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Abstract

Canonical correlation analysis (CCA) is a classical tool in statistical analysis to find the projections that maximize the correlation between two
data sets. In this work we propose a generalization of CCA to several data sets, which is shown to be equivalent to the classical maximum variance
(MAXVAR) generalization proposed by Kettenring. The reformulation of this generalization as a set of coupled least squares regression problems
is exploited to develop a neural structure for CCA. In particular, the proposed CCA model is a two layer feedforward neural network with lateral
connections in the output layer to achieve the simultaneous extraction of all the CCA eigenvectors through deflation. The CCA neural model is
trained using a recursive least squares (RLS) algorithm. Finally, the convergence of the proposed learning rule is proved by means of stochastic
approximation techniques and their performance is analyzed through simulations.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Canonical correlation analysis (CCA) is a well-known
technique in multivariate statistical analysis to find maximally
correlated projections between two data sets, which has been
widely used in economics, meteorology and in many mod-
ern information processing fields, such as communication the-
ory (Dogandzic & Nehorai, 2002), statistical signal process-
ing (Dogandzic & Nehorai, 2003), independent component
analysis (Bach & Jordan, 2002) and blind source separation
(Friman, Borga, Lundberg, & Knutsson, 2003). CCA was de-
veloped by Hotelling (1936) as a way of measuring the lin-
ear relationship between two multidimensional sets of vari-
ables and was later extended to several data sets by Kettenring
(1971). Typically, CCA is formulated as a generalized eigen-
value (GEV) problem; however, a direct application of eigen-
decomposition techniques is often unsuitable for high dimen-
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sional data sets as well as for adaptive environments due to their
high computational cost.

Recently, several neural networks for CCA have been
proposed: for instance, in Lai and Fyfe (1999), the authors
present a linear feedforward network that maximizes the
correlation between its two outputs. This structure was later
improved (Gou & Fyfe, 2004) and generalized to nonlinear
and kernel CCA (Lai & Fyfe, 2000). Other approaches from
a neural network point of view to find nonlinear correlations
between two data sets have been proposed by Hsieh (2000)
and Hardoon, Szedmak, and Shawe-Taylor (2004).

Although CCA of several data sets has received increasing
interest (Hardoon et al., 2004), adaptive CCA algorithms have
been mainly proposed for the case of M = 2 data sets
(Pezeshki, Azimi-Sadjadi, & Scharf, 2003; Pezeshki, Scharf,
Azimi-Sadjadi, & Hua, 2005; Vı́a, Santamarı́a, & Pérez,
2005a), with the exception of the three data sets example
presented by Lai and Fyfe (1999). Specifically, Pezeshki et al.
(2003) present a network structure for CCA of M = 2
data sets, which is trained by means of a stochastic gradient
descent algorithm. A similar architecture was presented in
Pezeshki et al. (2005), but the training was carried out by
means of power methods. The heuristic generalization to three
data sets proposed by Lai and Fyfe (1999) is also based on
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Fig. 1. Architecture of the CCA network. Classical PCA-based formulation.
a gradient descent algorithm and it seems to be unconnected
with the classical generalizations to several data sets proposed
by Kettenring (1971). In Vı́a et al. (2005a), we have exploited
the reformulation of CCA of two data sets as a pair of LS
regression problems to derive a recursive least squares (RLS)
algorithm for adaptive CCA. We have also extended this
algorithm to the case of several data sets in Vı́a, Santamarı́a,
and Pérez (2005b).

In this paper we extend the work in Vı́a et al. (2005a, 2005b),
propose a new adaptive learning algorithm, and prove its
convergence by means of stochastic approximation techniques.
Although derived in a different way, it can be proved that the
CCA generalization considered in this paper is equivalent to the
maximum variance (MAXVAR) CCA generalization proposed
by Kettenring (1971). Interestingly, this CCA generalization
is closely related to the principal component analysis (PCA)
method and, in fact, it becomes PCA when the data sets are
one-dimensional.
The classical formulation proposed by Kettenring (1971)
suggests to implement CCA–MAXVAR through a two-layer
network (see Fig. 1) where the first layer performs a
constrained projection of the input data and the second layer
is similar to the architecture used in the adaptive principal
component extraction (APEX) learning network (Diamantaras
& Kung, 1996): a feedforward network with lateral connections
for adaptive deflation. Unfortunately, since the projection
performed by the fist layer must be optimal in the sense that it
admits the best PCA representation, the training of this network
is not easy. On the other hand, the proposed CCA generalization
admits a similar neural model (see Fig. 2), but now the second
layer has fixed weights, which is a key difference to develop
CCA–MAXVAR adaptive learning algorithms.

The reformulation of CCA as a set of coupled LS regression
problems in the case of several data sets is exploited to propose
an iterative LS procedure (batch) for the training of the network
connection weights. Furthermore, this LS regression framework
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Fig. 2. Architecture of the CCA Network. Proposed formulation.
allows us to develop an adaptive RLS-based CCA algorithm.
The main advantage of the new adaptive algorithm presented
in this work in comparison to the power method procedure
proposed by Pezeshki et al. (2005), is that the RLS-based
algorithm avoids the previous estimation of the M(M − 1)/2
cross-correlation matrices between each pair of data sets, where
M is the total number of data sets. For high dimensional data
or when the number of data sets is large, this can be a great
advantage in terms of computational cost.

The paper is structured as follows: Sections 2 and 3 review,
respectively, the CCA problem for M = 2 data sets and the
MAXVAR generalization to several data sets. In Section 4
the proposed CCA generalization to M > 2 data sets is
presented, and we prove that it is equivalent to the PCA-based
MAXVAR generalization proposed by Kettenring. Sections 5
and 6 present, respectively, the new batch and adaptive
learning algorithms for CCA. The convergence properties of
the adaptive algorithm are analyzed in Section 7, and a brief
comparison with other adaptive CCA techniques is presented
in Section 8. Finally, the simulation results are presented
in Section 9, and the main conclusions are summarized in
Section 10.

Throughout the paper, the following notations are adopted:

(·)T Transpose
(·)H Conjugate transpose
(·)∗ Complex conjugate
(·)+ Pseudoinverse
‖ · ‖ Frobenius norm
I Identity matrix
0 All-zero matrix
Tr(·) Matrix trace
E[·] Statistical expectation
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2. Review of canonical correlation analysis of two data sets

In this section, the classical two data set formulation of CCA
is presented. The associated structure is a linear feedforward
network with lateral connections for deflation, and it can be
adaptively trained by means of the algorithms proposed in Gou
and Fyfe (2004), Lai and Fyfe (1999) and Pezeshki et al. (2003,
2005) or with the new technique presented in Section 6 (see
also Vı́a et al. (2005a)).

