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Abstract

In this paper, we propose a new Expectation–Maximization (EM) algorithm which speeds up the training of feedforward networks with

local activation functions such as the Radial Basis Function (RBF) network. In previously proposed approaches, at each E-step the residual is

decomposed equally among the units or proportionally to the weights of the output layer. However, these approaches tend to slow down the

training of networks with local activation units. To overcome this drawback in this paper we use a new E-step which applies a soft

decomposition of the residual among the units. In particular, the decoupling variables are estimated as the posterior probability of a

component given an input–output pattern. This adaptive decomposition takes into account the local nature of the activation function and, by

allowing the RBF units to focus on different subregions of the input space, the convergence is improved. The proposed EM training algorithm

has been applied to the nonlinear modeling of a MESFET transistor.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Radial Basis Function (RBF) networks have become one

of the most popular feedforward neural networks with

applications in regression, classification and function

approximation problems (Bishop, 1997; Haykin, 1994).

The RBF network approximates nonlinear mappings by

weighted sums of Gaussian kernels. Therefore, an RBF

learning algorithm must estimate the centers of the units,

their variances and the weights of the output layer.

Typically, the learning process is separated into two steps:

first, a nonlinear optimization procedure to select the centers

and the variances and, second, a linear optimization step to

fix the output weights. To simplify the nonlinear optimiz-

ation step, the variances are usually fixed in advance and the

centers are selected at random (Broomhead & Lowe, 1988)

or applying a clustering algorithm (Moody & Darken,

1989).

Other approaches try to solve the global nonlinear

optimization problem using supervised (gradient-based)

procedures to estimate the network parameters, which

minimize the mean square error (MSE) between the desired

output and the output of the network (Karayanis, 1997;

Lowe, 1989; Santamarı́a et al., 1999). However, gradient

descent techniques tend to be computationally complex and

suffer from local minima.

As an alternative to global optimization procedures, a

general and powerful method such as the Expectation–

Maximization (EM) algorithm (Dempster, Laird, &, Rubin,

1977) can be applied to obtain maximum likelihood (ML)

estimates of the network parameters. In the neural networks

literature, the EM algorithm has been applied in a number of

problems: supervised/nonsupervised learning, classifi-

cation/function approximation, etc. Here we concentrate

on its application to supervised learning in function

approximation problems. In this context, Jordan and Jacobs

(1994) proposed to use the EM algorithm to train the

mixture of experts architecture for regression problems. The

EM algorithm has been also applied to estimate the input/

output joint pdf, modeled through a Gaussian mixture

model, and then estimating the regressor as the conditional

pdf (Ghahramani & Jordan, 1994). In both cases the missing

data select the most likely member of the mixture given the

observations, and then each member is trained

independently.

More recently, the EM algorithm has been applied for

efficient training of feedforward and recurrent networks (Ma

& Ji, 1998; Ma et al., 1997). The work in Ma et al. (1997)

connects to the previous work of Feder and Weinstein

(1988) for estimating superimposed signals in noise. In both
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methods, the E-step reduces to decompose at each iteration

the total residual into G components (G being the number of

neurons). In Feder and Weinstein (1988), the variables used

to decompose the residual can be arbitrary values, as long as

they sum one, but constant over the function domain: for

instance, they propose to decompose the residual into G

equal components. In Ma et al. (1997), the residual is

decomposed proportionally to the weights of the output

layer. Both approaches work well for feedforward networks

with global activation functions such as the MLP, but tend

to be rather slow for networks with local activation

functions since each individual unit is forced to approximate

regions far away from the domain of the activation unit.

To overcome this drawback we propose in this paper

a new EM algorithm, specific for RBF networks, which

aims to accelerate its convergence. We perform a soft

decomposition of the residual, taking into account the

locality of the basis functions. Different examples show

that this modification speeds up the convergence in

comparison with previous EM approaches.

The paper is organized as follows. In Section 2, the

main features of the EM algorithm are presented. In

Section 3, we present some EM-based approaches for the

training of feedforward neural networks. In Section 4, the

EM algorithm is applied to train an RBF network taking

advantage of the local nature of its activation function.

Simulation results are provided in Section 5 to validate

the proposed algorithm. In Section 6, we apply this

algorithm to the small-signal modeling of a MESFET

transistor to reproduce the intermodulation behavior. To

conclude the paper, in Section 7, the main conclusions are

exposed.

