It can be seen that the optimal value for parameter ¢ is around 7e
(¢ ~ m/2 in this case).

This simple approach of selecting ¢ to consider the relative function/derivative
amplitude has shown good results when samples of function and derivative have a
similar SNR. For noisier derivative samples (if this information is available or can be
estimated), this parameter has to be increased proportionally to the ratio between
SNRs.

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 57
4.2. Two-dimensional input space

The performance of the proposed multidimensional method has been tested using
8 functions, proposed in [1], sampled from a two-dimensional input space. The
analytical expression of each function is provided in Table 3.

We wish to show the benefits of using the samples of the derivatives in the
reconstruction of the derivatives themselves as well as in the reconstruction of the
function. On the one hand, we will show the advantage of adding samples of the
derivatives to the set of samples of the function. On the other hand, the advantage of
replacing some of the samples of the function by samples of the derivatives, which is
more interesting, will also be shown.

The following methods will be compared. The conventional SVR will be used
when only the samples of the function are used. When the samples of the function
and the first-order derivatives are used together, the proposed method (labeled “M-
SVR” in the following) is employed. Finally, when only the samples of the two first-
order derivatives are used, again the proposed method (labeled “M-SVRA” in this
case) is applied. In all cases, Gaussian kernels are employed. The SER, expressed in
dB, between the true function/derivatives and its corresponding reconstruction has
been used as a figure of merit.

It must be noted that using the same sampling points the M-SVRd is using twice as
many samples as SVR and the M-SVR three times the samples than SVR, and this
can be helpful in improving the results in a noisy environment. Therefore, we also
wish to compare the results when the three methods use a similar amount of data,
i.e., samples of the derivatives are replacing (instead of being added to) samples of
the function. Conventional SVR, as well as M-SVR and M-SVRd have been trained
using a uniform grid of 19 x 19 sampling points (361 samples for SVR, 722 samples
for M-SVRd and 1083 samples for M-SVR). Morecover, M-SVRd has been trained
with 13 x 14 sampling points (this option, labeled M-SVRd?, uses 363 samples), and
M-SVR with 11 x 11 sampling points (this option, labeled M-SVR’, uses 364
samples). Noisy samples with SNR = 10dB are considered. The parameters
of the algorithms (C, ¢ and ¢) have been selected by cross-validation, and a
weighted norm has been used for the methods using the derivatives. The weights
have been selected to compensate the different variances of function and derivatives
(which are estimated from the samples). Table 4 compares the performance of all
methods.

The methods including the samples of the derivatives outperform the SVR in the
reconstruction of the derivatives and also in the reconstruction of the function. The
best performance is obtained by M-SVR, which outperforms SVR by almost 7dB in
the reconstruction of the function and by more than 8 dB in the reconstruction of the
derivatives. The advantage is reasonable if it is taken into account that M-SVR is the
method using the largest amount of data, and that also M-SVRd uses more data
than SVR. However, the advantage holds when a similar number of total samples is
used by all methods. In this case, the M-SVRd*® provides better results in the
reconstruction of the derivatives while the M-SVR® is better for the reconstruction of
the function.

58 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

Table 4
SER (dB) for the reconstruction of the function and first-order derivatives

Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun 6 Fun 7 Fun 8 Mean

Approximation of the function

SVR 19.1 27.0 24.0 21.9 29.3 25.6 26.8 16.3 23.8
M-SVRd 23.6 31.8 30.5 23.2 31.7 29.2 29.9 18.3 27.3
M-SVR 26.2 34.8 33.0 27.7 35.3 32.1 333 21.9 30.5
M-SVRd* 21.0 29.0 27.1 20.1 27.7 26.2 27.2 16.4 24.3
M-SVR? 21.5 29.9 27.7 23.1 29.6 27.3 28.5 16.7 25.5
Approximation of the first-order derivatives (mean value)
SVR 12.3 11.3 11.2 14.9 12.1 12.2 11.4 11.6 12.1
M-SVRd 20.5 20.6 21.3 20.6 19.2 19.9 18.8 16.4 19.7
M-SVR 21.1 21.0 21.7 22.1 20.3 20.6 19.5 17.1 20.4
M-SVRd’ 17.8 18.0 18.7 17.9 16.1 17.3 16.3 14.6 17.1
M-SVR* 17.0 17.0 17.9 18.2 15.6 16.5 15.5 13.3 16.4
26 ; 24 :
24y 1 221 \LSVRS®
99| | 20 eeeeeee
) m 18t
= 0 ;= 16
18t] e |
e Bt
w 16 —— M-SVRS# w2
I Z2— SVR 1 12F 3
14 . 10 / i
12 s : . 8 . ‘ !
-10 -5 0 5 10 -10 -5 0 5 10
(a) Increment of SNR (dB) in the samples of the derivatives (b) Increment of SNR (dB) in the samples of the derivatives

Fig. 5. SER (dB) in the reconstruction of (a) Function 1 and its (b) derivatives as a function of the SNR in
the samples of the derivatives for an SNR = 10dB in the samples of the function.