2.1. Main CCA solution

Let X1 ∈ RN×m1 and X2 ∈ RN×m2 be two known full-
rank data matrices. Canonical correlation analysis (CCA) can
be defined as the problem of finding two canonical vectors: h1
of size m1 × 1 and h2 of size m2 × 1, such that the canonical
variates z1 = X1h1 and z2 = X2h2 are maximally correlated,
i.e.,

argmax
h1,h2

ρ =
zT

1 z2

‖z1‖‖z2‖
=

hT
1 R12h2√

hT
1 R11h1hT

2 R22h2

, (1)

where Rkl = XT
k Xl is an estimate of the cross-correlation

matrix. Problem (1) is equivalent to the maximization of

ρ = hT
1 R12h2,

subject to the constraints

hT
1 R11h1 = hT

2 R22h2 = 1. (2)

The solution to this problem is given by the eigenvector
corresponding to the largest eigenvalue of the following
generalized eigenvalue problem (GEV) (Borga, 1998)[

0 R12
R21 0

]
h = ρ

[
R11 0

0 R22

]
h,

where ρ is the canonical correlation and h = [hT
1 , hT

2 ]
T is the

eigenvector.

2.2. Remaining CCA solutions

In order to determine additional CCA solutions a series
of optimization problems are solved successively. Denoting
the i-th canonical vectors, variables, and correlations as
h(i)

1 , h(i)
2 , z(i)

1 = X1h(i)
1 , z(i)

2 = X2h(i)
2 and ρ(i), respectively;

and defining z(i)
=

1
2 (z(i)

1 + z(i)
2 ) the following orthogonality

constraint is imposed for i 6= j

z(i)Tz( j)
= 0,

which, for the two data set case also implies

z(i)T
k z( j)

l = 0, k, l = 1, 2. (3)

For each new CCA solution the following GEV problem is
obtained[

0 R12
R21 0

]
h(i)

= ρ(i)
[

R11 0
0 R22

]
h(i), (4)
where ρ(i) is the i-th canonical correlation and h(i)
=

[h(i)T
1 , h(i)T

2 ]
T is the associated eigenvector.

3. MAXVAR generalization of CCA to several data sets

In this section the classical maximum variance (MAXVAR)
CCA generalization proposed by Kettenring (1971) is summa-
rized. The network structure associated to this generalization is
a two-layer feedforward network where the first layer performs
a constrained projection of the input data and the second layer
is a PCA network (see Fig. 1). The lateral connections of the
PCA layer impose the orthogonality constraints among the out-
put variables, similarly to the APEX network (Diamantaras &
Kung, 1996). Here we must point out that, excluding the case
of M = 2 data sets,1 it is not evident how to train this neural
model in an adaptive fashion, since the projection performed
by the first layer must be optimal in the sense that it admits the
best PCA representation. Therefore both layers must be trained
simultaneously.

3.1. Main CCA–MAXVAR solution

Given M data sets Xk ∈ RN×mk , k = 1, . . . , M , the
MAXVAR CCA generalization can be stated as the problem of
finding a set of M vectors fk and the corresponding projections
yk = Xkfk , which admit the best possible one-dimensional
PCA representation z and subject to the constraints ‖yk‖ = 1
for k = 1, . . . , M . The cost function to be minimized with
respect to f = [fT

1 , . . . , fT
M ]

T is

JPCA(f) = min
z,a

1
M

M∑
k=1

‖z − akyk‖
2, (5)

where a = [a1, . . . , aM ]
T is the vector containing the weights

for the best combination of the outputs and f is the vector
containing the projectors. In order to avoid the trivial solution
(a = 0, z = 0), the energy of z or a has to be constrained to
some fixed value. For reasons which will become clear later, we
select ‖a‖

2
= M , although any other restriction (for instance

‖a‖ = 1 or ‖z‖ = 1) will provide the same solutions for f
(since ‖yk‖ = 1) and a scaled version of a and z.

Taking the derivative of (5) with respect to z and equating to
zero we get

z =
1
M

Ya, (6)

where Y = [y1 · · · yM ] is a matrix containing the projections of
the M data sets. Now, substituting (6) into (5), the cost function
becomes

JPCA(f) = min
a

(
1 −

aTYTYa
M2

)
= 1 − β,

where β is the largest eigenvalue of YTY/M (which depends
on f ) and a is the associated eigenvector scaled to ‖a‖

2
= M .

1 In the two data set case the PCA weights are always 1/2, and then the
second layer does not require training.
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3.2. Remaining CCA–MAXVAR solutions

In order to determine additional CCA solutions the
optimization problem is solved including orthogonality
constraints in the PCA approximations z(i) (other alternative
orthogonality constraints can be found in Kettenring (1971)).
Therefore, defining the vectors associated to the i-th CCA
solution as f(i)k , the CCA–MAXVAR problem can be stated as
the problem of successively finding the set of M vectors f(i)k
and the corresponding projections y(i)

k = Xkf(i)k , which admit
the best possible one-dimensional PCA representation z(i) and
subject to the constraints ‖y(i)

k ‖ = 1 and z(i)Tz( j)
= 0 for

j = 1, . . . , i − 1.
Analogously to the procedure for the main CCA solution, the

cost function to be minimized with respect to f(i), and subject
to ‖a(i)

‖
2

= M , is

JPCA(f(i)) = min
z(i),a(i)

1
M

M∑
k=1

‖z(i)
− a(i)

k y(i)
k ‖

2,

where a(i)
= [a(i)

1 , . . . , a(i)
M ]

T groups the weights for the
best combination of the outputs and f(i) = [f(i)T1 , . . . , f(i)TM ]

T

stacks the projectors for the i-th CCA–MAXVAR solution. The
minimization of this cost function is obtained for

z(i)
=

1
M

Y(i)a(i),

where Y(i)
= [y(i)

1 · · · y(i)
M ], which implies

JPCA(f(i)) = min
a(i)

(
1 −

a(i)TY(i)TY(i)a(i)

M2

)
= 1 − β(i),

where a(i) is the eigenvector (scaled to ‖a(i)
‖

2
= M) associated

to the largest possible eigenvalue β(i) of Y(i)TY(i)/M (which
depends on f(i)) satisfying the orthogonality restrictions
z(i)Tz( j)

= 0, for j = 1, . . . , i − 1.