2. The EM algorithm

The EM algorithm (Dempster et al., 1977) is a general

method for ML estimation of parameters given incomplete

data. The word incomplete indicates that, using this

formulation, it is convenient to associate two sets of random

variables with the problem, Y and V, only one of which, Y, is

directly observable. However, the underlying model is

expressed in terms of both Y and Z ¼ {Y ;V}: In the original

formulation of the EM algorithm, Y was called the

incomplete data, V the missing data, and the combined set

Z was called the complete data. The goal of the algorithm is

to find the set of parameters, say u, which will maximize the

likelihood of the observed values of Y. The maximization is

carried out in terms of the joint distribution of Y and Z.

Let us consider the probability density of the incomplete

data Y to be fY ðy; uÞ; then, the probability density associated

with the complete data Z can be expressed as follows

fZðz; uÞ ¼ fZlY¼yðz; uÞfY ðy; uÞ; ð1Þ

where fZlY¼yðz; uÞ is the conditional probability density of Z

given Y ¼ y: Taking the logarithm on both sides of Eq. (1),

log fY ðy; uÞ ¼ log fZðz; uÞ2 log fZlY¼yðz; uÞ; ð2Þ

and taking the conditional expectation given Y ¼ y with a

parameter value u ¼ u0; the following relationship is

obtained

log fY ðy; uÞ ¼ E{log fZðz; uÞlY ¼ y; u0}

2 E{log fZlY¼yðz; uÞlY ¼ y; u0}: ð3Þ

The main theoretical result associated with the EM

algorithm is that to increase log fY ðy; uÞ can be reduced to

increase the first term of the right side in Eq. (3). This allows

to increase the likelihood of the observed data by means of

the following iterative algorithm

E-Step: To estimate

E{log fZðz; uÞlY ¼ y; uðnÞ}: ð4Þ

M-Step: To evaluate

uðnþ1Þ ¼ arg max
u

E{log fZðz; uÞlY ¼ y; uðnÞ}; ð5Þ

where uðnÞ is the set of parameters in the nth iteration. If

Eq. (4) is a continuous function in both u and uðnÞ; the

algorithm converges to a stationary point in the log-

likelihood function (Wu, 1983), and the maximization in

Nomenclature

N total number of training samples

G number of components (neurons) of the RBF

y vector of observations (incomplete data)

xk kth input

yk kth observation

ek error in the approximation of the kth observation

z vector of complete data

zk;i complete data for kth observation and ith

component

vk;i missing data for kth observation and ith

component

ti decoupling variable for ith component (conven-

tional EM approaches)

tk;i decoupling variable for kth observation and ith

component

oið·Þ activation function of the ith RBF unit

li weight of the ith RBF unit

gið·Þ output of the ith RBF unit (gið·Þ ¼ lioið·Þ)

Pð·Þ a probabilitiy density function

I identity matrix

E{·} the expectation operation
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Eq. (5) ensures that each iteration increases the like-

lihood. Of course, the convergence point may not be the

global maximum of the likelihood function and, there-

fore, the experiment must be repeated from different

initial conditions.

3. EM-based training of feedforward networks

In this section we introduce the notation and describe

previous work on training two-layer feedforward networks

using EM-based approaches. Without loss of generality, let

us consider an RBF network with G Gaussian units, which

approximates an one-dimensional mapping, gðxÞ : R ! R;

as follows

~gðxÞ ¼
XG
i¼1

lioiðxÞ; ð6Þ

where i indexes the RBF units, li the amplitude, and oiðxÞ is

the activation function of each unit, which is given by

oiðxÞ ¼ exp 2
ðx 2 miÞ

2

2s2
i

 !
: ð7Þ

Our training problem consists in estimating the amplitudes,

li; centers, mi; and variances, s2
i ; of an RBF model given a

set of inputs and the corresponding noisy outputs, {xk; yk}:

The noisy observations may be characterized using the

following model

yk ¼
X

i

giðxk; uiÞ þ ek; ð8Þ

where giðxk; uiÞ ¼ lioiðxkÞ and, as usually, we assume that

ek is a zero-mean white Gaussian noise of variance s2:

Then, the log-likelihood of the parameters is given by

Lðu; x; yÞ ¼ K 2
1

2s2

X
k

yk 2
X

i

giðxk; uiÞ

 !2

; ð9Þ

where K is a constant which can be neglected in the

optimization process, u ¼ {u1;…; uG}; and ui ¼

{li;mi;si}:

From Eq. (9) we see that, under the Gaussian noise

assumption, to obtain ML estimates reduces to minimize the

conventional MSE. This multiparameter nonlinear optim-

ization process can be accomplished through a global

gradient descent algorithm (Karayanis, 1997; Lowe, 1989;

Santamarı́a et al., 1999): its shortcomings have been already

mentioned.

A computationally more efficient procedure to obtain ML

estimates is based on the EM algorithm. A good choice for

the missing or the complete data of this algorithm is

necessary to simplify the maximization of the likelihood. A

particularly useful selection for this problem was proposed

in Feder and Weinstein (1988): the complete data is

obtained by decomposing each observation into G signal

components, according to

zk;i ¼ giðxk; uiÞ þ ek;i i ¼ 1;…;G; ð10Þ

where the residuals ek;i are also obtained by decomposing

the total residual ek ¼ yk 2
P

i giðxk; uiÞ into G components,

i.e.

ek;i ¼ tiek i ¼ 1;…;G; ;k: ð11Þ

In Feder and Weinstein (1988), it was shown that the

decoupling variables ti can be arbitrary constants, con-

strained to sum 1. A decomposition of the residual equally

among all the neurons is then proposed

ti ¼
1

G
; i ¼ 1;…;G: ð12Þ

Finally, using Eq. (12) to decompose the residual this EM

algorithm, for training two-layer feedforward networks, can

be summarized as follows

E-step: for i ¼ 1;…;G compute

ẑk;i ¼ giðxk; uiÞ þ ti yk 2
XG
j¼1

gjðxk; ujÞ

0
@

1
A: ð13Þ

M-Step: for i ¼ 1;…;G evaluate

{li;mi;s
2
i } ¼ arg min

ui

X
k

ðẑk;i 2 giðxk; uiÞÞ
2
; ð14Þ

where the index denoting iteration has been omitted.

Note that the problem of globally training an RBF network

with G neurons has been decoupled into G simpler problems

of training a single neuron.

Another EM approach to train feedforward neural

networks has been proposed in Ma et al. (1997). In this

case, the missing data, vk;i; are the desired outputs of the

neurons of the hidden layer. With this choice, it is necessary

to select some probabilistic models to obtain the probability

of the complete data given the observations and the

parameters. Gaussian models have been selected for the

conditional distribution of the missing data given the input,

and for the conditional distribution of the output given the

missing data. With these probabilistic models, it is shown

that the E-step is reduced to obtain the expected value of the

missing variables as

v̂k;i ¼ oiðxkÞ þ ek;i i ¼ 1;…;G: ð15Þ

It is interesting to remark the difference with respect to

Eq. (10). Now we use the outputs of the hidden layer,

oiðxkÞ; instead of the outputs of each RBF unit, lioiðxkÞ:

The residual ek;i is obtained again by decomposing the

total residual into G components according to Eq. (11),
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but now the decomposition variables are

ti ¼
a2li

a1 þ a2

X
j

l2
j

; i ¼ 1;…;G: ð16Þ

Therefore, the error is decomposed proportionally to the

weights of the output layer. In Eq. (16), 1=ð2a1Þ is the

variance of the missing data given the input, and 1=ð2a2Þ

is the variance of the observations given the missing

data. These parameters correspond to the proposed

Gaussian probabilistic models.

The M-step consists of two consecutive steps: the centers

and variances are adapted individually for each neuron as

{mi;si} ¼ arg min
mi;si

X
k

ðv̂k;i 2 oiðxk;mi;siÞÞ
2
;

i ¼ 1;…;G;

ð17Þ

and, later, the weights li are globally adapted according to

{li} ¼ arg min
{li}

X
k

yk 2
X

i

lioiðxk;mi;siÞ

 !2

;

i ¼ 1;…;G;

ð18Þ

using the parameters mi and si obtained in the previous

partial step.