In the previous experiment, the samples of function and derivatives have the same
SNR. We also wish to show that the benefit of including the samples of the
derivatives holds when they are noisier than the samples of the function, which is
usual in a real application. Fig. 5 compares the performance of SVR and M-SVR’ (in
the same sampling conditions as the previous experiment) as a function of increasing
SNR (dB) in the samples of the derivatives with respect to the SNR in the samples of
the function. This example corresponds to the reconstruction of Function 1 with
SNR = 10dB.

The reconstruction of the function is improved even when the samples of the
derivatives are around 4dB noisier than the samples of the function. For the

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 59

Table 5
Margin (dB) in the SNR of the samples of the derivatives to improve the reconstruction of the function
and of the derivatives

Fun 1 Fun 2 Fun 3 Fun 4 Fun 5 Fun 6 Fun 7 Fun 8 Mean

Function 39 43 3.4 2.3 0.7 2.9 33 1 2.7
Derivatives 6.4 7.4 7.7 4.4 6 6.5 7 4 6.2

derivatives, even a higher margin (around 6 dB) is obtained. Moreover, if the samples
of the derivatives are more accurate than the samples of the function (although this is
not usual in real applications) the reconstruction is clearly improved. Similar results
have been obtained for all functions. Table 5 shows the margin of dB in the SNR in
the samples of the derivative to improve in the reconstruction of function and
derivatives.

5. Conclusions

Two variants of a new SVM-based method for the simultaneous reconstruction of
a function and its derivatives have been presented: one for a one-dimensional input
space and the other for a multidimensional input space. Computationally efficient
IRWLS algorithms have been derived to allow the application of both variants to
large data sets. This method provides better results than the conventional SVR
approach in the reconstruction of function and derivatives even when the same
number of labeled data are employed in both methods, or when the samples of the
derivatives are noisier than the samples of the function. The proposed method needs
a similar number of support vectors as those of conventional SVR. Moreover, the
inclusion of the information of the derivatives reduces the dependence on the kernel
size for Gaussian kernels.

It is necessary to mention that the multidimensional model is also valid for one-
dimensional input spaces. However, it provides a slightly different solution than the
one-dimensional proposed method since the loss function is different: linear versus
quadratic. Anyway, the performance and accuracy are very similar for both methods
in a one-dimensional input space.

Results obtained using this method show that the introduction of information
regarding the derivatives is mandatory to obtain an accurate estimate of the
derivatives of the function, which is necessary in a number of applications.
Moreover, even when the approximation of the derivatives is not mandatory, this
information can be useful in the reconstruction of the function without having to
increase the total number of data and even when the samples of the derivatives are
slightly noisier than the samples of the function. This can be clearly useful in
applications where the available sampling rate is limited.

60 M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61

Finally, the method possesses one of the limitations of the traditional kernel
method, since the computational burden allows its implementation only for
moderate-size problems.

References

[1] V. Cherkassky, D. Gehring, F. Mulier, Comparison of adaptive methods for function estimation
from samples, IEEE Trans. Neural Networks 7 (4) (1996) 969-984.

[2] A.R. Gallant, H. White, On learning the derivatives of an unknown mapping with multilayer
feedforward networks, Neural Networks 5 (1992) 129-138.

[3] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks, Neural Networks 3 (1990)
551-560.

[4] M. Lazaro, 1. Santamaria, C. Pantaleon, J. Ibafnez, L. Vielva, A regularized technique for the
simultaneous reconstruction of a function and its derivatives with application to nonlinear transistor
modeling, Signal Processing 83 (2003) 1859-1870.

[5] M. Lazaro, I. Santamaria, F. Pérez-Cruz, A. Artés-Rodriguez, SVM for the simultaneous
approximation of a function and its derivative, in: Proceedings of the 2003 IEEE International
Workshop on Neural Networks for Signal Processing (NNSP), Toulouse, France, 2003.

[6] X. Li, Simultaneous approximations of multivariate functions and their derivatives by neural
networks with one hidden layer, Neurocomputing 12 (1996) 327-343.