3.3. CCA–MAXVAR solution based on the SVD

In Kettenring (1971), the solutions f(i), a(i), z(i) of the
CCA–MAXVAR generalization were obtained using the
singular value decomposition (SVD) of Xk = Uk6kVT

k , where
UT

k Uk = I, VT
k Vk = I, and 6k is a diagonal matrix with the

singular values of Xk . This implies

y(i)
k = Xkf(i)k = Ukg(i)

k ,

and taking into account the constraint ‖y(i)
k ‖ = 1 and the

property UT
k Uk = I, we can write

‖y(i)
k ‖

2
= y(i)H

k y(i)
k = g(i)H

k UH
k Ukg(i)

k = g(i)H
k g(i)

k

= ‖g(i)
k ‖

2
= 1,

i.e., g(i)
k = 6kVT

k f(i)k is a unit norm vector. Defining U =

[U1 · · · UM ], β(i) can be rewritten as

β(i)
=

1
M2 b(i)TUTUb(i),
where b(i)
= [b(i)T

1 , . . . , b(i)T
M ]

T, with b(i)
k = a(i)

k g(i)
k ,

consequently ‖b(i)
‖

2
= ‖a(i)

‖
2

= M .
After the SVD, the solution b(i) satisfying the orthogonality

restrictions z(i)Tz( j)
= 0 ( j = 1, . . . , i − 1) is the eigenvector

of UTU/M associated to its i-th largest eigenvalue β(i), and
the vectors g(i)

k , f(i)k and a(i) can be obtained from b(i) in a
straightforward manner. Furthermore, denoting b(i)

= G(i)a(i),
where

G(i)
=

g(i)
1 · · · 0
...

. . .
...

0 · · · g(i)
M

 ,

is a matrix satisfying G(i)TG(i)
= I, we can write

1
M

Y(i)TY(i)a(i)
=

1
M

G(i)TUTUb(i)
= β(i)a(i),

which proves that a(i) is some eigenvector (not necessarily the
first) of Y(i)TY(i)/M with eigenvalue β(i).

Finally, we must point out that, in the particular case of
M = 2 data sets, the solution of the CCA–MAXVAR problem
is the same as the classical formulation of CCA (Kettenring,
1971). This equivalence will become clear in the next section.

4. LS generalization of CCA to several data sets

In this section, a generalization of CCA to several data sets
is proposed. This generalization is developed within a least
squares (LS) regression framework and we prove that it is
equivalent to the PCA-based CCA–MAXVAR generalization.
However, unlike the CCA–MAXVAR generalization, the
proposed approach does not require a prewhitening (SVD) step
and it is able to find the canonical vectors and variates directly
from the data sets. Additionally, the proposed generalization
admits the neural model represented in Fig. 2. Again, it is a two
layer model, but now the second layer has fixed weights, and
therefore it does not require training. Obviously, in this new
neural model the PCA coefficients a(i)

k of the previous model
have been incorporated into the first projection layer. Although
this may seem a minor modification, it is, as we will show later,
a key ingredient to develop adaptive learning algorithms for this
structure.

4.1. CCA generalization based on distances

Let Xk ∈ CN×mk for k = 1, . . . , M be full-rank matrices.
If we denote the successive canonical vectors and variables
as h(i)

k and z(i)
k = Xkh(i)

k , respectively; and the estimated
cross-correlation matrices as Rkl = XH

k Xl , then our CCA
generalization can be formulated as the problem of sequentially
maximizing the generalized canonical correlation

ρ(i)
=

1
M

M∑
k=1

ρ
(i)
k ,
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where ρ
(i)
kl = h(i)H

k Rklh(i)
l and

ρ
(i)
k =

1
M − 1

M∑
l=1
l 6=k

ρ
(i)
kl .

In this case, the energy constraint to avoid trivial solutions is

1
M

M∑
k=1

h(i)H
k Rkkh(i)

k = 1, (7)

and defining z(i)
=

1
M
∑M

k=1 z(i)
k , the orthogonality constraints

are, for i 6= j

z(i)Hz( j)
= 0. (8)

Unlike the two data set case, here it is interesting to point
out that, for M > 2, the energy constraint (7) is not equivalent
to h(i)H

k Rkkh(i)
k = 1 for all k. However, as we will see later,

the solutions of the proposed generalization with M = 2 data
sets are the same of the conventional formulation of the CCA
problem and then they satisfy z(i)H

k z( j)
l = 0 and h(i)H

k Rkkh(i)
k =

1 for k, l = 1, 2 and i 6= j .
The proposed CCA generalization (referred to as CCA–LS)

can be rewritten as a function of distances. Specifically, to
extract the i-th CCA eigenvector, the generalized CCA problem
consists on minimizing, with respect to the M canonical vectors
h(i)

k , the following cost function

J (i)
=

1
2M(M − 1)

M∑
k,l=1

∥∥∥Xkh(i)
k − Xlh(i)

l

∥∥∥2

=
1
M

M∑
k=1

‖z(i)
k ‖

2
− ρ(i),

subject to (7) and (8), which implies J (i)
= 1 − ρ(i).

The solutions of this generalized CCA problem can be
obtained by the method of Lagrange multipliers (see the
Appendix), whose solutions are determined by the following
GEV problem

1
M − 1

(R − D)h(i)
= ρ(i)Dh(i), (9)

where h(i)
= [h(i)T

1 , . . . , h(i)T
M ]

T stacks the canonical vectors,

R =

R11 · · · R1M
...

. . .
...

RM1 · · · RM M

 , D =

R11 · · · 0
...

. . .
...

0 · · · RM M

 ,

(10)

and ρ(i) is a generalized eigenvalue. Then, the CCA–LS
solutions are obtained as the eigenvectors associated with the
largest eigenvalues of (9). Here, we must note that, in the case of
M = 2 data sets, the GEV problem (9) is reduced to (4), which
proves that, for M = 2, the energy and orthogonality relaxed
restrictions (7) and (8) are equivalent to the strict restrictions
(2) and (3). Furthermore, Bach and Jordan (2002) prove that the
eigenvalues of (9) can be used as a measure of the dependency
(or mutual information) between several Gaussian data sets.
4.2. Equivalence to the CCA–MAXVAR approach

Here we show that the CCA–LS generalization in terms
of distances given by (9) is equivalent to the MAXVAR
generalization proposed by Kettenring in terms of PCA
projections. Let us start by rewriting (9) as

1
M

Rh(i)
= β(i)Dh(i), (11)

where

β(i)
=

1 + (M − 1)ρ(i)

M
.

Taking into account that replacing the transpose by the
conjugate transpose operation, the CCA–MAXVAR method
can be extended to complex numbers, the equivalence between
the proposed and the MAXVAR generalization of CCA is stated
in the following theorem

Theorem 1. The classical PCA-based solutions z(i), β(i) of the
MAXVAR generalization of CCA coincide with those of the
CCA–LS formulation, and the canonical vectors and variables
are related by h(i)

k = a(i)
k f(i)k and z(i)

k = a(i)
k y(i)

k .