It is necessary to point out that by assuming the

missing data to be stochastically independent (Feder &

Weinstein, 1988) or to have a multivariate Gaussian

distribution with diagonal covariance matrix (Ma et al.,

1997), any cooperation between the components is

destroyed, and this leads to the decoupled optimization

scheme. While this decoupling accelerates the conver-

gence, it can also lead to a poor local maximum of the

likelihood surface. In despite of this shortcoming, the

algorithm has been successfully applied in a number of

applications.

4. Fast EM training of RBF networks

The decoupling variables (12) or (16), which are constant

over the whole input space, have provided good results in

feedforward neural networks with nonlocal activation

functions, such as the Multilayer Perceptron (MLP).

However, they are not well suited for networks with local

activation functions, such as the RBF. For this type of

networks its convergence is slow due to the fact that, using

the previous decoupling variables, at each M-step we are

trying to fit a Gaussian to a very large region of the input

space. Intuitively, we could make a better job if we localize

somehow the error associated to each RBF unit. This is the

idea that we exploit in this paper to obtain a faster

convergence.

4.1. Algorithm development

In this section we develop the EM-based learning

algorithm, showing that the modifications introduced to

take advantage of the locality of the RBF units still can be cast

within the general framework established in Feder and

Weinstein (1988). In this way, the convergence of our

algorithm is guaranteed.

Following the idea shown in Feder and Weinstein (1988),

from a set of N observations y ¼ ½y1;…; yN�
T (incomplete

data), the complete data is obtained by decomposing the

observations into its signal components

z ¼

z1

z2

..

.

zG

2
666666664

3
777777775
; with zi ¼

z1;i

z2;i

..

.

zN;i

2
66666664

3
77777775
; ð19Þ

where

zk;i ¼ giðxk; uiÞ þ ek;i: ð20Þ

The ek;i are obtained decomposing the total residual ek into

G components, so that the relation between the complete

and the incomplete data can be written as follows

y ¼
XG
i¼1

zi ¼ Hz; ð21Þ

where

H ¼ ½I I· · ·I�|fflffl{zfflffl}
G terms

: ð22Þ

We have considered the ek;i statistically independent, zero-

mean, and Gaussian. This assumption destroys the

cooperation between the components, like in Feder and

Weinstein (1988) as it was explained in Section 3.

Therefore, it can yield a poor local maxima. In this case,

the log-likelihood of the complete data is

log fZðz; uÞ ¼ K 2 1
2
ðz 2 sðuÞÞTD21ðz 2 sðuÞÞ; ð23Þ

where

sðuÞ ¼

g1ðu1Þ

g2ðu2Þ

..

.

gGðuGÞ

2
666666664

3
777777775
; with giðuiÞ ¼

giðx1; uiÞ

giðx2; uiÞ

..

.

giðxN ; uiÞ

2
666666664

3
777777775
; ð24Þ

and

D ¼

Q1 ð0Þ

Q2

ð0Þ QG

2
6664

3
7775; ð25Þ
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is a block-diagonal matrix. In Feder and Weinstein (1988),

the Qi matrix are obtained by

Qi ¼ tiQ; ð26Þ

where Q is the covariance matrix of the error ek; and ti are

arbitrary constants constrained to sum 1. In this paper, we

propose to use the following decomposition

Qi ¼ TiQ; ð27Þ

where Ti is the following diagonal matrix

Ti ¼

t1;i ð0Þ

. .
.

ð0Þ tN;i

2
66664

3
77775: ð28Þ

With this decomposition, the conditional expectation of the

log-likelihood function, given the observations and the

current value of the parameters, can be written as

E{log fZðz; uÞlY ¼ y; uðnÞ}

¼ K 2 1
2
ðẑ 2 sðuÞÞTD21ðẑ 2 sðuÞÞ; ð29Þ

where ẑ is the expectation of z given the observations

and the current value of the parameters, uðnÞ: As it is

shown in Feder and Weinstein (1988), assuming that z

and y are jointly Gaussian and related by the linear

transformation (21), this expectation is given by

ẑ ¼ sðuðnÞÞ þ DHT ½HDHT �21½y 2 HsðuðnÞÞ�: ð30Þ

It is straightforward to see that Eq. (29) can be

decoupled into a sum of G independent terms and,

therefore, the EM algorithm is reduced to estimate the

expectation of the complete data for each component.