[7] T. Nguyen-Thien, T. Tran-Cong, Approximation of functions and their derivatives: a neural network
implementation with applications, Neurocomputing 23 (1999) 687-704.

[8] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, Berlin, 1999.

[9] E. Pérez-Cruz, C. Bousono-Calzon, A. Artés-Rodriguez, Convergence of the IRWLS procedure to
the support vector machine solution, Neural Comput., January 2005.

[10] F. Pérez-Cruz, G. Camps, E. Soria, J. Pérez, A.R. Figueiras-Vidal, A. Artés-Rodriguez, Multi-
dimensional function approximation and regression estimation, in: ICANNO2, Springer, Madrid,
Spain, 2002.

[11] F. Pérez-Cruz, A. Navia-Vazquez, P. Alarcon-Diana, A. Artés-Rodriguez, An IRWLS procedure for
SVR, in: Proceedings of the EUSIPCO’00, Tampere, Finland, 2000.

[12] F. Pérez-Cruz, A. Navia-Vazquez, J. L. Rojo—Alvarez, A. Artés-Rodriguez, A new training algorithm
for support vector machines, in: Proceedings of the Fifth Bayona Workshop on Emerging
Technologies in Telecommunications, Baiona, Spain, 1999, pp. 116-120.

[13] B. Scholkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.

[14] J. Suykens, J. De Brabanter, L. Lukas, J. Wandewalle, Weighted least squares support vector
machines: robustness and sparse approximation, Neurocomputing—Special issue on Fundamental
and Information Processing Aspects of Neurocomputing 48 (2002) 85-105.

[15] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

Marcelino Lazaro was born in Carriazo (Cantabria), Spain, in 1972. He received
the Telecommunication Engineer degree and the Doctor (Ph.D.) degree from the
Universidad de Cantabria, Spain, in 1996 and 2001 respectively.

From 1996 to 2002, he worked in the Departamento de Ingenieria de
Comunicaciones at the Universidad de Cantabria.

In 2003, he joined the Departamento de Teoria de la Sefial y Comunicaciones
at the Universidad Carlos III de Madrid. His research interest includes digital
signal processing, detection, estimation, and statistical learning methods.

M. Ldzaro et al. | Neurocomputing 69 (2005) 42-61 61

Ignacio Santamaria received the Telecommunication Engineer Degree and the
Ph.D. in Electrical Engineering from the Polytechnic University of Madrid,
Spain in 1991 and 1995, respectively. In 1992, he joined the Departamento de
Ingenieria de Comunicaciones, Universidad de Cantabria, Spain, where he is
currently an Associate Professor. He held visiting positions in 2000 and 2004 at
the Computational NeuroEngineering Laboratory (CNEL), University of
Florida. He has authored and coauthored more than 70 publications in refereed
journals and international conference papers. His current research interests
include nonlinear modeling techniques, adaptive systems, machine learning
algorithms and their application to digital communication systems.

Fernando Pérez-Cruz (member IEEE) born in Sevilla 1973. He received his
Telecommunication Engineering degree in 1996 (Universidad de Sevilla, Spain)
and Ph.D. degree in Telecommunication Engineering in 2000 (Universidad
Politécnica de Madrid, Spain). He is an Associate Professor at the Department of
Signal Theory and Communication (Universidad Carlos III de Madrid). He is
currently at a sabbatical period at Gatsby Computational Neuroscience Unit at
University College London. His current interest lies in machine learning
algorithmic and theoretical developments and its application to signal processing
and financial data. He has authored over 50 contributions in international journal
and conferences.

Antonio Artés-Rodriguez was born in Alhama de Almeria, Spain, in 1963. He
received the Ingeniero de Telecomunicacion and Doctor Ingeniero de Tele-
comunicacion degrees, both from the Universidad Politécnica de Madrid, Spain,
in 1988 and 1992, respectively.

He is now a Professor at the Departamento de Teoria de la Sefal y
Comunicaciones, Universidad Carlos 111 de Madrid, Spain. His research interests
include detection, estimation, and statistical learning methods, and their
application to signal processing and communication.

He is Senior Member of the IEEE.

	Support Vector Regression for the simultaneous learning of a multivariate function and �its derivatives
	Introduction
	Proposed one-dimensional SVM-based approach
	IRWLS algorithm
	IRWLS with kernels

	Extension to d-dimensional input spaces
	Multidimensional regression formulation
	Resolution of the Multidimensional Support Vector Regressor
	Extensions

	Results
	One-dimensional input space
	Two-dimensional input space

	Conclusions
	References