Proof. In order to obtain the CCA–MAXVAR solution directly
from X = U6VH we write

1
M

UHUb(i)
=

1
M

6−1VHXHXV6−1b(i)
= β(i)b(i), (12)

where 6 and V are block-diagonal matrices with block
elements 6k and Vk (k = 1, . . . , M), respectively, and X =

[X1 · · · XM ].
Left-multiplying (12) by V6−1 we have

1
M

V6−2VHXHXV6−1b(i)
= β(i)V6−1b(i),

and taking into account that R = XHX and D = V62VH are
the matrices defined in (10), the GEV problem (11) is obtained,
where h(i)

= V6−1b(i). Obviously, (11) has the same solutions
(eigenvectors) as the proposed generalized CCA problem in (9).
Noting that a(i)

k f(i)k = a(i)
k Vk6

−1
k g(i)

k = Vk6
−1
k b(i)

k we also find
that h(i)

k = a(i)
k f(i)k and z(i)

k = a(i)
k y(i)

k .
Now, it is easy to realize that ‖y(i)

k ‖ = 1 and ‖a(i)
‖

2
= M

implies (7) (which justify our election ‖a(i)
‖

2
= M), and

finally, the PCA approximation is given by

z(i)
=

1
M

Y(i)a(i)
=

1
M

Ub(i)
=

1
M

Xh(i)
=

1
M

M∑
k=1

z(i)
k ,

which concludes the proof. �

5. Iterative algorithm for CCA–LS

In this section, the least squares framework is exploited to
introduce a batch algorithm based on iterative least squares
regression. This algorithm constitutes the framework used in
the next section to develop an adaptive algorithm based on the
RLS.
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5.1. Main CCA–LS solution

By noting that R−1
kk Rkl = X+

k Xl , where X+

k =

(XH
k Xk)

−1XH
k is the pseudoinverse of Xk , the GEV problem

(11) can be viewed as M coupled LS regression problems

β(i)h(i)
k = X+

k z(i), k = 1, . . . , M,

where z(i)
=

1
M
∑M

k=1 z(i)
k and z(i)

k = Xkh(i)
k . The key idea

of the batch algorithm for the extraction of the main CCA–LS
solution is to solve these regression problems iteratively: at each
iteration t we form M LS regression problems using ẑ(1)

(t) as
desired output, and a new solution is thus found by solving

β̂(1)(t)ĥ
(1)

k (t) = X+

k ẑ(1)
(t), k = 1, . . . , M,

where

ẑ(i)
(t) =

1
M

M∑
k=1

ẑ(i)
k (t),

ẑ(i)
k (t) = Xk ĥ

(i)
k (t − 1).

Finally, β̂(i)(t) and ĥ
(i)

(t) can be obtained by scaling ĥ
(i)

(t)
to strictly satisfy (7). Nevertheless, this normalization step can

be further simplified by imposing ‖ĥ
(i)

(t)‖ = 1, which only
introduces a constant scale factor

c =

√
ĥ

(i)H
(t)Rĥ

(i)
(t)

M
,

in the CCA solutions ĥ
(i)
k (t), ẑ(i)

k (t), and reduces the obtention

of the PCA eigenvalue to β̂(i)(t) = ‖β̂(i)(t)ĥ
(i)

(t)‖.

5.2. Remaining CCA–LS solutions

The subsequent CCA eigenvectors can be obtained by
means of a deflation technique that imposes the following
orthogonality constraints

h(i)HDh( j)
= 0, i 6= j,

which are a direct consequence of the GEV problem (11) and
the orthogonality among the subsequent solutions z(i).

Defining now Ĥ
(i)

(t) = [ĥ
(1)

(t) · · · ĥ
(i−1)

(t)] and Û
(i)

(t) =

[û(1)
(t) · · · û(i−1)

(t)] = DĤ
(i)

(t − 1), the update equation for
the i-th CCA solution is

β̃(i)(t)h̃(i)
k (t) = X+

k ẑ(i)
(t), k = 1, . . . , M,

β̂(i)(t)ĥ
(i)

(t) = P̂
(i)
U (t)β̃(i)(t)h̃(i)

(t),

where h̃(i)
(t) = [h̃(i)T

1 (t), . . . , h̃(i)T
M (t)]T, P̂

(i)
U (t) denotes the

projection matrix onto the complementary subspace to Û
(i)

(t),

P̂
(i)
U (t) = I − Û

(i)
(t)
(

Û
(i)H

(t)Û
(i)

(t)
)−1

Û
(i)H

(t)

= I − V̂
(i)

(t)V̂
(i)H

(t),
and V̂
(i)

(t) = [v̂(1)
(t) · · · v̂(i−1)

(t)] is an orthonormal basis
of Û

(i)
(t), which can be easily obtained by means of the

Gram–Schmidt orthogonalization procedure

v̂(i)
(t) =

P̂
(i)
U (t)û(i)

(t)

‖P̂
(i)
U (t)û(i)

(t)‖
.

Finally, the recursive rule for the projection matrix is

P̂
(i+1)

U (t) = P̂
(i)
U (t) − v̂(i)

(t)v̂(i)H
(t),

with P̂
(1)

U (t) = I.

6. Learning algorithm for CCA–LS

In the previous section we have shown that the reformulation
of the CCA–LS generalization as a set of coupled LS regression
problems yields in a natural way an iterative algorithm for batch
training. In this section we go one step further and derive an
adaptive learning algorithm for CCA based on the well-known
RLS algorithm.

Unlike other recently proposed GEV adaptive algorithms
(Rao, Principe, & Wong, 2004), the learning rule presented
in this paper is a true RLS algorithm that uses a reference
signal specifically constructed for CCA and derived from
the LS regression framework. This reference signal opens
the possibility of new improvements of CCA algorithms:
for instance, it can be used to develop robust versions of
the algorithm (Vı́a et al., 2005a), or to construct a soft
decision signal useful for blind equalization problems (Vı́a &
Santamarı́a, 2005).

6.1. Main CCA–LS solution

To obtain an on-line algorithm, the LS regression problems
are now rewritten as the following exponentially weighted cost
functions

J (i)
k (n) =

n∑
l=1

λn−l
∣∣∣ẑ(i)(l) − β̂(i)(n)xH

k (l)ĥ
(i)
k (n)

∣∣∣2 .