Taking into account Eq. (30), the EM algorithm can be

stated as follows

E-Step: for i ¼ 1;…;G compute

ẑk;i ¼ giðxk; uiÞ þ tk;i yk 2
XG
j¼1

gjðxk; ujÞ

2
4

3
5: ð31Þ

M-Step: for i ¼ 1;…;G evaluate

ui ¼ arg min
ui

½ẑk;i 2 giðxk; uiÞ�
T Q21

i ½ẑk;i 2 giðxk; uiÞ�:

ð32Þ

Taking into account the nature of the Qi matrix, the

M-step states to minimize a weighted squared error.

Intuitively, a better way to find the ui parameters, in

the case of an RBF network, is to minimize the

squared error. This intuition has been validated by

experimental results. Then, the M-step used in the

simulations is:

M-Step (Modified): for i ¼ 1;…;G evaluate

ui ¼ arg min
ui

XN
k¼1

ðẑk;i 2 giðxk; uiÞÞ
2
: ð33Þ

4.2. Selection of the decoupling variables tk;i

To take advantage of the local nature of the activation

function of an RBF network, in this paper we propose to use

as decoupling variables the following posterior probabilities

tk;i ¼ Pðck ¼ ilxk; zk;iÞ; ð34Þ

where {zk;i} is the complete data set used in the E-step, and

ck [ {1;…;G} is an indicator variable: the event ck ¼ i

indicates that the kth input–output pattern ðxk; zk;iÞ has been

generated by the ith RBF unit. Using Eq. (34), the algorithm

performs a soft adaptive decomposition of the residual

taking into account the local nature of the activation

functions. We denote this modification as soft-EM as

opposed to the classical EM versions using constant

decoupling variables (Feder & Weinstein, 1988; Ma et al.,

1997).

Now we consider the estimation of Eq. (34): applying

Bayes, the posterior probabilities can be estimated as

tk;i ¼
Pðxk; zk;ilck ¼ iÞX
j

Pðxk; zk;ilck ¼ jÞ
; ð35Þ

and the probabilities Pðxk; zk;ilck ¼ jÞ can be obtained

through

Pðxk; zk;ilck ¼ jÞ ¼ Pðzk;ilck ¼ j; xkÞPðxklck ¼ jÞ: ð36Þ

It is interestingtoremark that theprobabilitiesPðxklck ¼ jÞ

are the key variables responsible for introducing the local

character of the RBF units, since they can be estimated as

Pðxklck ¼ jÞ ¼
ojðxkÞÐ
ojðxkÞdxk

: ð37Þ

In order to estimate Pðzk;ilck ¼ j; xkÞ; we have several

possibilities depending on the assumed model for the data.

We assume the following Gaussian model

Pðzk;ilck ¼ j; xkÞ ¼
1ffiffiffiffi

2p
p

sk;i

exp 2
ðzk;i 2 gjðxkÞÞ

2

2s2
k;i

; ð38Þ

where the variance s2
k;i can be estimated at each iteration as

s2
k;i ¼ t̂k;is

2
; ð39Þ

wheres2 is the variance of the error, and t̂k;i are the decoupling

variables obtained in the previous EM iteration. These

variables are initialized proportionally to the output of their
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corresponding RBF unit

t̂ðiniÞ
k;i ¼

giðxk; uiÞX
j

gjðxk; ujÞ
: ð40Þ

Taking into account the transformation (21), this model is

consistent with the overall noise model (9), since all the

models are Gaussian and the decoupling variables are

constrained to sum 1.

To summarize, using Eqs. (36)–(38) we estimate the

decoupling variables as in Eq. (35): these estimates are then

used in the E-step.

In the maximization step, new RBF parameters need to

be obtained through minimizing Eq. (14) for each

component. The amplitude of each RBF unit can be

obtained solving a linear least squares problem, while its

center and variance can be updated using a gradient descent

procedure (Santamarı́a et al., 1999). To accomplish with the

EM requirements, the gradient algorithm must be iterated at

each M-step until convergence is reached. However,

another possibility is to carry out only a limited number of

gradient iterations. In this way, Eq. (14) is not minimized,

but only decreased. In this case, the algorithm become a

Generalized EM (GEM) algorithm, a variant of the EM

algorithm that instead of requiring the maximization of the

expectation of the log-likelihood of the complete data at

each E-step, it only requires that the expectation be

improved (Dempster et al., 1977).