Denoting the n-th row of the k-th data set as xH
k (n), and

writing the associated Kalman gain vector as kxk (n), the update
RLS equations are

kxk (n) =
Pxk (n − 1)xk(n)

λ + xH
k (n)Pxk (n − 1)xk(n)

, (13)

Pxk (n) = λ−1(I − kxk (n)xH
k (n))Pxk (n − 1), (14)

where 0 < λ ≤ 1 is the forgetting factor and Pxk (n) = 8−1
xk

(n)

is the inverse of the estimated correlation matrix 8xk (n) =∑n
l=1 λn−lxk(l)xH

k (l).
Using these update equations, a direct application of the RLS

algorithm yields, for k = 1, . . . , M

β̂(1)(n)ĥ
(1)

k (n) = β̂(1)(n − 1)ĥ
(1)

k (n − 1) + kxk (n)e(1)
k (n),

where

e(i)
k (n) = ẑ(i)(n) − β̂(i)(n − 1)xH

k (n)ĥ
(i)
k (n − 1), (15)



146 J. Vı́a et al. / Neural Networks 20 (2007) 139–152
Initialize Pxk (0) = δ−1I, with δ � 1 for k = 1, . . . , M .
Initialize ĥ(i)(0) 6= 0, û(i)(0) = 0 and β̂(i)(0) = 0 for
i = 1, . . . , p.
for n = 1, 2, . . . do

Update kxk (n) and Pxk (n) with (13) and (14) for k =

1, . . . , M .
for i = 1, . . . , p do

Obtain ẑ(i)(n), and e(i)(n) with (15).
Obtain β̂(i)(n)ĥ(i)(n) using (16), (17) and (18).
Estimate β̂(i)(n), ρ̂(i)(n) and ĥ(i)(n) considering
‖ĥ(i)(n)‖ = 1.

end for
end for

Algorithm 1: Summary of the proposed CCA–RLS adaptive
algorithm.

is the a priori error for the k-th data set, and the reference signal
is obtained as

ẑ(i)(n) =
1
M

M∑
k=1

ẑ(i)
k (n),

where ẑ(i)
k (n) = xH

k (n)ĥ
(i)
k (n − 1).

By grouping now the a priori errors into the vector e(i)(n) =

[e(i)
1 (n), . . . , e(i)

M (n)]T, we can write the overall algorithm (see
Algorithm 1) in matrix form as

β̃(i)(n)h̃(i)
(n) = β̂(i)(n − 1)ĥ

(i)
(n − 1) + K(n)e(i)(n), (16)

where β̂(1)(n) = β̃(1)(n), ĥ
(1)

(n) = h̃(1)
(n), and

K(n) =

kx1(n) · · · 0
...

. . .
...

0 . . . kxM (n)

 .

6.2. Remaining CCA–LS solutions

Analogously to the batch algorithm, the extraction of the
subsequent CCA solutions is based on a deflation technique.
In Vı́a et al. (2005b) we have proposed an RLS-based method,
which resembles the APEX algorithm (Diamantaras & Kung,
1996); here we propose an alternative technique based on the
vectors

û(i)
k (n) =

n∑
l=1

λn−lxk(l)xH
k (l)ĥ

(i)
k (l − 1),

which can be updated as

û(i)
k (n) = λû(i)

k (n − 1) + xk(n)ẑ(i)
k (n). (17)

The deflation technique consists of

β̂(i)(n)ĥ
(i)

(n) = P̂
(i)
U (n)β̃(i)(n)h̃(i)

(n), (18)

where û(i)
(n) = [û(i)T

1 (n), . . . , û(i)T
M (n)]T, P̂

(i)
U (n) is the

projection matrix onto the complementary subspace to
Û
(i)

(n) = [û(1)
(n) · · · û(i−1)

(n)],

P̂
(i)
U (n) = I − Û

(i)
(n)(Û

(i)H
(n)Û

(i)
(n))−1Û

(i)H
(n)

= I − V̂
(i)

(n)V̂
(i)H

(n),

and V̂
(i)

(n) = [v̂(1)
(n) · · · v̂(i−1)

(n)] is an orthonormal basis
of Û

(i)
(n), which is recursively obtained by means of the

Gram–Schmidt orthogonalization procedure

v̂(i)
(n) =

P̂
(i)
U (n)û(i)

(n)

‖P̂
(i)
U (n)û(i)

(n)‖
.

Finally, the recursive rule for the projection matrix is

P̂
(i+1)

U (n) = P̂
(i)
U (n) − v̂(i)

(n)v̂(i)H
(n),

with P̂
(1)

U (n) = I.

7. Convergence analysis

In this section the convergence of the proposed CCA–RLS
algorithm is analyzed following the convergence proof outlined
by Rao et al. (2004), wherein the stochastic approximation
tools have been employed to prove the convergence of a GEV
algorithm. Let us start by defining the data vector x(n) =[
xT

1 (n), . . . , xT
M (n)

]T and the matrices

X(n) =

x1(n) · · · 0
...

. . .
...

0 · · · xM (n)

 ,

D(n) =

8x1(n) · · · 0
...

. . .
...

0 · · · 8xM (n)

 .

Taking into account that kxk (n) = Pxk (n)xk(n), we can write

K(n) = D−1(n)X(n),

and rewriting ẑ(i)(n) =
1
M xH(n)ĥ

(i)
(n − 1), Eqs. (15), (16) and

(18) yield

β̂(i)(n)ĥ
(i)

(n) = P̂
(i)
U (n)D−1(n)

[
λD(n − 1)β̂(i)(n − 1)

+
1
M

x(n)xH(n)

]
ĥ

(i)
(n − 1), (19)

or, equivalently,

β̂(i)(n)ĥ
(i)

(n) = λn

[
n∏

k=1

(P̂
(i)
U (k)D−1(k)D(k − 1))

]
× β̂(i)(0)ĥ

(i)
(0)

+
1
M

n∑
k=1

λn−k P̂
(i)
U (k)D−1(k)

× x(k)xH(k)ĥ
(i)

(k − 1),



J. Vı́a et al. / Neural Networks 20 (2007) 139–152 147
and initializing β̂(i)(0) = 0 we obtain

β̂(i)(n)ĥ
(i)

(n) =
1
M

n∑
k=1

λn−k P̂
(i)
U (k)D−1(k)x(k)xH(k)

× ĥ
(i)

(k − 1). (20)

The convergence analysis is based on the stochastic
approximation techniques proposed by Benveniste, Métivier,
and Priouret (1990). Eq. (20) can be seen as a special case of
the generic stochastic approximation algorithm

β̂(i)(n)ĥ
(i)

(n) = β̂(i)(n − 1)ĥ
(i)

(n − 1)

+ f (i)(β̂(i)(n − 1)ĥ
(i)

(n − 1), x(n)),

which belongs to the constant gain type algorithms. The central
idea of the convergence study of this class of algorithms is
to associate the discrete-time update equation to an ordinary
differential equation (ODE) and then link the convergence of
the ODE to that of the discrete-time equation. We will make the
following mild assumptions:
A.1. The inputs xk(n) are at least wide sense stationary (WSS)

with positive definite autocorrelation matrices Rkk .
A.2. The sequence β̂(i)(n)ĥ

(i)
(n) is bounded with probability

1, which is ensured by A.1. and the normalization step.
A.3. The update function f (i)(β̂(i)(n − 1)ĥ

(i)
(n − 1), x(n))

is continuously differentiable with respect to β̂(i)(n −

1)ĥ
(i)

(n − 1) and x(n) and its derivatives are bounded in
time.

A.4. Even if the update function has some discontinuities, a
mean vector field

f̄ (i)(β̂(i)ĥ
(i)

, x) = lim
n→∞

E[ f (i)(β̂(i)(n − 1)

× ĥ
(i)

(n − 1), x(n))],

exists and is regular. This fact can be easily proved based
on A.1 and A.2.

A.5. The initial estimates ĥ
(i)

(0) are chosen such that
h(i)Hĥ

(i)
(0) 6= 0, where h(i) is the i-th eigenvector of (11).

A.6. The previously estimated canonical vectors have con-

verged to the correct solutions ĥ
(i)

= h(i), which will be
proved by induction.

Based on these assumptions, the ODE update function is
given by

f̄ (i)(β̂(i)ĥ
(i)

, x)

= lim
n→∞

E[β̂(i)(n)ĥ
(i)

(n) − β̂(i)(n − 1)ĥ
(i)

(n − 1)]

=
d(β̂(i)(t)ĥ

(i)
(t))

dt

=
1
M

P̂
(i)
U D−1Rĥ

(i)
(t) − β̂(i)(t)ĥ

(i)
(t), (21)

and in order to find the stationary points of this ODE we can
write

ĥ
(i)

(t) =

m∑
j=1

θ̂
(i)
j (t)h( j), (22)
where m =
∑M

k=1 mk is the number of eigenvectors of
the GEV problem and θ̂

(i)
j (t) is a time-varying projection.

Considering the energy (h( j)H Dh( j)/M = 1) and orthogonality
(h( j)H Dh(i)

= 0, i 6= j) constraints, left-multiplying (19) and
(22) by h( j)H D (with j < i), and taking A.6 into account, it is

easy to realize that h( j)H Dĥ
(i)

(t) = M θ̂
(i)
j (t) = 0, and then

ĥ
(i)

(t) =

m∑
j=i

θ̂
(i)
j (t)h( j). (23)

Hence, using (23) and taking into account the orthogonality
constraints, (21) can be rewritten as

d(β̂(i)(t)θ̂ (i)
j (t))

dt
= (β( j)

− β̂(i)(t))θ̂ (i)
j (t), j = i, . . . , m,

and defining

α̂
(i)
j (t) =

θ̂
(i)
j (t)

θ̂
(i)
i (t)

, j = i, . . . , m,

we obtain

d(α̂
(i)
j (t))

dt
= −α̂

(i)
j (t)

β(i)
− β( j)

β̂(i)(t)
, j = i, . . . , m.

Noting that β̂(i)(t) > 0 and β(i) > β( j), it can be easily
shown that the time varying projections associated with all the
eigenvectors except the i-th decay to zero asymptotically, and

hence, as t → ∞, ĥ
(i)

(t) = ch(i) and β̂(i)(t) = β(i), where c
is an arbitrary constant. Then, we conclude that the generalized
eigenvector h(i) is the stable stationary point of the ODE.

In order to prove that the remaining m − 1 eigenvectors
are saddle points, we linearize the ODE in (21) around the
vicinity of a stationary point. The linearization matrix A(i)

j can
be computed as

A(i)
j =

d( f̄ (i)(β̂(i)(t)ĥ
(i)

(t)))

d(β̂(i)(t)ĥ
(i)

(t))

∣∣∣∣∣
β̂(i)(t)ĥ

(i)
(t)=β( j)h( j)

=
1

β( j) P̂
(i)
U D−1R − I,

and, taking A.6 into account, the eigenvalues of A(i)
j are given

by

β
(k)

A(i)
j

=


−1 k < i,
β(k)

β( j) − 1 k ≥ i.

Here, it is easy to realize that only for j = i , all the eigenvalues
which are analogous to the s-poles are within the LHP except
the i-th which is at zero. All other stationary points have one or
more poles in the RHP and hence they are saddle points, which
means that near convergence, if the estimated canonical vector

ĥ
(i)

(t) reaches any of the m − 1 saddle points, it will diverge
from that point and converge only to the stable stationary point
which is h(i) (see Benveniste et al. (1990), Rao and Principe
(2002) and Rao et al. (2004) for more details). Furthermore, we
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must note that for i = 1, we have P̂
(i)
U = I and the main CCA

solution is obtained, which validates A.6.

8. Comparison with other techniques

In this section, the CCA–RLS adaptive algorithm is
compared with other learning rules for CCA of two or several
data sets. The comparison is made in terms of performance,
applicability to several data sets, speed of convergence and
computational complexity.

8.1. Proposed algorithm (CCA–RLS)

The proposed adaptive algorithm obtains the solution of the
classical CCA–MAXVAR problem by means of M coupled
RLS algorithms (the reference signal z(i) is constructed from
the M previous estimates). The advantages of the RLS includes
the presence of only one parameter (the forgetting factor λ)
and its faster convergence in comparison with gradient-based
algorithms, especially for colored data sets. Taking into account
that the computational complexity of the RLS algorithm is of
order O(q2), where q is the length of the estimated vector, the
cost of the proposed algorithm is

O
(

M∑
k=1

m2
k

)
,

per iteration and eigenvector.

8.2. Gradient descent methods (Fyfe and Fyfe-NL)

In Gou and Fyfe (2004) and Lai and Fyfe (1999) the
authors propose two different adaptive algorithms for CCA
of two data sets, both of them are based on gradient descent
and they differ in the update of the Lagrange multipliers (or
canonical correlations), which is made by means of gradient
ascent (Lai & Fyfe, 1999) (Fyfe) or a nonlinear function
(Gou & Fyfe, 2004) (Fyfe-NL). The learning rules of the
algorithms are equivalent to two coupled LMS algorithms,
which implies a low computational cost. Although Lai and
Fyfe (1999) propose an extension of the algorithm to three
data sets, this generalization is not one of the classical
generalizations proposed by Kettenring (1971). Furthermore,
the generalization is based on the maximization of the canonical
correlations between pairs of canonical variates, which implies
the definition of three different Lagrange multipliers or
canonical correlations. The computational cost of the extended
algorithm is

O
(

M∑
k=1

mk

)
,

and the main drawbacks are its slow convergence and, in the
case of Lai and Fyfe (1999), the existence of two different
learning rates for the canonical vectors and correlations.
Table 1
Comparison of several adaptive CCA algorithms

Algorithm MAXVAR Cost Speed

CCA–RLS Yes
∑M

k=1 m2
k Fast

Fyfe, Fyfe-NL No
∑M

k=1 mk Slow

GD No
∑M

k=1 mk Slow

PM Yes
∑M

k=1
∑M

l=k mkml Fast

8.3. Gradient descent (GD)

Pezeshki et al. (2003) present an adaptive algorithm for
CCA of two data sets which is based on a gradient descent
technique. The algorithm is very similar to Lai and Fyfe (1999),
but the estimate of the canonical correlation is obtained as the
averaged correlation between the complete estimated canonical
variates, which constitutes a drawback in the tracking ability
of the algorithm. The computational cost of the algorithm is
summarized in Table 1.