Let us point out that each RBF unit is adapted separately

therefore simplifying the global optimization problem and

allowing an easy parallelization. The extension to multi-

dimensional input spaces is straightforward.

5. Experimental results

In this experiment we consider the set of eight 2-D

functions used in Cherkassky, Gehring, and Mulier

(1996) to compare the performance of several adaptive

methods. These functions, which form a suitable test set,

are described in Table 1. We use a generalized radial

basis function (GRBF) allowing a different variance

along each input dimension.

First, we compare the performance of the proposed soft-

EM approach with the classical EM alternatives (Feder &

Weinstein, 1988; Ma et al., 1997), denoted as EM-1 and

EM-2, respectively. A GRBF network with 15 neurons is

considered. The network is initialized as follows: the position

of the centers is obtained using the orthogonal least squares

(OLS) algorithm (Chen, Cowan, & Grant, 1991), with

different initial values of s2: The li parameters are then

obtained by least squares. A single iteration of gradient is

used in the E-step of all methods. Several values of

parameters a1 and a2 in Ma et al. (1997) have been tested.

The best results have been obtained for a1 ¼ 1;a2 ¼ 5:

Fig. 1 shows the evolution of the normalized MSE as a

function of the EM iterations. In this case, the MSE

corresponds to the mean value obtained in the eight

functions. In any case, a similar behavior has been observed

for each individual function. It can be seen how the soft-EM

approach provides a fast convergence.

In order to ensure a fair comparison, we want to remark

that the initialization procedure meets the requirements

Table 1

Functions used to generate the two-dimensional data sets

Name Function Domain

Func 1 y ¼ sinðx1x2Þ [22,2]

Func 2 y ¼ expðx1 sinðpx2ÞÞ [21,1]

Func 3 y ¼
40 expð8ððx1 2 0:5Þ2 þ ðx2 2 0:5Þ2ÞÞ

expð8ððx1 2 0:2Þ2 þ ðx2 2 0:7Þ2ÞÞ þ expð8ððx1 2 0:72 þ ðx2 2 0:2Þ2ÞÞ
[0,1]

Func 4 y ¼ ð1 þ sinð2x1 þ 3x2ÞÞ=ð3:5 þ sinðx1 2 x2ÞÞ [22,2]

Func 5 y ¼ 42:659ð0:1 þ x1ð0:05 þ x4
1 2 10x2

1x2
2 þ 5x4

2ÞÞ [20.5,0.5]

Func 6 y ¼ 1:3356½1:5ð1 2 x1Þ þ expð2x1 2 1Þsinð3pðx1 2 0:6Þ2Þ þ expð3ðx2 2 0:5ÞÞsinð4pðx2 2 0:9Þ2Þ� [0,1]

Func 7 y ¼ 1:9½1:35 þ expðx1Þsinð13ðx1 2 0:6Þ2� þ expð3ðx2 2 0:5ÞÞsinð4pðx2 2 0:9Þ2Þ� [0,1]

Func 8 y ¼ sinð2p
ffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
Þ [21,1]

Fig. 1. Mean evolution of the normalized MSE for the different EM

alternatives in the eight 2D test functions.
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discussed in Ma et al. (1997), since the components tend to

be uniformly placed in the entire input domain and behave

differently from the beginning of the algorithm. Moreover,

other initialization strategies have been tested providing

similar results: for instance, the centers in a uniform

distribution drawing a grid in the input space.

The soft-EM has also been compared with a global

gradient descent approach (Santamarı́a et al., 1999).

Again, a GRBF network with 15 neurons is employed

and 300 iterations of the gradient method and the EM

approaches are carried out. We apply a single gradient

iteration at each M-step. In this way both alternatives

have a similar computational cost. The same initialization

procedure of the previous experiment is employed, with

10 different initial values of s2 for each function. In this

case, the gradient based method and the soft-EM

approach have a similar behavior in the speed of

convergence. However, the final results are better using

the soft-EM approach. Table 2 shows the mean signal to

error ratio (SER) in dB obtained for each function with

the gradient based approach and with the EM based

methods.