8.4. Power method (PM)

In Pezeshki et al. (2005) a method for CCA of two data
sets based on an iterative power method is proposed. The main
advantage of this method is its fast convergence in comparison
with gradient-based techniques. Its computational cost can be
estimated as

O
(

2∑
k=1

2∑
l=k

mkml

)
,

which is due to the rank one update of the correlation
matrices Rkl . Although the algorithm could be easily extended
to perform CCA–MAXVAR, the estimation of all the
cross-correlation matrices Rkl implies a high increase in
computational cost, mainly for high dimensional data matrices
or a large number of data sets.

9. Simulation results

In this section the performance of the proposed algorithm is
analyzed by means of some simulation examples. For all the
examples, the convergence curves are based on the averaged
results of 300 independent realizations. For each example we
obtain the estimated canonical correlation ρ̂(i) and the mean
squared error (MSE) of the estimated eigenvectors ĥ

(i)
or

PCA approximations ẑ(i). The parameters of the algorithm are
initialized as follows:

• Pxk (0) = 105I, for k = 1, . . . , M (M is the number of data
sets).

• h(i)(0) is initialized with random values, for i = 1, . . . , p,
where p is the number of canonical vectors of interest.

• β(i)(0) = 0 for i = 1, . . . , p.

In the first example, a two data set (M = 2) CCA
problem with canonical correlations ρ(1)

= 0.9 and ρ(2)
= 0

is generated. We compare the performance of the proposed
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Fig. 3. Performance of the proposed algorithm, and the methods proposed
by Lai and Fyfe (1999) (Fyfe), Gou and Fyfe (2004) (Fyfe-NL), Pezeshki et al.
(2003) (GD) and Pezeshki et al. (2005) (PM). Two data sets, ρ(1)

= 0.9, ρ(2)
=

0.

adaptive CCA–RLS algorithm, the methods proposed in Lai
and Fyfe (1999) (Fyfe in the figures) and Gou and Fyfe (2004)
(Fyfe-NL), the CCA gradient-descent (GD) technique proposed
by Pezeshki et al. (2003) and the CCA power method (PM in
the figures) proposed by Pezeshki et al. (2005).

The dimensions of the data sets are m1 = 6 and m2 = 4,
the forgetting factor for the CCA–RLS and PM algorithms
is λ = 0.995, and the step sizes for the GD, Fyfe and
Fyfe-NL algorithms are µ = 0.05, µ = 0.025 and µ =

0.01, respectively. The results for the extraction of the first
CCA canonical vectors are shown in Fig. 3. As expected,
the gradient-based algorithms are the slowest in terms of
convergence speed, and the PM algorithm is slightly faster than
the CCA–RLS.

The same experiment has been repeated in the second
example, but now the canonical correlations are ρ(1)

= 0.9 and
ρ(2)

= 0.8, and the step sizes for the GD and Fyfe algorithms
have been reduced to µ = 0.03, µ = 0.02, respectively, to
ensure convergence. The results for the extraction of the first
CCA solution are shown in Fig. 4, where we can see that the
performance of the PM algorithm is degraded in the presence of
close canonical correlations, whereas the CCA–RLS algorithm
conserves its MSE performance at the expense of a convergence
speed reduction.

The third example compares the performance of the
CCA–RLS algorithm with the generalization to three data sets
proposed by Lai and Fyfe (1999) of the algorithms Fyfe and
Fyfe-NL. The CCA problem is similar to the example presented
in Lai and Fyfe (1999), where three artificial data sets of
dimensions m1 = m2 = m3 = 3 have been generated as

Xk = (Sk + [ s 0 0 ])Ck, k = 1, 2, 3,

where Sk is a N ×3 matrix with elements drawn fromN (0, 1), s
is a N × 1 vector drawn from N (0, σ ), and Ck is a 3 × 3
mixing matrix. As pointed out in Lai and Fyfe (1999), the Fyfe
Fig. 4. Performance of the proposed algorithm, and the methods proposed
by Lai and Fyfe (1999) (Fyfe), Gou and Fyfe (2004) (Fyfe-NL), Pezeshki et al.
(2003) (GD) and Pezeshki et al. (2005) (PM). Two data sets, ρ(1)

= 0.9, ρ(2)
=

0.8.

and Fyfe-NL algorithms are based on the maximization of three
separated constrained objective functions. The three algorithms
have been compared in terms of the extraction of the common
signal s with two different values of σ and two different
selections of the mixing matrices. The estimated common
signal is obtained in the Fyfe and Fyfe-NL algorithms by
means of a PCA approximation of the three estimated canonical
variates (two stage algorithms), whereas the CCA–RLS obtains
the PCA estimate ẑ in one single step. The forgetting factor for
the CCA–RLS algorithm is λ = 0.99 and the step size for the
Fyfe and Fyfe-NL algorithms is µ = 0.005. Fig. 5 shows the
results in the case of C1 = C2 = C3 = I, and Fig. 6 shows the
results for

C1 =

 0.0413 2.9003 1.6701
−0.8912 5.3215 2.6235
0.2363 −0.9105 −0.8995

 ,

C2 =

 0.1464 0.9850 −1.2749
0.3724 0.0055 0.4732

−0.3791 −0.3388 0.7100

 ,

C3 =

−0.2779 −0.7311 −0.0784
0.4944 −0.0415 0.5029

−0.5102 0.8189 0.5401

 ,

whose condition numbers are 18.12, 7.10 and 2.41 respectively.
As can be seen, the CCA–RLS is much faster than the Fyfe and
Fyfe-NL algorithms, specially for colored signals, which is a
direct consequence of the convergence properties of the RLS
algorithm.

The fourth example shows the convergence properties of
the CCA–RLS algorithm, with four complex data sets of
dimensions m1 = 40, m2 = 30, m3 = 20 and m4 = 10.
The first four generalized canonical correlations are ρ(1)

=

0.9, ρ(2)
= 0.8, ρ(3)

= 0.7 and ρ(4)
= 0.6, and the forgetting

factor has been selected as λ = 0.99. Fig. 7 shows the estimated
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Fig. 5. Comparison of CCA–RLS and Fyfe algorithms. Three data sets. (a)
σ 2

= 1, (b) σ 2
= 10. Mixing matrices C1 = C2 = C3 = I.

Fig. 6. Comparison of CCA–RLS and Fyfe algorithms. Three data sets. (a)
σ 2

= 1, (b) σ 2
= 10. Mixing matrices with cond(C1) = 18.12, cond(C2) =

7.10, cond(C3) = 2.41.

canonical correlations and the MSE in the extraction of the
canonical vectors, where we can see that they converge very
fast to their theoretical values.

In the fifth example we have analyzed the effect of
the canonical correlation and the forgetting factor λ on the
performance of the CCA–RLS algorithm. We have simulated
two CCA problems with four data sets, whose dimensions
have been selected as m1 = 10, m2 = 8, m3 = 6 and
m4 = 4. In the first problem, the main generalized canonical
correlation was ρ(1)

= 0.9; and in the second one it was
ρ(1)

= 0.7. The simulation results are shown in Figs. 8 and 9,
where we can see that, after a transitory interval, the proposed
algorithm converges to the theoretical solutions providing
accurate estimates. Furthermore, Figs. 8 and 9 illustrate the
effect of the canonical correlations on the performance of the
Fig. 7. Convergence properties of the CCA–RLS algorithm. Four data sets.

Fig. 8. Effect of the forgetting factor λ. Four data sets. ρ(1)
= 0.9.

proposed algorithm, as well as the trade off between the speed
of convergence and the final MSE, which depends on λ.

Finally, the proposed algorithm has been tested in the
Boston housing data set (http://www.ics.uci.edu/∼mlearn/
MLRepository.html), which gives housing values in the suburbs
of Boston. The data set contains N = 506 14-dimensional
instances, which have been preprocessed to have zero mean and
unit variance, and have been divided into M = 3 different data
sets with dimensions m1 = 5, m2 = 6 and m3 = 3:

• First data set (ZN, AGE, TAX, RM, MEDV): Variables
directly related with the housing market.

• Second data set (CRIM, INDUS, NOX, PTRATIO, B,
LSTAT): Variables indirectly related with the housing
market.

• Third data set (CHAS, DIS, RAD): Geographical variables.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 9. Effect of the forgetting factor λ. Four data sets. ρ(1)
= 0.7.

Fig. 10. Performance of the CCA–RLS algorithm in the Boston housing
example. N = 506, three epochs. Four different forgetting factors λ.

Using the estimated correlation matrices we have found
that the first canonical correlation is ρ̂(1)

= 0.9313 and the
canonical vectors are:

h(1)
1 = [−0.1700, 0.2115, 0.5365, −0.0086, −0.0065]

T,

h(1)
2 = [0.1716, 0.2126, 0.3806, 0.1731, −0.0473, 0.0057]

T,

h(1)
3 = [−0.0245, −0.3920, 0.4821]

T.

Fig. 10 shows the results of the application of the proposed
CCA–RLS algorithm over 3 epochs of the available data (3N
RLS iterations). Obviously, the trade off between the forgetting
factor λ and the final MSE is still present, but as can be seen,
the proposed algorithm is able to obtain good estimates of the
canonical vectors and correlations even in only one epoch.
10. Conclusions

In this work we have proposed a neural model and the
corresponding learning rules for the generalization of canonical
correlation analysis (CCA) to several data sets. We have proved
that the proposed CCA generalization, which is based on the
maximization of correlations (or minimization of distances), is
equivalent to the maximum variance (MAXVAR) PCA-based
classical generalization proposed by Kettenring in the early
seventies. The main advantage of this reformulation of CCA as
a set of coupled least squares (LS) regression problems is that
it allows us to develop batch and adaptive learning algorithms
for CCA in a natural way.

The convergence of the proposed adaptive algorithm has
been proved by means of stochastic approximation techniques
and its performance has been analyzed by means of simulations,
showing a fast convergence and even outperforming other
adaptive CCA algorithms specifically designed for the case of
two data sets. Further lines in this work include the extension of
the proposed algorithms to kernel CCA and their application to
blind equalization of multiple-input multiple-output (MIMO)
systems and blind source separation (BSS) of convolutive
mixtures.

Appendix. Solution of the CCA–LS generalization

In this appendix we show that the CCA–LS generalization
is equivalent to the GEV problem defined in (9). Using the
definitions of R and D in (10) we can use the matrix formulation
and state the CCA problem as the problem of maximizing

ρ(i)
=

1
M(M − 1)

h(i)H (R − D) h(i),

subject to the following restrictions

1
M

h(i)HDh(i)
= 1,

z(i)Hz( j)
=

1
M2 h(i)HRh( j)

= 0 j = 1, . . . , i − 1.

Applying the method of Lagrange multipliers, the cost
function to be maximized on h(i), and minimized on the
Lagrange multipliers λ(i)

∈ R and γ (i j)
∈ C is

J (i)
=

1
M(M − 1)

h(i)H (R − D) h(i)

+ λ(i)
(

1 −
1
M

h(i)HDh(i)
)

−
1

M2

i−1∑
j=1

γ (i j)h(i)HRh( j),

and equating to zero the gradient vector ∇h(i)∗(J (i)) we can
write

1
(M − 1)

(R − D) h(i)
= λ(i)Dh(i)

+
1
M

i−1∑
j=1

γ (i j)Rh( j). (A.1)

In order to obtain the Lagrange multipliers, (A.1) can be left-
multiplied by h(i)H, which, applying the restrictions, implies
λ(i)

= ρ(i). Analogously, left-multiplying (A.1) by h( j)H ( j =
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1, . . . , i − 1) and taking into account the restrictions we can
write

−

(
1

(M − 1)
+ λ(i)

)
h( j)H Dh(i)

=
1
M

γ (i j)h( j)H Rh( j).

Now, assuming that 1
(M−1)

(R − D) h( j)
= λ( j)Dh( j)

(which, for j = 1 is a direct consequence of (A.1)), it
is straightforward to prove that h( j)H Rh(i)

= 0 implies
h( j)H Dh(i)

= 0, and then

γ (i j)h( j)H Rh( j)
= 0.

Finally, taking into account that R is semi-positive definite we
have γ (i j)Rh( j)

= 0, which implies that (A.1) can be rewritten
as

1
(M − 1)

(R − D) h(i)
= λ(i)Dh(i),

where λ(i)
= ρ(i). This validates our assumption and concludes

the proof. �
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