It can be seen that, for most of the functions, the soft-EM

provides better results than the global gradient and the

conventional EM approaches.

6. Nonlinear small-signal modeling of a MESFET for

intermodulation distortion characterization

In this section, a GRBF network trained with the

proposed soft-EM procedure is used to reproduce the

small-signal intermodulation behavior of a microwave

MESFET transistor. Fig. 2 shows the most widely accepted

equivalent nonlinear circuit of a MESFET in its saturated

region. The predominant nonlinearity in this model is the

drain to source current Ids; which depends on both the drain

to source, Vds; and gate to source, Vgs; voltages. Here we are

going to model this static nonlinearity.

Reproducing the small-signal third order intermodulation

distortion (IMD) behavior is quite a common and difficult

task: amplifiers working below the 1 dB compression point

and mixers excited by small RF signals when compared

with the local oscillator are typical examples. In this case, to

be able to predict the IMD behavior, the model must

describe not only the nonlinear current–voltage (I=V)

characteristic, but also its respective derivatives up to the

same order (Maas & Neilson, 1990). In particular, the drain

to source current Ids can be represented in a small interval

around the bias point, (Vds0;Vgs0), by the following two-

dimensional truncated Taylor series expansion

Ids¼ Ids0þGmvgsþGdvdsþGm2v2
gsþGmdvgsvdsþGd2v2

ds

þGm3v3
gsþGm2dv2

gsvdsþGmd2vgsv
2
dsþGd3v3

ds; ð41Þ

where Ids0 is the dc drain current, vds and vgs are the

incremental drain-to-source and gate-to-source voltages,

respectively; and ðGm;…;Gd3Þ are coefficients related to the

nth-order derivatives of the I=V characteristic evaluated at

the bias point. For example, Gmd2 would be given by

Gmd2¼
1

2

›3Ids

›vgs›v2
ds

�����
ðVgs0 ;Vds0Þ

; invds¼vgs¼0: ð42Þ

Table 2

Mean SER (dB) for the different test functions

Func

1

Func

2

Func

3

Func

4

Func

5

Func

6

Func

7

Func

8

Gradient 20.4 40.5 32.2 19.0 26.1 28.7 26.3 16.2

EM-1 17.9 30.6 34.7 14.1 27.4 29.4 30.5 14.7

EM-2 18.6 29.8 34.8 16.3 27.8 28.9 30.5 15.0

Soft-EM 20.0 39.3 42.9 19.5 31.8 33.6 34.3 16.3

Fig. 2. Nonlinear equivalent circuit of a MESFET transistor.
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These parameters can be extracted from experimental

measurements. The first order coefficients are determined

from scattering parameters and the rest from intermodula-

tion power measurements for two tones excitation (Pedro &

Pérez, 1994). With this model for Ids; it is possible to

approximate, in the neighborhood of the bias point, the (I=V)

characteristic and its derivatives.

To summarize, the modeling problem we are facing

consists in approximating the nonlinear dependence of Ids

with the bias and instantaneous drain to source and gate to

source voltages

Îds ¼ f ðVds0;Vgs0; vds; vgsÞ: ð43Þ

After obtaining a set of real measurements of the

coefficients in the Taylor series (41), the problem can be

stated as the G : R2 ! R10 multidimensional function

approximation problem that implements the nonlinear

mapping from the input space of bias voltages V ¼

ðVds0;Vgs0Þ; to the output space composed by the coefficients

of the Taylor series

GðVÞ ¼ ðIds0;Gm;Gds;Gm2;Gmd;Gd2;Gm3;Gm2d;Gmd2;Gd3Þ:

ð44Þ

Then, Îds is estimated by Eq. (41).

The coefficients related with the derivatives of the I=V

characteristic have been measured for a microwave

NE 72084 MESFET in 533 different bias points (for

instance, the normalized shape of Gmd is shown in Fig. 3).

Therefore, our GRBF model receives as input these bias

voltages ðVds0;Vgs0Þ and gives at its output the coeffi-

cients (44). In this case, because of the reduced number

of patterns and the general reduced level of noise of the

samples, we have not considered separated sets of

training and test. The network is trained with the

whole available measurements. The network is initialized

by selecting an initial variance and applying the OLS

algorithm (Chen et al., 1991).

In Table 3 we compare the results obtained with a

GRBF network with 8 units (the models has 112

parameters), trained with the proposed soft-EM algorithm

(GRBF-EM) and with a global gradient algorithm

(GRBF-GRD) (Santamarı́a et al., 1999), and the results

provided by a MLP network with a similar number of

parameters (114). It can be seen that, even with this

reduced number of parameters, a suitable approximation

of all the coefficients is obtained. The soft-EM provides

better results than the gradient based approach using the

GRBF network. Moreover, let us note that to provide

similar results a MLP model requires approximately

twice as many parameters.

Fig. 4 shows the evolution of the normalized MSE with

the number of iterations for the soft-EM method and

compares it with the conventional EM approaches. For

EM-2, we have used the parameters a1 ¼ 1 and a2 ¼ 5:

The averaged results, starting from 50 different initial

conditions (different initial variances), are presented. It can

be seen that the proposed soft-EM approach improves the

convergence of the training algorithm also in this

application.

7. Conclusions and future work

The decoupling variables used in the E-step of EM-

based learning algorithms can be selected to control the

rate of convergence of the algorithm. We have studied in

this paper a suitable selection of these variables for

feedforward networks with local activation functions

(mainly, RBF networks). Specifically, these variables

are estimated as the posterior probability of each RBF

unit given each pattern of the selected complete data. By

Fig. 3. Normalized value of the parameter Gmd as a function of the

polarization voltages.

Table 3

Results (SER in dB) of the GRBF model with eight neurons for a NE 72084 MESFET using the soft-EM (GRBF-EM) and a gradient-based training algorithm

(GRBF-GRD). These results are compared with the obtained with a MLP with 8 and 16 neurons, respectively

Model Npar Ids0 Gd2 Gd3 Gds Gm1 Gm2s Gm2d Gm3 Gmd Gmds

GRBF-EM 112 25.0 18.5 15.2 26.0 25.5 24.1 21.3 20.9 24.2 21.2

GRBF-GRD 112 22.8 19.1 15.7 25.4 27.2 17.0 18.0 18.5 17.9 16.1

MLP (8) 114 18.7 13.5 14.0 24.6 30.0 13.5 9.9 8.9 13.6 10.7

MLP (16) 218 20.0 14.4 16.7 29.1 31.7 16.3 15.4 14.3 16.3 14.2
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means of several simulation examples, it has been shown

that this modification accelerates the convergence of the

algorithm.

The proposed soft-EM approach has been applied to

model the small-signal behavior of a MESFET transistor to

reproduce the IMD, providing suitable results.

There are several lines of investigation to carry out in the

future. In particular, an efficient training method for a single

neuron of an RBF network will help to reduce the

computational burden introduced by the actual gradient

based strategy. We also consider interesting to analyze the

decoupling variables of the algorithm as a tool that could be

employed in a pruning strategy in order to find the optimal

size of the network. Since these variables carry information

about the contribution of each RBF unit, they could be used

to select the more important ones.
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Pedro, J. C., & Pérez, J. (1994). Accurate simulation of GaAs MESFETs

intermodulation using a new drain-source current model. IEEE

Transactions Microwave Theory and Techniques, 42(1), 25–33.

Santamarı́a, I., Lázaro, M., Pantaleón, C. J., Garcı́a, J. A., Tazón, A., &

Mediavilla, A. (1999). A nonlinear MESFET model for intermodulation

analysis using a generalized radial basis function network. Neurocom-

puting, 25, 1–18.

Wu, C. F. (1983). On the convergence properties of the EM algorithm.

Annals of Statistics, 11, 95–103.

Fig. 4. Evolution of the normalized MSE for the different EM alternatives in

the training of a MESFET model for intermodulation behavior.

M. Lázaro et al. / Neural Networks 16 (2003) 69–77 77


	A new EM-based training algorithm for RBF networks
	Introduction
	The EM algorithm
	EM-based training of feedforward networks
	Fast EM training of RBF networks
	Algorithm development
	Selection of the decoupling variables &f;t&m.inf;k,i&/m.inf;&/f;

	Experimental results
	Nonlinear small-signal modeling of a MESFET for intermodulation distortion characterization
	Conclusions and future work
	Acknowledgements
	References


